1
|
Silva MA, Gonçalves Albuquerque T, Espírito Santo L, Motta C, Almeida A, Azevedo R, Alves RC, Oliveira MBPP, Costa HS. Exploring the Functional Features of Melon Peel Flour for Healthier Bakery Products. Foods 2024; 14:40. [PMID: 39796330 PMCID: PMC11719529 DOI: 10.3390/foods14010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
The use of fruit by-products to develop new food products could be an advantageous approach to meet the demand for healthy foods and reduce food waste. In this study, the amino acid and mineral profiles of melon peel flour were evaluated. Non-essential/toxic elements were also determined. Furthermore, two formulations (biscuit and muffin) were developed with 50% and 100% melon peel flour, respectively. The bioaccessibility of essential minerals in these two formulations was also determined. These innovative products presented interesting contents of amino acids and high levels of minerals, contributing significantly to daily mineral requirements, mainly magnesium (18-23%), phosphorus (13-28%), molybdenum (14-17%), and manganese (10-13%). Regarding the in vitro bioaccessibility of minerals in the developed formulations, magnesium, manganese, sodium, and phosphorus were those with the highest values (75-108%). Based on these results, melon peel has the potential to improve global food security, nutrition, economic well-being, and overall health and well-being.
Collapse
Affiliation(s)
- Mafalda Alexandra Silva
- Research and Development Unit, Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; (M.A.S.); (C.M.); (H.S.C.)
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (L.E.S.); (A.A.); (R.A.); (R.C.A.); (M.B.P.P.O.)
| | - Tânia Gonçalves Albuquerque
- Research and Development Unit, Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; (M.A.S.); (C.M.); (H.S.C.)
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (L.E.S.); (A.A.); (R.A.); (R.C.A.); (M.B.P.P.O.)
| | - Liliana Espírito Santo
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (L.E.S.); (A.A.); (R.A.); (R.C.A.); (M.B.P.P.O.)
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, University of Vigo, E-32004 Ourense, Spain
| | - Carla Motta
- Research and Development Unit, Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; (M.A.S.); (C.M.); (H.S.C.)
| | - Agostinho Almeida
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (L.E.S.); (A.A.); (R.A.); (R.C.A.); (M.B.P.P.O.)
| | - Rui Azevedo
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (L.E.S.); (A.A.); (R.A.); (R.C.A.); (M.B.P.P.O.)
| | - Rita C. Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (L.E.S.); (A.A.); (R.A.); (R.C.A.); (M.B.P.P.O.)
| | - Maria Beatriz P. P. Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (L.E.S.); (A.A.); (R.A.); (R.C.A.); (M.B.P.P.O.)
| | - Helena S. Costa
- Research and Development Unit, Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; (M.A.S.); (C.M.); (H.S.C.)
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (L.E.S.); (A.A.); (R.A.); (R.C.A.); (M.B.P.P.O.)
| |
Collapse
|
2
|
Qin B, Li Z, Azad MAK, Chen T, Cui Y, Lan W, Wang H, Kong X. Fermented blueberry pomace supplementation improves egg quality, liver synthesis, and ovary antioxidant capacity of laying hens. Poult Sci 2024; 103:104241. [PMID: 39278113 PMCID: PMC11419820 DOI: 10.1016/j.psj.2024.104241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 09/17/2024] Open
Abstract
The present study aimed to investigate the effects of dietary fermented blueberry pomace (FBP) supplementation on production performance, egg quality and nutritional value, plasma biochemical parameters, follicle number, reproductive hormones, lipid metabolism, and antioxidant capacity of laying hens during the late laying period. A total of 320 (345-d-old) Yukou Jingfen No. 8 laying hens were randomly divided into 4 groups, with eight replicates per group and 10 hens per replicate. The birds were fed a basal diet (control group) and a basal diet supplemented with 0.25, 0.5, and 1.0% FBP. The trial lasted 56 d. The results showed that FBP (0.25-1.0%) supplementation increased the egg albumen height and Haugh unit compared with the control group on d 14, while 0.5 to 1.0% FBP increased the eggshell thickness compared with the 0.25% FBP group on d 28 of the trial (P < 0.05). The methionine content in egg white was higher (P < 0.05) in the 1.0% FBP group compared with the 0.25% FBP group. The CAT activity in the ovary was increased (P < 0.05) in the FBP groups compared with the control group, while plasma GSH-PX activity was higher (P < 0.05) in the 1.0% FBP group compared with the 0.25% FBP and 0.5% FBP groups. Dietary FBP supplementation up-regulated (P < 0.05) gene expressions related to lipid metabolism in the liver (ACC, FAS, SCD1, and SREBP1) and yolk precursor synthesis (ESR2 and VTG II). Moreover, CYP11A1 expression in the ovary was up-regulated (P < 0.05) in the FBP groups compared with the control group, as well as in the 0.25% FBP group compared with the 1.0% FBP group. In summary, dietary FBP supplementation improved egg quality and nutritional value, ovarian antioxidant capacity, and yolk precursor synthesis, while 1.0% FBP had better effects than 0.25 and 0.5% doses.
Collapse
Affiliation(s)
- Binghua Qin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Md Abul Kalam Azad
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yadong Cui
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Wei Lan
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Haoran Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangfeng Kong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Jabeen R, Habiba U, Mustafa T, Rehman T. Isolation, identification and optimization for tyrosinase production by banana peel waste for industrial application. Nat Prod Res 2024:1-5. [PMID: 39512006 DOI: 10.1080/14786419.2024.2426209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 10/10/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
The study aimed to isolate, purify and optimise tyrosinase from banana peel waste for industrial use. Tyrosinase was extracted from banana peel using phosphate buffer. Purification initiated with centrifugation followed by ammonium sulphate precipitation. Further purification and characterisation was done through gel filtration. Bradford assay was used to determine the protein concentration. Enzyme activity of each sample was measured using tyrosinase activity assay. The pH and temperature optimisation of tyrosinase were also obtained. Results indicated that fractions obtained through ammonium sulphate precipitation at 70% saturation showed more activity than that of crude extract and 35% saturated fractions. Gel filtration column results showed that fraction number 17 &18 have maximum activity. Tyrosinase showed maximum activity at pH 7.0; 37 °C. Comparison between industrially purified and lab-isolated enzyme showed that both have similar optimum pH and temperature. It can be concluded that banana peel can be a source for synthesis of tyrosinase.
Collapse
Affiliation(s)
- Raheela Jabeen
- Department of Biochemistry and Biotechnology, The Women University Multan, Multan, Pakistan
| | - Ume Habiba
- Department of Eastern Medicine, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Tahmina Mustafa
- Department of Biochemistry and Biotechnology, The Women University Multan, Multan, Pakistan
| | - Tayyeba Rehman
- Department of BHMS, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
4
|
Mgeni ST, Mero HR, Mtashobya LA, Emmanuel JK. The prospect of fruit wastes in bioethanol production: A review. Heliyon 2024; 10:e38776. [PMID: 39421386 PMCID: PMC11483485 DOI: 10.1016/j.heliyon.2024.e38776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Utilising agricultural byproducts specifically fruit wastes for bioethanol production offers a promising approach to sustainable energy production and waste mitigation. This approach focuses on assessing the biochemical composition of fruit wastes, particularly their sugar content, as a key aspect of bioethanol production. This study evaluates the potential of pineapple, mango, pawpaw and watermelon fruit wastes for bioethanol production, highlighting the substantial organic waste generated during fruit processing stages such as peeling and pulping. Various techniques, including enzymatic hydrolysis, fermentation, and distillation, are reviewed to optimise bioethanol yields while addressing challenges such as seasonal availability, substrate variability and process optimisation. Besides, the environmental benefits of bioethanol derived from fruit wastes, such as reduced environmental pollution, decreased reliance on fossil fuels, and promotion of sustainable agricultural practices, are emphasised. The study deployed a comprehensive literature review using keywords, specific research questions, and a search strategy that included academic databases, library catalogues, and Google Scholar. Search results were systematically screened and selected based on their relevance to the topic.
Collapse
Affiliation(s)
- Shedrack Thomas Mgeni
- Department of Chemistry, Mkwawa University College of Education, P.O. Box 2513, Iringa, Tanzania
- Department of Biological Science, Mkwawa University College of Education, P.O. Box 2513, Iringa, Tanzania
| | - Herieth Rhodes Mero
- Department of Biological Science, Mkwawa University College of Education, P.O. Box 2513, Iringa, Tanzania
| | - Lewis Atugonza Mtashobya
- Department of Chemistry, Mkwawa University College of Education, P.O. Box 2513, Iringa, Tanzania
| | | |
Collapse
|
5
|
Hossain MJ, Lema KR, Samadd MA, Aktar R, Rashid MA, Al-Mansur MA. Chemical Profiling and Antioxidant, Anti-Inflammatory, Cytotoxic, Analgesic, and Antidiarrheal Activities from the Seeds of Commonly Available Red Grape ( Vitis vinifera L.). Nutr Metab Insights 2024; 17:11786388241275100. [PMID: 39315363 PMCID: PMC11418367 DOI: 10.1177/11786388241275100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/17/2024] [Indexed: 09/25/2024] Open
Abstract
Objectives The current study aimed to conduct a phytochemical screening of commonly known fruit red grape (Vitis vinifera L.) seed methanolic extract through gas chromatography and mass spectrometry (GC-MS) to identify the bioactive compounds responsible for its health benefits and evaluate the pharmacological potentialities of the extract and its fractions against oxidation, inflammation, pain, and diarrhea. Methods The in vitro antioxidant, anti-inflammatory, and cytotoxic characteristics of methanolic extracts and various solvent fractions of V. vinifera were evaluated using the DPPH free radical scavenging assay, membrane stabilizing, and brine shrimp lethality bioassay. Furthermore, the study assessed the effects of crude extracts (200, 400, and 600 mg/kg of body weight) on pain relief and reduction of diarrhea in animals using methods such as tail immersion, the acetic acid-induced writhing technique, and a diarrheal mouse model induced with castor oil. Results A total of 73 phytoconstituents were predominantly found in the seed extract based on the GC-MS analysis. Among the identified compounds, 9-octadecenamide (13.7%), and (9E,11E)-octadeca-9,11-dienoate (11.07%) are most abundant. Several notable constituents, such as gamma-sitosterol, stigmasterol, paromomycin, 4,6-cholestadienol, gamma-tocotrienol, 24-Propylidenecholest-5-en-3beta-ol, and alpha-tocopherol acetate, are also present. The methanolic extract of V. vinifera seed and its different solvent fractions showed promising antioxidant properties (IC50 = 1.19-17.42 µg/mL) compared to the standard antioxidant butylated hydroxytoluene (IC50 = 20.46 µg/mL). Aqueous soluble fraction exerted inhibition of nearly 50% heat-induced hemolysis compared to the standard acetylsalicylic acid (42%). Besides, all the tested doses (200, 400, and 600 mg/kg bw) of the crude extract showed significant (P < .05) analgesic and antidiarrheal effects. Conclusion The current findings endorsed the health benefits of V. vinifera by revealing potent antioxidant, anti-inflammatory, analgesic, and antidiarrheal effects. Nevertheless, further in-depth analysis of the plant's chemical constituents and pharmacological effects on health is warranted for novel drug discovery from V. vinifera.
Collapse
Affiliation(s)
- Md Jamal Hossain
- Department of Pharmacy, School of Pharmaceutical Sciences, State University of Bangladesh, Dhaka, Bangladesh
| | - Khadija Rahman Lema
- Department of Pharmacy, School of Pharmaceutical Sciences, State University of Bangladesh, Dhaka, Bangladesh
| | - Md Abdus Samadd
- Department of Pharmacy, School of Pharmaceutical Sciences, State University of Bangladesh, Dhaka, Bangladesh
| | - Rumi Aktar
- Department of Pharmacy, School of Pharmaceutical Sciences, State University of Bangladesh, Dhaka, Bangladesh
| | - Mohammad A Rashid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Muhammad Abdullah Al-Mansur
- Institute of National Analytical Research and Services, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, Bangladesh
| |
Collapse
|
6
|
Cirrincione F, Ferranti P, Ferrara A, Romano A. A critical evaluation on the valorization strategies to reduce and reuse orange waste in bakery industry. Food Res Int 2024; 187:114422. [PMID: 38763672 DOI: 10.1016/j.foodres.2024.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Tons of orange by-products (OBPs) are generated during industrial orange processing. Currently, OBPs management is challenging due to their high amounts, physico-chemical characteristics (high water content, low pH, presence of essential oils) and seasonal nature of the production. Whereas agro-industrial OBPs can be highly valuable due to their abundant sources of bioactive compounds, which can add value to novel bakery products (e.g. bread, biscuits, cakes). This review covers the most recent research issues linked to the use of OBPs in bakery products, with a focus on available stabilization methods and on the main challenges to designing improved products. The application of OBPs improved the nutritional quality of bakery products, offering interesting sustainability benefits but also critical challenges. The valorization of OBPs may open new routes for the development of new natural ingredients for the food industry and lower food processing waste.
Collapse
Affiliation(s)
- Federica Cirrincione
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 80055 Portici (Naples), Italy
| | - Pasquale Ferranti
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 80055 Portici (Naples), Italy
| | - Alessandra Ferrara
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 80055 Portici (Naples), Italy
| | - Annalisa Romano
- Department of Agricultural Sciences, University of Naples Federico II, Piazza Carlo di Borbone, 80055 Portici (Naples), Italy.
| |
Collapse
|
7
|
Celeiro M, Lončarić A. Editorial: Plant bioactive compounds from agro-industrial by-products for improvement of nutritional quality of foods. Front Nutr 2024; 11:1448549. [PMID: 39006101 PMCID: PMC11239487 DOI: 10.3389/fnut.2024.1448549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Affiliation(s)
- Maria Celeiro
- CRETUS-Department of Analytical Chemistry, Nutrition and Food Science, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ante Lončarić
- Faculty of Food Technology, University of Osijek, Osijek, Croatia
| |
Collapse
|
8
|
Regolo L, Giampieri F, Battino M, Armas Diaz Y, Mezzetti B, Elexpuru-Zabaleta M, Mazas C, Tutusaus K, Mazzoni L. From by-products to new application opportunities: the enhancement of the leaves deriving from the fruit plants for new potential healthy products. Front Nutr 2024; 11:1083759. [PMID: 38895662 PMCID: PMC11184148 DOI: 10.3389/fnut.2024.1083759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 05/03/2024] [Indexed: 06/21/2024] Open
Abstract
In the last decades, the world population and demand for any kind of product have grown exponentially. The rhythm of production to satisfy the request of the population has become unsustainable and the concept of the linear economy, introduced after the Industrial Revolution, has been replaced by a new economic approach, the circular economy. In this new economic model, the concept of "the end of life" is substituted by the concept of restoration, providing a new life to many industrial wastes. Leaves are a by-product of several agricultural cultivations. In recent years, the scientific interest regarding leaf biochemical composition grew, recording that plant leaves may be considered an alternative source of bioactive substances. Plant leaves' main bioactive compounds are similar to those in fruits, i.e., phenolic acids and esters, flavonols, anthocyanins, and procyanidins. Bioactive compounds can positively influence human health; in fact, it is no coincidence that the leaves were used by our ancestors as a natural remedy for various pathological conditions. Therefore, leaves can be exploited to manufacture many products in food (e.g., being incorporated in food formulations as natural antioxidants, or used to create edible coatings or films for food packaging), cosmetic and pharmaceutical industries (e.g., promising ingredients in anti-aging cosmetics such as oils, serums, dermatological creams, bath gels, and other products). This review focuses on the leaves' main bioactive compounds and their beneficial health effects, indicating their applications until today to enhance them as a harvesting by-product and highlight their possible reuse for new potential healthy products.
Collapse
Affiliation(s)
- Lucia Regolo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali – Università Politecnica delle Marche, Ancona, Italy
| | - Francesca Giampieri
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Maurizio Battino
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Product Processing, Jiangsu University, Zhenjiang, China
| | - Yasmany Armas Diaz
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Bruno Mezzetti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali – Università Politecnica delle Marche, Ancona, Italy
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Maria Elexpuru-Zabaleta
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Cristina Mazas
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Universidad Internacional Iberoamericana, Campeche, Mexico
| | - Kilian Tutusaus
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Research Center for Foods, Nutritional Biochemistry and Health, Universidade Internacional do Cuanza, Cuito, Angola
| | - Luca Mazzoni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali – Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
9
|
Zheng YP. Global characteristics and trends of researches on watermelon: Based on bibliometric and visualized analysis. Heliyon 2024; 10:e26824. [PMID: 38434322 PMCID: PMC10907791 DOI: 10.1016/j.heliyon.2024.e26824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Watermelon is an important horticultural plant. A bibliometric analysis of the watermelon literature was carried out in order to analyze the research state, hotspots, and trends, as well as to highlight the overall watermelon research development from a holistic viewpoint. The summary of watermelon research is given via metrological analysis based on a set of indices using a newly built Bibliometrix R-package tool. This study gathered 6,632 documents indexed in the Core Collection of Web of Science (WoS) in the domain of watermelon from 1992 to 2022 using bibliometrix. The results indicated that the number of published articles showed an apparently upward trend. The United States was in the first place, with Plant Disease being the most productive journal. Levi A from the United States Department of Agriculture-Agricultural Research Service is the most prolific author, and Levi A is the most cited; The most frequently used keywords by authors are "growth", "resistance", "identification", "yield", "quality" "plants", "watermelon stomach" and "expression"; The most talked-about issues in this subject are resistance, yield, and quality, which highlight the crucial research areas. To effectively comprehend the turning moments for future research, it is useful to monitor the hotspots and frontiers of watermelon studies. The results highlight the future paths for study in the field of watermelon and provide useful information for researchers interested in the topic.
Collapse
Affiliation(s)
- Yu-Ping Zheng
- Library of Henan University of Science and Technology, China
| |
Collapse
|
10
|
Lasota M, Lechwar P, Kukula-Koch W, Czop M, Czech K, Gaweł-Bęben K. Pulp or Peel? Comparative Analysis of the Phytochemical Content and Selected Cosmetic-Related Properties of Annona cherimola L., Diospyros kaki Thumb., Cydonia oblonga Mill. and Fortunella margarita Swingle Pulp and Peel Extracts. Molecules 2024; 29:1133. [PMID: 38474645 DOI: 10.3390/molecules29051133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Fruit peels might be a valuable source of active ingredients for cosmetics, leading to more sustainable usage of plant by-products. The aim of the study was to evaluate the phytochemical content and selected biological properties of hydroglycolic extracts from peels and pulps of Annona cherimola, Diospyros kaki, Cydonia oblonga, and Fortunella margarita as potential cosmetic ingredients. Peel and pulp extracts were compared for their antiradical activity (using DPPH and ABTS radical scavenging assays), skin-lightening potential (tyrosinase inhibitory assay), sun protection factor (SPF), and cytotoxicity toward human fibroblast, keratinocyte, and melanoma cell lines. The total content of polyphenols and/or flavonoids was significantly higher in peel than in pulp extracts, and the composition of particular active compounds was also markedly different. The HPLC-MS fingerprinting revealed the presence of catechin, epicatechin and rutoside in the peel of D. kaki, whereas kaempferol glucoside and procyanidin A were present only in the pulp. In A. cherimola, catechin, epicatechin and rutoside were identified only in the peel of the fruit, whereas procyanidins were traced only in the pulp extracts. Quercetin and luteolinidin were found to be characteristic compounds of F. margarita peel extract. Naringenin and hesperidin were found only in the pulp of F. margarita. The most significant compositional variety between the peel and pulp extracts was observed for C. oblonga: Peel extracts contained a higher number of active components (e.g., vicenin-2, kaempferol rutinoside, or kaempferol galactoside) than pulp extract. The radical scavenging potential of peel extracts was higher than of the pulp extracts. D. kaki and F. margarita peel and pulp extracts inhibited mushroom and murine tyrosinases at comparable levels. The C. oblonga pulp extract was a more potent mushroom tyrosinase inhibitor than the peel extract. Peel extract of A. cherimola inhibited mushroom tyrosinase but activated the murine enzyme. F. margarita pulp and peel extracts showed the highest in vitro SPF. A. cherimola, D. kaki, and F. margarita extracts were not cytotoxic for fibroblasts and keratinocytes up to a concentration of 2% (v/v) and the peel extracts were cytotoxic for A375 melanoma cells. To summarize, peel extracts from all analyzed fruit showed comparable or better cosmetic-related properties than pulp extracts and might be considered multifunctional active ingredients of skin lightening, anti-aging, and protective cosmetics.
Collapse
Affiliation(s)
- Magdalena Lasota
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, Sucharskiego 2, 35-225 Rzeszów, Poland
| | - Paulina Lechwar
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, Sucharskiego 2, 35-225 Rzeszów, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Marcin Czop
- Department of Clinical Genetics, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Karolina Czech
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, Sucharskiego 2, 35-225 Rzeszów, Poland
| | - Katarzyna Gaweł-Bęben
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, Sucharskiego 2, 35-225 Rzeszów, Poland
| |
Collapse
|
11
|
Silva MA, Albuquerque TG, Alves RC, Oliveira MBPP, Costa HS. Melon peel flour: utilization as a functional ingredient in bakery products. Food Funct 2024; 15:1899-1908. [PMID: 38265311 DOI: 10.1039/d3fo05268k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Food by-products are a major concern with a direct impact on the economy, society, and environment. The valorisation of these by-products could be an advantageous approach to face the increase in food waste since it can compromise environmental health and food sustainability. On the other hand, this valorisation would allow the development of new food products with health benefits for the population. Cucumis melo L. is a highly consumed fruit all over the world since it has excellent sensory and nutritional qualities, being also a good source of bioactive compounds. However, its peel and seeds are usually discarded. The aim of this study was to evaluate the potential of melon peel flour as a functional ingredient for innovative food products. For that, two different formulations containing melon peel flour were developed (a biscuit and a muffin) by replacing a conventional flour (wheat flour) in different percentages (50% and 100%, respectively). The nutritional composition, total phenolic content, and antioxidant potential of the developed products were studied, showing a high content of fibre, high levels of phenolic compounds and good sensory acceptability. These results show that it is possible to enrich different foods with melon peel flour in order to improve their nutritional properties, contributing to improving public health, simultaneously valorising a usually rejected by-product, reducing food waste and the environmental impact.
Collapse
Affiliation(s)
- Mafalda Alexandra Silva
- Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, I.P., Av. Padre Cruz, 1649-016 Lisbon, Portugal.
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Tânia Gonçalves Albuquerque
- Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, I.P., Av. Padre Cruz, 1649-016 Lisbon, Portugal.
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Rita Carneiro Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Helena S Costa
- Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, I.P., Av. Padre Cruz, 1649-016 Lisbon, Portugal.
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
12
|
Meremäe K, Raudsepp P, Rusalepp L, Anton D, Bleive U, Roasto M. In Vitro Antibacterial and Antioxidative Activity and Polyphenolic Profile of the Extracts of Chokeberry, Blackcurrant, and Rowan Berries and Their Pomaces. Foods 2024; 13:421. [PMID: 38338557 PMCID: PMC10855937 DOI: 10.3390/foods13030421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The chemical composition of berries and berry pomaces is diverse, containing polyphenolic components that may have both antibacterial and antioxidative properties. In the present study, in vitro antibacterial effect of the extracts of chokeberry, blackcurrant, and rowan berries and berry pomaces against L. monocytogenes, S. aureus, E. coli, and C. jejuni was studied. In addition, the polyphenolic profile and antioxidant activity of these extracts were investigated. The polyphenolic profiles in the aqueous and 30% ethanolic extracts were determined chromatographically by HPLC-MS, and the total polyphenol content was estimated spectrophotometrically by HPLC-DAD-UV. The minimal inhibition concentrations (MICs) of the extracts against tested bacteria were determined by the broth microdilution method. The content of total polyphenols was highest and good antioxidative properties of the extracts were determined for chokeberry and blackcurrant berries and their pomaces. The highest proportions of total quercetin derivatives and anthocyanins were found in the extracts of chokeberry berry/pomace and blackcurrant berry/pomace, respectively. The sensitivity of tested microbes to the extracts of berries and berry pomaces was as follows: S. aureus > L. monocytogenes > E. coli and C. jejuni. In vitro antibacterial activity of tested extracts depended on the extraction solvent, mainly for the ethanolic extracts. Findings suggest that chokeberry and blackcurrant berries and their pomaces can be used as a good source of polyphenols with antioxidative properties, and they also have antibacterial activity against some foodborne pathogenic bacteria. It is important that the valuable compounds are extracted from juice press residues before their disposal.
Collapse
Affiliation(s)
- Kadrin Meremäe
- Chair of Veterinary Biomedicine and Food Hygiene, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 56/3, 51006 Tartu, Estonia; (P.R.); (D.A.); (M.R.)
| | - Piret Raudsepp
- Chair of Veterinary Biomedicine and Food Hygiene, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 56/3, 51006 Tartu, Estonia; (P.R.); (D.A.); (M.R.)
| | - Linda Rusalepp
- Chair of Veterinary Biomedicine and Food Hygiene, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 56/3, 51006 Tartu, Estonia; (P.R.); (D.A.); (M.R.)
| | - Dea Anton
- Chair of Veterinary Biomedicine and Food Hygiene, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 56/3, 51006 Tartu, Estonia; (P.R.); (D.A.); (M.R.)
| | - Uko Bleive
- Polli Horticultural Research Centre, Chair of Horticulture, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Uus 2, 69108 Polli, Estonia;
| | - Mati Roasto
- Chair of Veterinary Biomedicine and Food Hygiene, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 56/3, 51006 Tartu, Estonia; (P.R.); (D.A.); (M.R.)
| |
Collapse
|
13
|
Malewska E, Kurańska M, Tenczyńska M, Prociak A. Application of Modified Seed Oils of Selected Fruits in the Synthesis of Polyurethane Thermal Insulating Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 17:158. [PMID: 38204012 PMCID: PMC10780111 DOI: 10.3390/ma17010158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
The use of alternative raw material sources in polyurethane chemistry is necessary given the limited supply of fossil fuels, their rising prices and the concern for sustainability. The production of biopolyols from edible vegetable oils such as rapeseed oil, soybean oil or sunflower oil is often proposed. In order to avoid conflict with the global food economy, non-edible or waste oils are hoped to find application in chemical synthesis. The possibility of using oils from selected fruit seeds to obtain biopolyols is analyzed in this manuscript. Five biopolyols were obtained from watermelon, cherry, black currant, grape and pomegranate fruit seeds using the transesterification reaction of the oils with triethanolamine. Thermal insulating polyurethane foams were then obtained by replacing 75% of petrochemical polyol with the biopolyols in polyurethane systems. Based on an analysis of the foaming process, it was found that the incorporation of triethanolamine molecules into the biopolyols causes a catalytic effect. The use of such biopolyols allows eliminating the catalyst from a polyurethane foam formulation. The polyurethane biofoams obtained with the pomegranate-seed-based biopolyol were characterized by the highest content of closed cells (45 vol.%). The lowest content was found for the foams containing the currant-seed-based biopolyol (9%). The foams were characterized by thermal conductivity coefficients between 32 and 35 kW/m·K and densities of approximately 40 kg/m3. Good dimensional stability and compressive strength between 100 and 250 kPa make them suitable for use in construction.
Collapse
Affiliation(s)
- Elżbieta Malewska
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (M.T.); (A.P.)
| | - Maria Kurańska
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (M.T.); (A.P.)
| | | | | |
Collapse
|
14
|
Cuffaro D, Digiacomo M, Macchia M. Dietary Bioactive Compounds: Implications for Oxidative Stress and Inflammation. Nutrients 2023; 15:4966. [PMID: 38068824 PMCID: PMC10707977 DOI: 10.3390/nu15234966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Nowadays, it has been amply demonstrated how an appropriate diet and lifestyle are essential for preserving wellbeing and preventing illnesses [...].
Collapse
Affiliation(s)
- Doretta Cuffaro
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
15
|
Aldayel MF. Potential antibacterial and antioxidant inhibitory activities of Silybum marianum mediated biosynthesised He-Ne laser. Saudi J Biol Sci 2023; 30:103795. [PMID: 37692328 PMCID: PMC10492205 DOI: 10.1016/j.sjbs.2023.103795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/27/2023] [Indexed: 09/12/2023] Open
Abstract
A potentially beneficial method in laser irradiation is currently gaining popularity. The biosynthesis of low-power lasers has also been applied to the therapy of disease in biological tissues. This study used laser pre-treatments of Silybum marianum (S. marianum) fruit extract as a stabilising agent to bio-fabricate a low-power laser. The silybin A and silybin B of the S. marianum fruit, which are derived from seedlings before S. marianum undergoes therapy with an He-Ne laser at various intervals, were assessed for their expressive properties in this study. The findings revealed that 6-min laser pre-treatments increased silybin A + B and bacterial inhibition and improved the medicinal property of S. marianum. The analysis of the reaction records was performed using ultraviolet-visible spectroscopy. The minimum inhibitory concentration (MIC) limit for the sphere dispersion approach's antimicrobial effect on the microorganisms under investigation was 50 to 100 g/mL. With an IC50 of 0.69 mg/mL, the laser-treated S. marianum (6 min) demonstrated radical scavenging activity. At MIC concentration, the laser-treated S. marianum (6 min) did not exhibit cytotoxicity in the MCF-7 cell line. Additionally, Salmonella typhi, methicillin-resistant Staphylococcus aureus (MRSA), and E. coli were more susceptible to the antimicrobial effects of ethanolic fruit extract with a greater silybin level. It was observed that the laser-treated S. marianum (6 min) showed beneficial antioxidant and antibacterial properties and could be employed without risk in several medical applications.
Collapse
Affiliation(s)
- Munirah F. Aldayel
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
16
|
Abdel-Hameed SM, Abd Allah NA, Hamed MM, Soltan OI. Papaya fruit by-products as novel food ingredients in cupcakes. ANNALS OF AGRICULTURAL SCIENCES 2023; 68:60-74. [DOI: 10.1016/j.aoas.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
17
|
Li F, Muhmood A, Tavakoli S, Park S, Kong L, Zhu H, Wei Y, Wei Y. Subcritical low temperature extraction of bioactive ingredients from foods and food by-products and its applications in the agro-food industry. Crit Rev Food Sci Nutr 2023; 64:8218-8230. [PMID: 37039080 DOI: 10.1080/10408398.2023.2198009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Bioactive ingredients are part of the food chain and are responsible for numerous health benefits. Subcritical low temperature extraction has been employed to acquire bioactive ingredients because of its excellent properties, such as energy conservation, low temperature, elimination of residual solvent, and high extraction yield and quality. This review aims to provide a clear picture of the basics of subcritical-temperature extraction, its bioactive ingredient extraction efficiency, and possible applications in the agro-food industry. This review suggested that the extraction temperature, time, co-solvents, solid-fluid ratio, and pressure impacted the extraction efficiency of bioactive ingredients from foods and food by-products. Subcritical solvents are appropriate for extracting low polar ingredients, while the inclusion of co-solvents could extract medium and high polar substances. Bioactive ingredients from foods and food by-products can be used as antioxidants, colorants, and nutritional supplements. Additionally, this technology could remove pesticide residues in tea, concentrate edible proteins, and reduce cigarette tar. A new trend toward using subcritical low temperature extraction in extracting bioactive ingredients will acquire momentum.
Collapse
Affiliation(s)
- Fei Li
- College of Life Science, Qingdao University, Qingdao, China
| | - Atif Muhmood
- Institure of Soil Chemistry & Environmental Sciences, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Samad Tavakoli
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Solju Park
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lingyao Kong
- College of Life Science, Qingdao University, Qingdao, China
| | - Hongguang Zhu
- College of Life Science, Qingdao University, Qingdao, China
| | - Yuxi Wei
- College of Life Science, Qingdao University, Qingdao, China
| | - Yunlu Wei
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
18
|
Pérez-Marroquín XA, Estrada-Fernández AG, García-Ceja A, Aguirre-Álvarez G, León-López A. Agro-Food Waste as an Ingredient in Functional Beverage Processing: Sources, Functionality, Market and Regulation. Foods 2023; 12:foods12081583. [PMID: 37107379 PMCID: PMC10137751 DOI: 10.3390/foods12081583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Waste generated from the agro-food industry represents a concerning environmental, social and economic issue. The Food and Agriculture Organization of the United Nations defines food waste as all food that decreases in quantity or quality to the extent that it is thrown out by food service providers and consumers. The FAO reports that 17% of worldwide food production may be wasted. Food waste may include fresh products, food close to the expiration date discarded by retailers and food products from household kitchens and eating establishments. However, food waste offers different possibilities to extract functional ingredients from different sources, such as dairy, cereals, fruits, vegetables, fibers, oils, dye and bioactive compounds. The optimization of agro-food waste as an ingredient will help in the development and innovation of food products to generate functional food and beverages to prevent and treat several diseases in consumers.
Collapse
Affiliation(s)
- Xóchitl Alejandra Pérez-Marroquín
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1 Rancho Universitario, Tulancingo C.P. 43600, Hidalgo, Mexico
| | - Ana Guadalupe Estrada-Fernández
- Instituto Tecnológico Superior del Oriente del Estado de Hidalgo, Carretera Apan-Tepeapulco Km 3.5, Colonia Las Peñitas, Apan C.P. 43900, Hidalgo, Mexico
| | - Adelfo García-Ceja
- Instituto Tecnológico Superior de Venustiano Carranza, Av. Tecnológico S/N, Col. el Huasteco, Ciudad Lázaro Cárdenas, Venustiano Carranza C.P 73049, Puebla, Mexico
| | - Gabriel Aguirre-Álvarez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1 Rancho Universitario, Tulancingo C.P. 43600, Hidalgo, Mexico
| | - Arely León-López
- Instituto Tecnológico Superior de Venustiano Carranza, Av. Tecnológico S/N, Col. el Huasteco, Ciudad Lázaro Cárdenas, Venustiano Carranza C.P 73049, Puebla, Mexico
| |
Collapse
|
19
|
Burgos-Díaz C, Garrido-Miranda KA, Palacio DA, Chacón-Fuentes M, Opazo-Navarrete M, Bustamante M. Food-Grade Oil-in-Water (O/W) Pickering Emulsions Stabilized by Agri-Food Byproduct Particles. COLLOIDS AND INTERFACES 2023. [DOI: 10.3390/colloids7020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
In recent years, emulsions stabilized by solid particles (known as Pickering emulsions) have gained considerable attention due to their excellent stability and for being environmentally friendly compared to the emulsions stabilized by synthetic surfactants. In this context, edible Pickering stabilizers from agri-food byproducts have attracted much interest because of their noteworthy benefits, such as easy preparation, excellent biocompatibility, and unique interfacial properties. Consequently, different food-grade particles have been reported in recent publications with distinct raw materials and preparation methods. Moreover, emulsions stabilized by solid particles can be applied in a wide range of industrial fields, such as food, biomedicine, cosmetics, and fine chemical synthesis. Therefore, this review aims to provide a comprehensive overview of Pickering emulsions stabilized by a diverse range of edible solid particles, specifically agri-food byproducts, including legumes, oil seeds, and fruit byproducts. Moreover, this review summarizes some aspects related to the factors that influence the stabilization and physicochemical properties of Pickering emulsions. In addition, the current research trends in applications of edible Pickering emulsions are documented. Consequently, this review will detail the latest progress and new trends in the field of edible Pickering emulsions for readers.
Collapse
|
20
|
Younis IY, Ibrahim RM, El-Halawany A, Hegazy MEF, Efferth T, Mohsen E. Chemometric discrimination of Hylocereus undulatus from different geographical origins via their metabolic profiling and antidiabetic activity. Food Chem 2023; 404:134650. [DOI: 10.1016/j.foodchem.2022.134650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/02/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
|
21
|
Valorization of Punica granatum L. Leaves Extracts as a Source of Bioactive Molecules. Pharmaceuticals (Basel) 2023; 16:ph16030342. [PMID: 36986442 PMCID: PMC10052729 DOI: 10.3390/ph16030342] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Due to a lack of innovative valorization strategies, pomegranate processing generates a significant amount of residues with a negative environmental footprint. These by-products are a rich source of bioactive compounds with functional and medicinal benefits. This study reports the valorization of pomegranate leaves as a source of bioactive ingredients using maceration, ultrasound, and microwave-assisted extraction techniques. The phenolic composition of the leaf extracts was analyzed using an HPLC-DAD-ESI/MSn system. The extracts’ antioxidant, antimicrobial, cytotoxic, anti-inflammatory, and skin-beneficial properties were determined using validated in vitro methodologies. The results showed that gallic acid, (-)-epicatechin, and granatin B were the most abundant compounds in the three hydroethanolic extracts (between 0.95 and 1.45, 0.7 and 2.4, and 0.133 and 3.0 mg/g, respectively). The leaf extracts revealed broad-spectrum antimicrobial effects against clinical and food pathogens. They also presented antioxidant potential and cytotoxic effects against all tested cancer cell lines. In addition, tyrosinase activity was also verified. The tested concentrations (50–400 µg/mL) ensured a cellular viability higher than 70% in both keratinocyte and fibroblast skin cell lines. The obtained results indicate that the pomegranate leaves could be used as a low-cost source of value-added functional ingredients for potential nutraceutical and cosmeceutical applications.
Collapse
|
22
|
Hussain T, Kalhoro DH, Yin Y. Identification of nutritional composition and antioxidant activities of fruit peels as a potential source of nutraceuticals. Front Nutr 2023; 9:1065698. [PMID: 36817065 PMCID: PMC9931757 DOI: 10.3389/fnut.2022.1065698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/19/2022] [Indexed: 02/05/2023] Open
Abstract
Fruit peels comprise several biologically active compounds, but their nutritional composition and antioxidant potential of different fruit varieties are limited. This study aimed to determine the nutritional composition and antioxidant properties of 12 peels of different fruit varieties such as apples, pomegranates, guavas, strawberries, grapes, and citrus fruits using a ultraviolet-visible (UV-Vis) spectrophotometer, an inductively-coupled plasma atomic emission spectroscopy (ICP-AES), and an amino acid analyzer. The highest values of TPC, TFC, lycopene, ascorbic acid [total carotenoids and total antioxidant capacity (TAC)], reducing sugars, non-reducing sugars, and total soluble proteins were reported in grapes (Black seedless) 54,501.00 ± 0.82 μM/g dry wt., guava (Gola) 198.19 ± 0.46 Rutin equivalent dry wt., strawberry (Candler) 7.23 ± 0.33 mg/g dry wt., citrus (Mausami) 646.25 ± 0.96 ug/g dry wt., apple (Kala kulu-Pak) 14.19 ± 0.38 mg/g dry wt. and 12.28 ± 0.39 μM/g dry wt., strawberry (Candler) 25.13 ± 0.40 mg/g dry wt., pomegranate (Badana) 9.80 ± 0.43 mg/g dry wt., apple (Kala kullu-Irani) 30.08 ± 0.11 mg/g dry wt., and guava (Gola) 638.18 ± 0.24 mg/g dry wt. compared with its opponent peels of fruits, respectively. All 12 peels of the fruit verities had 20 amino acids and presented as dry matter basis%. The highest trend of glutamic acid + glutamine, glycine, and aspartic acid + asparagine was observed in pomegranate (Badana) 1.20 DM basis%, guava (Surhai and Gola) 1.09 and 1.09 DM basis%, and strawberry (Desi/local and Candler) 1.15 and 1.60 DM basis% in response to other fruit peels, respectively. Regarding the mineral profile, the highest values of nitrogen (764.15 ± 0.86 mg/100 g), phosphorus (53.90 ± 0.14 mg/100 g), potassium (3,443.84 ± 0.82 mg/100 g), ferric (1.44 ± 0.00 mg/100 g), magnesium (1.31 ± 0.00 mg/100 g), and manganese (0.21 ± 0.00 mg/100 g) were found in pomegranate (Badana), grapes (Black seedless), apple (Kala kulu-Pak), and pomegranate (Badana), respectively, in context to other fruit peels' extract. Principal component analysis (PCA) and agglomerative hierarchical clustering (AHC) were analyzed for determining the correlation among different peels of fruits. Significantly, high levels of variation were noticed among different variables of peels of fruit. Fruit variety and its peels have been distinctive variables in selecting genotypes. The dendrogram obtained from cluster analysis was distributed into two groups and consisted of eight varieties in the same group, and four fruit varieties were in second group. Overall, the results conclude that fruit peels have the abundant antioxidants and some minerals, which can effectively be utilized for nutraceuticals as well as for food security.
Collapse
Affiliation(s)
- Tarique Hussain
- Institute of Subtropical Agriculture, University of Chinese Academy of Sciences, Changsha, Hunan, China
| | - Dildar Hussain Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tando Jam, Sindh, Pakistan,*Correspondence: Dildar Hussain Kalhoro,
| | - Yulong Yin
- Institute of Subtropical Agriculture, University of Chinese Academy of Sciences, Changsha, Hunan, China,Yulong Yin,
| |
Collapse
|
23
|
Neuroprotective Effects of Agri-Food By-Products Rich in Phenolic Compounds. Nutrients 2023; 15:nu15020449. [PMID: 36678322 PMCID: PMC9865516 DOI: 10.3390/nu15020449] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Neurodegenerative diseases are known for their wide range of harmful conditions related to progressive cell damage, nervous system connections and neuronal death. These pathologies promote the loss of essential motor and cognitive functions, such as mobility, learning and sensation. Neurodegeneration affects millions of people worldwide, and no integral cure has been created yet. Here, bioactive compounds have been proven to exert numerous beneficial effects due to their remarkable bioactivity, so they could be considered as great options for the development of new neuroprotective strategies. Phenolic bioactives have been reported to be found in edible part of plants; however, over the last years, a large amount of research has focused on the phenolic richness that plant by-products possess, which sometimes even exceeds the content in the pulp. Thus, their possible application as an emergent neuroprotective technique could also be considered as an optimal strategy to revalorize these agricultural residues (those originated from plant processing). This review aims to summarize main triggers of neurodegeneration, revise the state of the art in plant extracts and their role in avoiding neurodegeneration and discuss how their main phenolic compounds could exert their neuroprotective effects. For this purpose, a diverse search of studies has been conducted, gathering a large number of papers where by-products were used as strong sources of phenolic compounds for their neuroprotective properties. Finally, although a lack of investigation is quite remarkable and greatly limits the use of these compounds, phenolics remain attractive for research into new multifactorial anti-neurodegenerative nutraceuticals.
Collapse
|
24
|
Recent Advances, Challenges, Opportunities, Product Development and Sustainability of Main Agricultural Wastes for the Aquaculture Feed Industry – A Review. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2022-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Abstract
Million tonnes of agricultural waste are generated annually worldwide. Agricultural wastes possess similar profiles to the main products but are lower in quality. Managing these agricultural wastes is costly and requires strict regulation to minimise environmental stress. Thus, these by-products could be repurposed for industrial use, such as alternative resources for aquafeed to reduce reliance on fish meal and soybean meal, fertilisers to enrich medium for growing live feed, antimicrobial agents, and immunostimulatory enhancers. Furthermore, utilising agricultural wastes and other products can help mitigate the existing environmental and economic dilemmas. Therefore, transforming these agricultural wastes into valuable products helps sustain the agricultural industry, minimises environmental impacts, and benefits industry players. Aquaculture is an important sector to supply affordable protein sources for billions worldwide. Thus, it is essential to explore inexpensive and sustainable resources to enhance aquaculture production and minimise environmental and public health impacts. Additionally, researchers and farmers need to understand the elements involved in new product development, particularly the production of novel innovations, to provide the highest quality products for consumers. In summary, agriculture waste is a valuable resource for the aquafeed industry that depends on several factors: formulation, costing, supply, feed treatment and nutritional value.
Collapse
|
25
|
Alibertia patinoi (Cuatrec.) Delprete & C.H.Perss. (Borojó): food safety, phytochemicals, and aphrodisiac potential. SN APPLIED SCIENCES 2023. [DOI: 10.1007/s42452-022-05251-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AbstractAlthough the western discovery of borojó [Alibertia patinoi Cuatrec. (Delprete & C.H.Perss.)] is as recent as 1948, its several traditional uses in gastronomy and medicine, and its fame as an aphrodisiac are long standing and strong: the “love juice” extracted from it is very appreciated in Colombia, Ecuador, and Panama. Its medicinal potential, though, is far wider. This literature review aims to summarize the knowledge about the fruit, its ethnomedical uses, its biological activity and phytochemical composition, to validate ethnomedical claims and to help envision future lines of research. Borojó extracts have confirmed antimicrobial and antioxidant, and potential anticancer activities, which can be at least partially explained by its phytochemical composition -compounds isolated and identified through Gas Chromatography, High Performance Liquid Chromatography and spectroscopic and spectrometric techniques- rich in phenolic compounds, some of which, for example oleuropein, chlorogenic acid and rutin, possess proven biological activity. There is potential for borojó products as a source of bioactive natural products, which have not been exhaustively identified despite phytochemical screenings that show the presence of unstudied compound families: terpenoids, alkaloids, steroids; and functional alimentary products. Although its aphrodisiac properties have not been confirmed, several compounds with confirmed aphrodisiac activity in other species, mainly flavonoids, are also found in borojó. These, coupled with its nutritional profile and perhaps compounds yet unidentified, could validate the claim.
Graphical abstract
Collapse
|
26
|
MUKHAMETOV A, PALIIVETS M, BERECHIKIDZE I, SERIKKYZY M. Evaluating the recovery of bioactive compounds and antioxidant activity of unripe red grape liquid extracts obtained by maceration. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.117922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
27
|
Recent Advances in Natural Polyphenol Research. Molecules 2022; 27:molecules27248777. [PMID: 36557912 PMCID: PMC9787743 DOI: 10.3390/molecules27248777] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Polyphenols are secondary metabolites produced by plants, which contribute to the plant's defense against abiotic stress conditions (e.g., UV radiation and precipitation), the aggression of herbivores, and plant pathogens. Epidemiological studies suggest that long-term consumption of plant polyphenols protects against cardiovascular disease, cancer, osteoporosis, diabetes, and neurodegenerative diseases. Their structural diversity has fascinated and confronted analytical chemists on how to carry out unambiguous identification, exhaustive recovery from plants and organic waste, and define their nutritional and biological potential. The food, cosmetic, and pharmaceutical industries employ polyphenols from fruits and vegetables to produce additives, additional foods, and supplements. In some cases, nanocarriers have been used to protect polyphenols during food processing, to solve the issues related to low water solubility, to transport them to the site of action, and improve their bioavailability. This review summarizes the structure-bioactivity relationships, processing parameters that impact polyphenol stability and bioavailability, the research progress in nanocarrier delivery, and the most innovative methodologies for the exhaustive recovery of polyphenols from plant and agri-waste materials.
Collapse
|
28
|
Vilas-Boas AA, Magalhães D, Campos DA, Porretta S, Dellapina G, Poli G, Istanbullu Y, Demir S, San Martín ÁM, García-Gómez P, Mohammed RS, Ibrahim FM, El Habbasha ES, Pintado M. Innovative Processing Technologies to Develop a New Segment of Functional Citrus-Based Beverages: Current and Future Trends. Foods 2022; 11:foods11233859. [PMID: 36496667 PMCID: PMC9735808 DOI: 10.3390/foods11233859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
The food industries are interested in developing functional products due to their popularity within nutritional and healthy circles. Functional fruit-based beverages represent one of the fast-growing markets due to the high concentrations of bioactive compounds (BCs), which can be health promoters. Hence, functional beverages based on citrus fruits are a potential way to take advantage of their nutritional and bioactive properties that could attract the interest of consumers. In order to ensure microbial and quality stability, the beverages are subjected to preservation treatment; however, the application of high temperatures leads to the loss of thermolabile BCs. Nowadays, innovative processing technologies (IPT) such as pulsed electric field (PEF), high-pressure processing (HPP), ultrasound processing (US), ohmic heating (OH), and microwave (MW) are a promising alternative due to their efficiency and low impact on juice BCs. The available literature concerning the effects of these technologies in functional fruit-based beverages is scarce; thus, this review gathers the most relevant information about the main positive and negative aspects of the IPT in functional properties, safety, and consumer acceptance of functional citrus-based beverages, as well as the use of citrus by-products to promote the circular economy in citrus processing.
Collapse
Affiliation(s)
- Ana A. Vilas-Boas
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
| | - Daniela Magalhães
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
| | - Débora A. Campos
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
| | - Sebastiano Porretta
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121 Parma, Italy
| | - Giovanna Dellapina
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121 Parma, Italy
| | - Giovanna Poli
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121 Parma, Italy
| | - Yildiray Istanbullu
- Central Research Institute of Food and Feed Control, Adalet M, 1. Hürriyet Cd. No:128, 16160 Osmangazi, Bursa, Turkey
| | - Sema Demir
- Central Research Institute of Food and Feed Control, Adalet M, 1. Hürriyet Cd. No:128, 16160 Osmangazi, Bursa, Turkey
| | - Ángel Martínez San Martín
- National Technological Centre for the Food and Canning Industry (CTNC), C. Concordia, s/n, 30500 Molina de Segura, Murcia, Spain
| | - Presentación García-Gómez
- National Technological Centre for the Food and Canning Industry (CTNC), C. Concordia, s/n, 30500 Molina de Segura, Murcia, Spain
| | - Reda S. Mohammed
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo P.O. Box 12622, Egypt
| | - Faten M. Ibrahim
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo P.O. Box 12622, Egypt
| | - El Sayed El Habbasha
- Field Crops Research Department, National Research Centre, Cairo P.O. Box 12622, Egypt
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
- Correspondence:
| |
Collapse
|
29
|
Gaweł-Bęben K, Czech K, Strzępek-Gomółka M, Czop M, Szczepanik M, Lichtarska A, Kukula-Koch W. Assessment of Cucurbita spp. Peel Extracts as Potential Sources of Active Substances for Skin Care and Dermatology. Molecules 2022; 27:molecules27217618. [PMID: 36364444 PMCID: PMC9657783 DOI: 10.3390/molecules27217618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
By-products of cultivated plants are one of the major environmental concerns worldwide. Due to the high concentration of bioactive chemicals, such waste may be considered hazardous due to the interference with the plant growth, deterioration of the drinking water quality or toxic effects on sensitive marine organisms. Moreover, plant-derived by-products, with proper handling, may represent a low-cost source of bioactive compounds potentially important for pharmaceutical and cosmetics industries. The aim of the study was to evaluate the phytochemical composition, antioxidant activity, the influence of tyrosinase activity, in vitro sun protecting factor and cytotoxicity of 15 extracts from peels of five cultivars of Cucurbita maxima and C. moschata. The extracts were prepared using “green solvents” (water, 50% propylene glycol, and 20% ethanol) and ultrasound-assisted extraction. The performed analysis showed that the peel extracts from various cultivars differ significantly in respect to the phytochemical content and activity. The type of solvent also had a significant impact on the extract’s composition and bioactivity. Aqueous peel extracts contained the highest amounts of flavonoids, showed the greatest antioxidant potential and the most significant in vitro SPF values. In vitro studies showed that the analyzed peel extracts are not cytotoxic for human keratinocytes up to the concentration of 1000 µg/mL and thus might be considered as non-irritant for the skin. The study confirms the potential application of peel extracts from Cucurbita spp. cultivars in cosmetic products.
Collapse
Affiliation(s)
- Katarzyna Gaweł-Bęben
- Department of Cosmetology, University of Information Technology and Management, Sucharskiego 2, 35-225 Rzeszów, Poland
- Correspondence:
| | - Karolina Czech
- Department of Cosmetology, University of Information Technology and Management, Sucharskiego 2, 35-225 Rzeszów, Poland
| | - Marcelina Strzępek-Gomółka
- Department of Cosmetology, University of Information Technology and Management, Sucharskiego 2, 35-225 Rzeszów, Poland
| | - Marcin Czop
- Department of Clinical Genetics, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Monika Szczepanik
- Department of Cosmetology, University of Information Technology and Management, Sucharskiego 2, 35-225 Rzeszów, Poland
| | - Anna Lichtarska
- Department of Cosmetology, University of Information Technology and Management, Sucharskiego 2, 35-225 Rzeszów, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| |
Collapse
|
30
|
Recycling of fig peels to enhance the quality of handmade pasta. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Skroza D, Šimat V, Vrdoljak L, Jolić N, Skelin A, Čagalj M, Frleta R, Generalić Mekinić I. Investigation of Antioxidant Synergisms and Antagonisms among Phenolic Acids in the Model Matrices Using FRAP and ORAC Methods. Antioxidants (Basel) 2022; 11:1784. [PMID: 36139858 PMCID: PMC9495677 DOI: 10.3390/antiox11091784] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022] Open
Abstract
The total antioxidant potential of a sample cannot be predicted from the antioxidant activity of its compounds; thus, scientists usually explain the overall activity through their combined effects (synergistic, antagonistic, or additive). Phenolic compounds are one of the most powerful and widely investigated antioxidants, but there is a lack of information about their molecular interactions. This study aimed to investigate the individual and combined antioxidant activity of equimolar mixtures (binary, ternary, quaternary, and quinary) of 10 phenolic acids (protocatechuic, gentisic, gallic, vanillic, syringic, p-coumaric, caffeic, ferulic, sinapic, and rosmarinic acid) at different concentrations using ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) assays. Gallic acid showed the highest antioxidant activity, determined using the FRAP assay (494-5033 µM Fe2+) and rosmarinic acid with the ORAC assay (50-92 µM Trolox Equivalents (TE)), while the lowest antioxidant potential was observed for p-coumaric acid (FRAP 24-113 µM Fe2+ and ORAC 20-33 µM TE). The synergistic effect (by FRAP) in the equimolar mixtures of hydroxybenzoic acids was confirmed for a large number of tested mixtures, especially at low concentrations. All mixtures containing gentisic acid showed a synergistic effect (28-89% difference). Using the ORAC method, only two mixtures of hydroxybenzoic acids showed an antagonistic effect, namely a mixture of gentisic + syringic acids (-24% difference) and gallic + vanillic acids (-30% difference), while all other mixtures showed a synergistic effect in a range of 26-236% difference. Among mixtures of hydroxycinnamic acids, the highest synergistic effect was observed for the mixtures of p-coumaric + ferulic acids and caffeic + sinapic acids with differences of 311% and 211%, respectively. The overall antioxidant activity of phenolic acids could be explained by the number or position of hydroxyl and/or methoxy functional groups as well as the compound concentration, but the influence of other parameters such as dissociation, intramolecular hydrogen bonds, and electron donating or withdrawing effect should not be neglected.
Collapse
Affiliation(s)
- Danijela Skroza
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Vida Šimat
- University Department of Marine Studies, University of Split, R. Boškovića 37, HR-21000 Split, Croatia
| | - Lucija Vrdoljak
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Nina Jolić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Anica Skelin
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, R. Boškovića 37, HR-21000 Split, Croatia
| | - Roberta Frleta
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Faculty of Science, University of Split, HR-21000 Split, Croatia
| | - Ivana Generalić Mekinić
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, R. Boškovića 35, HR-21000 Split, Croatia
| |
Collapse
|
32
|
Lopes de Oliveira F, Yanka Portes Arruda T, Caldeira Morzelle M, Paula Aparecida Pereira A, Neves Casarotti S. Fruit by-products as potential prebiotics and promising functional ingredients to produce fermented milk. Food Res Int 2022; 161:111841. [PMID: 36192971 DOI: 10.1016/j.foodres.2022.111841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/04/2022]
|
33
|
McClements DJ, Öztürk B. Utilization of Nanotechnology to Improve the Application and Bioavailability of Phytochemicals Derived from Waste Streams. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6884-6900. [PMID: 33787251 DOI: 10.1021/acs.jafc.1c03020] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Phytochemicals are relatively small molecular species found in edible plants that may exhibit a diverse range of techno- and biofunctional attributes. In particular, there has been great interest in the identification, isolation, and utilization of dietary phytochemicals that can be used as natural pigments, antioxidants, or antimicrobials or that may improve human health and wellbeing by preventing chronic diseases, such as cardiovascular diseases, diabetes, obesity, and cancer. Relatively high levels of these phytochemicals are often present in the waste streams produced by the food and agriculture industry, such as the peels, stems, roots, or leaves of plants, that are normally discarded or turned into animal foods. From an economic and environmental perspective, it would be advantageous to convert these waste streams into value-added functional ingredients, which is consistent with the creation of a more circular economy. Bioactive phytochemicals can be isolated from agricultural and food waste streams using green extraction methods and then incorporated into plant-based functional foods or biodegradable active packaging materials. The utilization of phytochemicals in the food industry is often challenging. They may chemically degrade in the presence of light, heat, oxygen, and some pH conditions, thereby altering their biological activity. They may have low solubility in aqueous solutions and gastrointestinal fluids, thereby making them difficult to introduce into foods and leading to a low bioavailability. These challenges can sometimes be overcome using nanoencapsulation, which involves trapping the phytochemicals inside tiny food-grade particles. These nanoparticles may be assembled from edible lipids, proteins, carbohydrates, and/or surfactants and include nanoemulsions, solid lipid nanoparticles, nanoliposomes, and biopolymer nanoparticles. In this manuscript, we review a number of important phytochemicals and nanoencapsulation methods used to improve their efficacy.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Bengü Öztürk
- Department of Food Engineering, Faculty of Engineering, Yeditepe University, Istanbul 34755, Turkey
| |
Collapse
|
34
|
Hacke ACM, Valério TP, Cubo MF, Lima D, Pessôa CA, Vellosa JCR, Pereira RP. Antioxidant capacity of
Myrciaria cauliflora
seed extracts by spectrophotometric, biochemical, and electrochemical methods and its protective effect against oxidative damage in erythrocytes. J Food Biochem 2022; 46:e14222. [DOI: 10.1111/jfbc.14222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Ana Carolina Mendes Hacke
- Departamento de Química Universidade Estadual de Ponta Grossa Ponta Grossa Brazil
- Department of Chemistry University of Manitoba Winnipeg Manitoba Canada
| | - Taynara Pacheco Valério
- Departamento de Engenharia de Alimentos Universidade Estadual de Ponta Grossa Ponta Grossa Brazil
| | - Mateus Flórido Cubo
- Departamento de Engenharia de Alimentos Universidade Estadual de Ponta Grossa Ponta Grossa Brazil
| | - Dhésmon Lima
- Departamento de Química Universidade Estadual de Ponta Grossa Ponta Grossa Brazil
- Department of Chemistry University of Manitoba Winnipeg Manitoba Canada
| | | | | | | |
Collapse
|
35
|
Tirado-Kulieva VA, Gutiérrez-Valverde KS, Villegas-Yarlequé M, Camacho-Orbegoso EW, Villegas-Aguilar GF. Research trends on mango by-products: a literature review with bibliometric analysis. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01400-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Munekata PES, Yilmaz B, Pateiro M, Kumar M, Domínguez R, Shariati MA, Hano C, Lorenzo JM. Valorization of by-products from Prunus genus fruit processing: Opportunities and applications. Crit Rev Food Sci Nutr 2022; 63:7795-7810. [PMID: 35285755 DOI: 10.1080/10408398.2022.2050350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food processing, especially the juice industry, is an important sector that generate million tons of residues every. Due to the increasing concern about waste generation and the interest in its valorization, the reutilization of by-products generated from the processing of popular fruits of the Prunus genus (rich in high-added value compounds) has gained the spotlight in the food area. This review aims to provide an overview of the high added-value compounds found in the residues of Prunus fruits (peach, nectarine, donut peach, plum, cherry, and apricot) processing and applications in the food science area. Collective (pomace) and individual (kernels, peels, and leaves) residues from Prunus fruits processing contains polyphenols (especially flavonoids and anthocyanins), lipophilic compounds (such as unsaturated fatty acids, carotenes, tocopherols, sterols, and squalene), proteins (bioactive peptides and essential amino acids) that are wasted. Applications are increasingly expanding from the flour from the kernels to encapsulated bioactive compounds, active films, and ingredients with technological relevance for the quality of bread, cookies, ice cream, clean label meat products and extruded foods. Advances to increasing safety has also been reported against anti-nutritional (amygdalin) and toxic compounds (aflatoxin and pesticides) due to advances in emerging processing technologies and strategic use of resources.
Collapse
Affiliation(s)
| | - Birsen Yilmaz
- Department of Nutrition and Dietetics, Cukurova University, Adana, Turkey
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | | | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russian Federation
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, Chartres, France
- Le Studium Institue for Advanced Studies, Orleans, France
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
37
|
Ajayi AM, Coker AI, Oyebanjo OT, Adebanjo IM, Ademowo OG. Ananas comosus (L) Merrill (pineapple) fruit peel extract demonstrates antimalarial, anti-nociceptive and anti-inflammatory activities in experimental models. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114576. [PMID: 34461191 DOI: 10.1016/j.jep.2021.114576] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Pineapple (Ananas comosus) peel is a major waste in pineapple canning industry and it is reported to be used in ethnomedicine as a component of herbal remedies for malarial management. This study aimed to evaluate the antimalarial, antinociceptive and anti-inflammatory properties of Ananas comosus peel extract (PEAC). METHODS Ananas comosus peel was extracted with 80% methanol. PEAC (100, 200 and 400 mg/kg) was investigated for antimalarial effect using Peter's 4-day suppressive test (4-DST) model in mice. Antinociceptive activity of PEAC was investigated in hot plate, acetic acid-induced writhing and formalin tests in mice. The anti-inflammatory activity was evaluated using the lipopolysaccharides-induced sickness behavior in mice and carrageenan-induced air pouch in rats' models. RESULTS PEAC could not significantly (p > 0.05) suppressed parasitemia level at 7-day post-infection in 4-DST. PEAC (400 mg/kg) mildly prolongs survival of infected mice up till day 21. PEAC demonstrated significant (p < 0.05) antinociceptive activity by increasing latency to jump on the hot plate, reduced number of writhings in acetic acid test and reduced paw licking time in 2nd phase of formalin test. PEAC significantly reduced anxiogenic and depressive-like symptoms of sickness behavior in LPS-injected mice. PEAC demonstrated significant anti-inflammatory activity in carrageenan-induced air pouch experiment by reducing exudates formation, inflammatory cell counts, and nitrite, tumor necrosis factor-alpha and interleukin-6 levels. CONCLUSION Ananas comosus peel extract demonstrated mild antimalarial activity but significant anti-nociceptive and anti-inflammatory properties probably mediated via inhibition of pro-inflammatory mediators.
Collapse
Affiliation(s)
- Abayomi M Ajayi
- Department of Pharmacology & Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria.
| | - Adekunle I Coker
- Department of Pharmacology & Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria.
| | - Oyetola T Oyebanjo
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria; Department of Physiology, Ben Carson School of Medicine, Babcock University, Ilishan-Remo, Ogun-state, Nigeria.
| | - Iyanuoluwa Mary Adebanjo
- Department of Pharmacology & Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria.
| | - Olusegun G Ademowo
- Department of Pharmacology & Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria; Institute of Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
38
|
Antoniassi R, Wilhelm AE, Reis SLR, Regis SA, Faria-Machado AF, Bizzo HR, Cenci SA. Expeller pressing of passion fruit seed oil: Pressing efficiency and quality of oil. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2022. [DOI: 10.1590/1981-6723.16821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract The passion fruit juice production generates around 70% of by-products comprising rind, seeds and arils that are commonly discarded. The seeds consist of 4% of fruit weight with the potential to produce around 2,500 ton/year of high added-value oil in Brazil. In this work, passion fruit seeds from different juice manufacturers and the effect of the seed moisture were evaluated towards oil quality and extraction efficiency, using a continuous expeller press of 100 kg/h capacity. The seeds were washed and dried before pressing. The main fatty acids detected were linoleic (67% to 68%), oleic (16% to 17.4%) and palmitic (11%). The oil quality and oil recovery depended on the seed oil content, i.e., the seed moisture before pressing and the different provenances of the seeds. Significant differences were observed for oxidative stability, acidity and conjugated dienes (p < 0.05) for oils from different fruit juice manufacturers. Among them, only one met the requirements of Brazilian regulation regarding oil acidity (less than 2%), thus indicating the need for an effective waste treatment process after juice extraction. Regarding the seed moisture, the highest Oil Stability Index (OSI) (7.4 h) and lowest free fatty acid content (0.63%) were obtained for the oil from the lowest seed moisture content. The oil recovery varied from 78% to 89% and the cake oil content was lower than 8% showing the elements of the feasibility of the process to obtain good quality oil.
Collapse
|
39
|
Cano-Lamadrid M, Artés-Hernández F. By-Products Revalorization with Non-Thermal Treatments to Enhance Phytochemical Compounds of Fruit and Vegetables Derived Products: A Review. Foods 2021; 11:59. [PMID: 35010186 PMCID: PMC8750753 DOI: 10.3390/foods11010059] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this review is to provide comprehensive information about non-thermal technologies applied in fruit and vegetables (F&V) by-products to enhance their phytochemicals and to obtain pectin. Moreover, the potential use of such compounds for food supplementation will also be of particular interest as a relevant and sustainable strategy to increase functional properties. The thermal instability of bioactive compounds, which induces a reduction of the content, has led to research and development during recent decades of non-thermal innovative technologies to preserve such nutraceuticals. Therefore, ultrasounds, light stresses, enzyme assisted treatment, fermentation, electro-technologies and high pressure, among others, have been developed and improved. Scientific evidence of F&V by-products application in food, pharmacologic and cosmetic products, and packaging materials were also found. Among food applications, it could be mentioned as enriched minimally processed fruits, beverages and purees fortification, healthier and "clean label" bakery and confectionary products, intelligent food packaging, and edible coatings. Future investigations should be focused on the optimization of 'green' non-thermal and sustainable-technologies on the F&V by-products' key compounds for the full-utilization of raw material in the food industry.
Collapse
Affiliation(s)
- Marina Cano-Lamadrid
- Food Quality and Safety Group, Department of Agrofood Technology, Universidad Miguel Hernández, Ctra. Beniel, Km 3.2, Orihuela, 03312 Alicante, Spain
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agronomical Engineering and Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, Cartagena, 30203 Murcia, Spain;
| |
Collapse
|
40
|
Caballero S, Mereles L, Burgos-Edwards A, Alvarenga N, Coronel E, Villalba R, Heinichen O. Nutritional and Bioactive Characterization of Sicana odorifera Naudim Vell. Seeds By-Products and Its Potential Hepatoprotective Properties in Swiss Albino Mice. BIOLOGY 2021; 10:1351. [PMID: 34943266 PMCID: PMC8698658 DOI: 10.3390/biology10121351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
The "Kurugua" (Sicana odorifera) is a native fruit that demonstrates attractive nutritional, coloring, flavoring, and antioxidant properties. The main by-products from the processing and consumption of kurugua fruit are epicarp and seeds. In this work, the properties of the seeds of S. odorifera were evaluated. The nutritional composition of the fruit seeds was determined through AOAC official methods and UHPLC-ESI-MS/MS profiling. The antioxidant activities were determined using in vitro methods, and the acute toxicity and hepatoprotective properties were investigated in Swiss albino mice. Quercetin derivatives and cucurbitacins were the main phytochemicals in the seeds' methanolic extract and demonstrated some biological activities. GC-MS analysis revealed the essential fatty acids linolenic and linoleic as the main compounds present in seeds oil. The methanolic extract significantly reduced the serum levels of glutamic-pyruvic transaminase (GPT) and glutamic-oxaloacetic transaminase (GOT) in mice with induced hepatotoxicity (GPT p < 0.05; GOT p < 0.001) at the minor concentration tested (100 mg/kg EMSo). The results suggest that the S. odorifera seeds as by-products show potential use as a source of phytochemicals and in the production of oils with application in food supplements and nutraceuticals. Their integral use could contribute to waste reduction from kurugua fruits processing within the food safety and environmental sustainability framework.
Collapse
Affiliation(s)
| | - Laura Mereles
- Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo P.O. Box 1055, Paraguay; (S.C.); (A.B.-E.); (N.A.); (E.C.); (R.V.)
| | | | | | | | | | - Olga Heinichen
- Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo P.O. Box 1055, Paraguay; (S.C.); (A.B.-E.); (N.A.); (E.C.); (R.V.)
| |
Collapse
|
41
|
Hamed I, Jakobsen AN, Lerfall J. Sustainable edible packaging systems based on active compounds from food processing byproducts: A review. Compr Rev Food Sci Food Saf 2021; 21:198-226. [PMID: 34907649 DOI: 10.1111/1541-4337.12870] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022]
Abstract
The global food processing industries represent a challenge and a risk to the environment due to the poor handling of residues, which are often discarded as waste without being used in further sidestreams. Although some part of this biomass is utilized, large quantities are, however, still under- or unutilized despite these byproducts being a rich resource of valuable compounds. These biowastes contain biopolymers and other compounds such as proteins, polysaccharides, lipids, pigments, micronutrients, and minerals with good nutritional values and active biological properties with applications in various fields including the development of sustainable food packaging. This review offers an update on the recent advancement of food byproducts recycling and upgrading toward the production of food packaging materials, which could be edible, (bio)degradable, and act as carriers of biobased active agents such as antimicrobials, antioxidants, flavoring additives, and health-promoting compounds. This should be a global initiative to promote the well-being of humans and achieve sustainability while respecting the ecological boundaries of our planet. Edible films and coatings formulations based on biopolymers and active compounds extracted from biowastes offer great opportunities to decrease the devastating overuse of plastic-based packaging. It has become evident that a transition from a fuel-based to a circular bio-based economy is potentially beneficial. Therefore, the exploitation of food discards within the context of a zero-waste biorefinery approach would improve waste management by minimizing its generation, reduce pollution, and provide value-added compounds. Most importantly, the development of edible packaging materials from food byproducts does not compete with food resources, and it also helps decrease our dependency on petroleum-based products. Practical Application Almost 99% of current plastics are petroleum-based, and their continuous use has been devastating to the planet as plastic-derived components have been detected in all trophic levels. Besides, the increasing amounts of food by-products are a socioeconomic and environmental challenge, and halving food loss and waste and turning it into valuable products has become necessary to achieve sustainability and economic circularity. The development of new packaging systems such as edible materials could be one of the solutions to limit the use of persistent plastics. Edible films and coatings by-products-based could also enhance food packaging performance due to their compounds' bioactivities.
Collapse
Affiliation(s)
- Imen Hamed
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Anita Nordeng Jakobsen
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Jørgen Lerfall
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
42
|
Bioactive Molecules of Mandarin Seed Oils Diminish Mycotoxin and the Existence of Fungi. Molecules 2021; 26:molecules26237130. [PMID: 34885712 PMCID: PMC8659201 DOI: 10.3390/molecules26237130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
Mandarin is a favorite fruit of the citrus family. Mandarin seeds are considered a source of nontraditional oil obtained from byproduct materials. This investigation aimed to assess the biomolecules of mandarin seeds and evaluated their antimycotic and antimycotoxigenic impact on fungi. Moreover, it evaluated the protective role of mandarin oil against aflatoxin toxicity in cell lines. The two types of extracted oil (fixed and volatile) were ecofriendly. The fatty acid composition, tocopherol, sterols, and carotenoids were determined in the fixed oil, whereas volatiles and phenolics were estimated in the essential oil. A mixture of the two oils was prepared and evaluated for its antimicrobial impact. The reduction effect of this mixture was also investigated to reduce mycotoxin secretion using a simulated experiment. The protective effect of the oil was evaluated using healthy strains of cell lines. Fixed oil was distinguished by the omega fatty acid content (76.24%), lutein was the major carotenoid (504.3 mg/100 g) and it had a high β-sitosterol content (294.6 mg/100 g). Essential oil contained limonene (66.05%), α-pinene (6.82%), β-pinene (4.32%), and γ-terpinene (12.31%) in significant amounts, while gallic acid and catechol were recorded as the dominant phenolics. Evaluation of the oil mix for antimicrobial potency reflected a considerable impact against pathogenic bacteria and toxigenic fungi. By its application to the fungal media, this oil mix possessed a capacity for reducing mycotoxin secretion. The oil mix was also shown to have a low cytotoxic effect against healthy strains of cell lines and had potency in reducing the mortality impact of aflatoxin B1 applied to cell lines. These results recommend further study to involve this oil in food safety applications.
Collapse
|
43
|
Güven OC, Kar M, Koca FD. Synthesis of Cherry Stalk Extract Based Organic@Inorganic Hybrid Nanoflowers as a Novel Fenton Reagent: Evaluation of Their Antioxidant, Catalytic, and Antimicrobial Activities. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02160-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
44
|
da Costa Lima M, Magnani M, Dos Santos Lima M, de Sousa CP, Dubreuil JD, de Souza EL. Phenolic-rich extracts from acerola, cashew apple and mango by-products cause diverse inhibitory effects and cell damages on enterotoxigenic Escherichia coli. Lett Appl Microbiol 2021; 75:565-577. [PMID: 34687563 PMCID: PMC9539876 DOI: 10.1111/lam.13586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/12/2021] [Accepted: 10/19/2021] [Indexed: 11/27/2022]
Abstract
This study aimed to evaluate the inhibitory effects of phenolic-rich extracts from acerola (Malpighia emarginata D.C., PEA), cashew apple (Anacardium occidentale L., PEC) and mango (Mangifera indica L., PEM) by-products on distinct enterotoxigenic Escherichia coli (ETEC) strains. The capability of PEA and PEC of impairing various physiological functions of ETEC strains was investigated with multiparametric flow cytometry. Procyanidin B2 , myricetin and p-coumaric acid were the major phenolic compounds in PEA, PEC and PEM, respectively. PEA and PEC had lower minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) (MIC: 31·25 mg ml-1 ; MBC: 62·5 mg ml-1 ) on ETEC strains than PEM (MIC and MIC: >1000 mg ml-1 ). PEA and PEC (15·6, 31·2, 62·5 mg ml-1 ) caused viable count reductions (P < 0·05) on ETEC strains after 24 h of exposure, notably the ≥3 log reductions caused by 62·5 mg ml-1 . The 24 h exposure of ETEC strains to PEA and PEC (31·2, 62·5 mg ml-1 ) led to high sizes of cell subpopulations with concomitant impairments in cell membrane polarization and permeability, as well as in enzymatic, respiratory and efflux activities. PEA and PEC are effective in inhibiting ETEC through a multi-target action mode with disturbance in different physiological functions.
Collapse
Affiliation(s)
- M da Costa Lima
- Laboratory of Food Microbiology, Department of Nutrition, Health Science Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - M Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Technology Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - M Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão de Pernambuco, Petrolina, Pernambuco, Brazil
| | - C P de Sousa
- Department of Morphology and Pathology, Center of Biological Sciences and Health, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - J D Dubreuil
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - E L de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Health Science Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
45
|
Anti-degranulation and bile acid-binding activity of extracts from fruits and agro-industrial by-products. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Zia S, Khan MR, Shabbir MA, Aadil RM. An update on functional, nutraceutical and industrial applications of watermelon by-products: A comprehensive review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
47
|
Popovic BM, Micic N, Potkonjak A, Blagojevic B, Pavlovic K, Milanov D, Juric T. Novel extraction of polyphenols from sour cherry pomace using natural deep eutectic solvents - Ultrafast microwave-assisted NADES preparation and extraction. Food Chem 2021; 366:130562. [PMID: 34289442 DOI: 10.1016/j.foodchem.2021.130562] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 01/16/2023]
Abstract
In this work, new approaches for the green extraction of polyphenols from sour cherry pomace were explored. Three Natural Deep Eutectic Solvents (NADES) systems based on choline chloride (ChCl) as a hydrogen bond acceptor (HBA) and malic acid, urea, and fructose (MalA, Ur, and Fru) as hydrogen bond donors (HBD) were used. NADES systems were prepared by heating and stirring (H&S), ultrasound (US), and microwave (MW) methods. It was found that MW-assisted preparation was the fastest requiring less than 30 s. Polyphenol extraction from cherry pomace was performed also by three mentioned methods, and compared with conventional methods. MW extraction was the most rapid with less than 5 min necessary for the extract preparation. All three NADES systems were highly efficient for anthocyanin extraction, but the most efficient was ChCl:MalA system. Extract based on ChCl:MalA system was for 62.33% more efficient for anthocyanin extraction comparing with the conventional solvent.
Collapse
Affiliation(s)
- Boris M Popovic
- Chemistry & Biochemistry Laboratory, Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia.
| | - Nikola Micic
- Plant Biochemistry Laboratory, Department of Plant Biology, Royal Veterinary and Agricultural University, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Aleksandar Potkonjak
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Bojana Blagojevic
- Chemistry & Biochemistry Laboratory, Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Ksenija Pavlovic
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, Novi Sad, Serbia
| | - Dubravka Milanov
- Scientific Veterinary Institute Novi Sad, Rumenacki put 20, 21000 Novi Sad, Serbia
| | - Tatjana Juric
- Chemistry & Biochemistry Laboratory, Department of Field and Vegetable Crops, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| |
Collapse
|
48
|
Yadav A, Kumar N, Upadhyay A, Pratibha, Anurag RK. Edible Packaging from Fruit Processing Waste: A Comprehensive Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1940198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ajay Yadav
- Agro Produce Processing Division, ICAR-Central Institute of Agricultural Engineering, Bhopal, Madhya Pradesh, India
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat- 131028, Haryana, India
| | - Nishant Kumar
- Department of Agricultural and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat- 131028, India
| | - Ashutosh Upadhyay
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat- 131028, Haryana, India
| | - Pratibha
- Department of Food Business Management and Entrepreneurship Development, National Institute of Food Technology Entrepreneurship and Management, Sonipat- 131028, India
| | - Rahul Kumar Anurag
- Agricultural Structures and Environmental Control Division, ICAR-Central Institute of Post Harvest Engineering and Technology, PAU Campus-141004 Ludhiana, Punjab, India
| |
Collapse
|
49
|
Estévez M. Critical overview of the use of plant antioxidants in the meat industry: Opportunities, innovative applications and future perspectives. Meat Sci 2021; 181:108610. [PMID: 34147961 DOI: 10.1016/j.meatsci.2021.108610] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022]
Abstract
The number of articles devoted to study the effect of "natural antioxidants" on meat systems has remarkably increased in the last 10 years. Yet, a critical review of literature reveals recurrent flaws in regards to the rationale of the application, the experimental design, the characterisation of the plant sources, the discussion of the molecular mechanisms and of the potential benefits. The selection of the appropriate source of these antioxidants and the identification of their bioactive constituents, are essential to understand their mode of action and set effective and safe doses. The methodological approach should also be planned with care as the recorded effects and main conclusions largely depend on the accuracy and specificity of the methods. This article aims to critically review the recent advances in the application of plant antioxidants in meat and meat products and briefly covers current trends of innovative application and future trends.
Collapse
Affiliation(s)
- M Estévez
- Meat and Meat Products Research Institute (IPROCAR), Food Technology, University of Extremadura, 10003 Cáceres, Spain.
| |
Collapse
|
50
|
Babotă M, Voştinaru O, Păltinean R, Mihali C, Dias MI, Barros L, Ferreira ICFR, Mocan A, Crişan O, Nicula C, Crişan G. Chemical Composition, Diuretic, and Antityrosinase Activity of Traditionally Used Romanian Cerasorum stipites. Front Pharmacol 2021; 12:647947. [PMID: 34045959 PMCID: PMC8144643 DOI: 10.3389/fphar.2021.647947] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/09/2021] [Indexed: 11/29/2022] Open
Abstract
Cherry stems (CS) represent a by-product intensively used in Eastern European countries as a traditional remedy for urinary tract disorders. Ethnopharmacological evidences sustain the use of CS as aqueous preparations (infusion and decoction), but few data were previously reported about phytochemical profile and pharmacological potential of CS hydroalcoholic extracts. In this regard, we aimed to evaluate the phenolic profile, in vitro antioxidant and tyrosinase inhibitory potential, and in vivo diuretic activity of 70% hydroethanolic cherry stems extract and cherry stems decoction (CSD). LC-DAD-ESI/MSn analysis revealed the presence of flavonoid-type compounds as main constituents for both preparations, especially flavanones (naringenin glycosides). Antioxidant activity evaluated through DPPH, ABTS, and FRAP methods was superior for cherry stems extract, probably due to the presence of phenolic-derived compounds in higher amounts than CSD. On the other hand, tyrosinase inhibitory potential and diuretic effect exerted by CSD were stronger, highlighting that other types of hydrophilic secondary metabolites are responsible for this bioactivity. Overall, our findings indicate that CS preparations could be used as promising mild diuretic agents and encourage further investigations regarding the correlation between their chemical composition and bioactive potential.
Collapse
Affiliation(s)
- Mihai Babotă
- Department of Pharmaceutical Botany, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Oliviu Voştinaru
- Department of Pharmacology, Physiology and Physiopathology, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ramona Păltinean
- Department of Pharmaceutical Botany, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cosmin Mihali
- Department of Pharmaceutical Botany, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Laboratory of Chromatography, ICHAT, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Ovidiu Crişan
- Department of Organic Chemistry, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Nicula
- Department of Ophthalmology, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gianina Crişan
- Department of Pharmaceutical Botany, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|