1
|
van Olst B, Boeren S, Vervoort J, Kleerebezem M. Carbon upshift in Lactococcus cremoris elicits immediate initiation of proteome-wide adaptation, coinciding with growth acceleration and pyruvate dissipation switching. mBio 2025; 16:e0299024. [PMID: 39976430 PMCID: PMC11898756 DOI: 10.1128/mbio.02990-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/21/2025] [Indexed: 02/21/2025] Open
Abstract
Fitness optimization in a dynamic environment requires bacteria to adapt their proteome in a tightly regulated manner by altering protein production and/or degradation. Here, we investigate proteome adaptation in Lactococcus cremoris following a sudden nutrient upshift (e.g., nutrients that allow faster growth) and focus especially on the fate of redundant proteins after the shift. Protein turnover analysis demonstrated that L. cremoris cultures shifted from galactose to glucose, immediately accelerate growth and initiate proteome-wide adjustment toward glucose-optimized composition. Redundant proteins were predominantly adjusted by lowering (or stopping) protein production combined with dilution by growth. However, pyruvate formate lyase activator (PflA) was actively degraded, which appears correlated to reduced 4Fe-4S cofactor availability. Active PflA removal induces the shutdown of galactose-associated mixed acid fermentation to accelerate the switch toward glucose-associated homolactic fermentation. Our work deciphers molecular adjustments upon environmental change that drive physiological adaptation, including growth rate and central energy metabolism.IMPORTANCEBacteria adapt to their environment by adjusting their molecular makeup, in particular their proteome, which ensures fitness optimization under the newly encountered environmental condition. We present a detailed analysis of proteome adaptation kinetics in Lactococcus cremoris following its acute transition from galactose to glucose media, as an example of a sudden nutrient quality upshift. Analysis of the replacement times of individual proteins after the nutrient upshift established that the entire proteome is instantly adjusting to the new condition, which coincides with immediate growth rate acceleration and metabolic adaptation. The latter is driven by the active removal of the pyruvate formate lyase activator protein that is pivotal in controlling pyruvate dissipation in L. cremoris. Our work exemplifies the amazing rate of molecular adaptation in bacteria that underlies physiological adjustments, including growth rate and carbon metabolism. This mechanistic study contributes to our understanding of adaptation in L. cremoris during the dynamic conditions it encounters during (industrial) fermentation, even though environmental transitions in these processes are mostly more gradual than the acute shift studied here.
Collapse
Affiliation(s)
- Berdien van Olst
- Host-Microbe Interactomics, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, The Netherlands
- TI Food and Nutrition, Wageningen, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Jacques Vervoort
- Host-Microbe Interactomics, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Michiel Kleerebezem
- Host-Microbe Interactomics, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
2
|
van Olst B, Nugroho A, Boeren S, Vervoort J, Bachmann H, Kleerebezem M. Bacterial proteome adaptation during fermentation in dairy environments. Food Microbiol 2024; 121:104514. [PMID: 38637076 DOI: 10.1016/j.fm.2024.104514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 04/20/2024]
Abstract
The enzymatic repertoire of starter cultures belonging to the Lactococcus genus determines various important characteristics of fermented dairy products but might change in response to the substantial environmental changes in the manufacturing process. Assessing bacterial proteome adaptation in dairy and other food environments is challenging due to the high matrix-protein concentration and is even further complicated in particularly cheese by the high fat concentrations, the semi-solid state of that matrix, and the non-growing state of the bacteria. Here, we present bacterial harvesting and processing procedures that enable reproducible, high-resolution proteome determination in lactococcal cultures harvested from laboratory media, milk, and miniature Gouda cheese. Comparative proteome analysis of Lactococcus cremoris NCDO712 grown in laboratory medium and milk revealed proteome adaptations that predominantly reflect the differential (micro-)nutrient availability in these two environments. Additionally, the drastic environmental changes during cheese manufacturing only elicited subtle changes in the L. cremoris NCDO712 proteome, including modified expression levels of enzymes involved in flavour formation. The technical advances we describe offer novel opportunities to evaluate bacterial proteomes in relation to their performance in complex, protein- and/or fat-rich food matrices and highlight the potential of steering starter culture performance by preculture condition adjustments.
Collapse
Affiliation(s)
- Berdien van Olst
- Host-Microbe Interactomics, Wageningen University & Research, Wageningen, the Netherlands; Laboratory of Biochemistry, Wageningen University & Research, Wageningen, the Netherlands; TI Food and Nutrition, Wageningen, the Netherlands
| | - Avis Nugroho
- Host-Microbe Interactomics, Wageningen University & Research, Wageningen, the Netherlands; Microbiology Department, NIZO Food Research, Ede, the Netherlands; TI Food and Nutrition, Wageningen, the Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, the Netherlands; TI Food and Nutrition, Wageningen, the Netherlands
| | - Jacques Vervoort
- Host-Microbe Interactomics, Wageningen University & Research, Wageningen, the Netherlands; Laboratory of Biochemistry, Wageningen University & Research, Wageningen, the Netherlands; TI Food and Nutrition, Wageningen, the Netherlands
| | - Herwig Bachmann
- Microbiology Department, NIZO Food Research, Ede, the Netherlands; Systems Biology Lab, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; TI Food and Nutrition, Wageningen, the Netherlands
| | - Michiel Kleerebezem
- Host-Microbe Interactomics, Wageningen University & Research, Wageningen, the Netherlands; TI Food and Nutrition, Wageningen, the Netherlands.
| |
Collapse
|
3
|
Adeniyi B, Adesuyi A, Ayeni F, Ogunbanwo T, Agidigbi T. Poultry Gastrointestinal-derived Lactic Acid Bacteria (pGIT-d-LAB) Inhibit Multiple Antibiotics Resistance Bacterial and Fungal Pathogens. Avicenna J Med Biotechnol 2024; 16:111-119. [PMID: 38618510 PMCID: PMC11007375 DOI: 10.18502/ajmb.v16i2.14862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/25/2023] [Indexed: 04/16/2024] Open
Abstract
Background To develop a probiotic formulation for poultry feed, a few poultry gastrointestinal derived lactic acid bacteria (pGIT-d-LAB) were isolated from chicken intestinal specimens and in vitro experiment was performed to evaluate their efficacy as potential probiotic candidate. Methods A total of 6 strains of LAB: Lactobacillus brevis (L. brevis), Lactobacillus acidophilus (L. acidophilus), Lactobacillus casei (L. casei), Pediococci spp, Lactobacillus fermentum (L. fermentum) and Lactobacillus plantarum (L. plantarum) were isolated and cultured for collection of Cell Free Supernatant (CFS). CFS collected was tested against pathogenic bacterial isolated from chicken feces as well as prevalent fungal pathogens, utilizing agar-well diffusion techniques. A preliminary investigation into the susceptibility of the pathogens to diverse antibiotics and antifungal drugs was conducted. Bacterial pathogens exhibiting resistance to a minimum of three classes of antibiotics were subsequently identified for pGIT-d-LAB CFS screening. Results The observed results revealed that the CFS derived from the isolates exhibited varying degrees of growth inhibition against different pathogens. Among the tested pGIT-d-LAB isolates, L. acidophilus demonstrated the most prominent zone of inhibition, measuring 18 mm against Klebsiella pneumoniae ZTAC 1233. Notably, Citrobacter diversus ZTAC 1255 showed resistance to all tested pGIT-d-LAB. Quantification of the metabolites produced was performed, and peak production levels was determined. L. acidophilus produced the highest amount of lactic acid (1.789g/l), Pediococci spp. produced the highest amount of diacetyl and H202 (1.918g/l) (0.0025g/l) at 48 hr peak values respectively. Conclusion The test isolates are potential probiotic candidates for controlling pathogens in poultry.
Collapse
Affiliation(s)
- Bolanle Adeniyi
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Abimbola Adesuyi
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Funmilola Ayeni
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Temitope Ogunbanwo
- Department of Microbiology, Faculty of Science, University of Ibadan, Ibadan, Nigeria
| | - Taiwo Agidigbi
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
4
|
Shangpliang HNJ, Tamang JP. Metagenome-assembled genomes for biomarkers of bio-functionalities in Laal dahi, an Indian ethnic fermented milk product. Int J Food Microbiol 2023; 402:110300. [PMID: 37364321 DOI: 10.1016/j.ijfoodmicro.2023.110300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
Laal dahi is a sweetened and soft pudding-like fermented milk product of the Eastern regions of India, which has not been studied for its microbial community structures and health promoting functionality in terms of 'omics' approaches. We applied metagenomic and metagenomes-assembled genomes (MAGs) tools to decipher the biomarkers for genes encoding for different health promoting functionalities in laal dahi. Abundance of bacterial domains was observed with negligible presence of eukaryotes and viruses. Bacillota was the most abundant phylum with different bacterial species viz., Enterococcus italicus, Lactococcus raffinolactis, Lactobacillus helveticus, Bifidobacterium mongoliense, Hafnia alvei, Lactococcus lactis, Acetobacter okinawensis, Streptococcus thermophilus, Thermus thermophilus, Leuconostoc citreum, Leuconostoc pseudomesenteroides, Acetobacter orientalis, Lactobacillus gallinarum, Lactococcus chungangensis and Lactobacillus delbrueckii. Comparison of laal dahi microbiome with that of similar fermented milk products was also carried out after retrieving the metagenomic datasets from public databases. Significant abundance of Lb. helveticus, E. italicus, Lc. raffinolactis and Lc. lactis in laal dahi. Interestingly, Bifidobacterium mongoliense, Lb. gallinarum, Lc. chungangensis and Acetobacter okinawensis were only detected in laal dahi but Streptococcus infantarius, Lacticaseibacillus rhamnosus and Lb. johnsonii were absent. Reconstruction of putative single environment-specific genomes from metagenomes in addition to subsampling of the abundant species resulted in five high-quality MAGs identified as Lactobacillus delbrueckii, Lactobacillus helveticus, Lactococcus chungangensis, Lactococcus lactis and Streptococcus thermophilus. All MAGs showed the presence of various genes with several putative functions corresponding to different probiotic and prebiotic functions, short-chain fatty acids production, immunomodulation, antitumor genes, essential amino acid and vitamin biosynthesis. Genes for γ-Aminobutyric acid (GABA) production were only detected in MAG of Lactococcus lactis. Gene clusters for secondary metabolites (antimicrobial peptides) were detected in all MAGs except Lc. chungangensis. Additionally, detection of clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) elements was observed only in Lactobacillus delbrueckii and Streptococcus thermophilus. Annotation of several genes with potential health beneficial properties in all five MAGs may support the need to explore the culturability of these MAGs for future use in controlled fermentation of functional dairy products.
Collapse
Affiliation(s)
| | - Jyoti Prakash Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, Tadong, Gangtok 737102, Sikkim, India.
| |
Collapse
|
5
|
The Pleiotropic Effects of Carbohydrate-Mediated Growth Rate Modifications in Bifidobacterium longum NCC 2705. Microorganisms 2023; 11:microorganisms11030588. [PMID: 36985162 PMCID: PMC10059941 DOI: 10.3390/microorganisms11030588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Bifidobacteria are saccharolytic bacteria that are able to metabolize a relatively large range of carbohydrates through their unique central carbon metabolism known as the “bifid-shunt”. Carbohydrates have been shown to modulate the growth rate of bifidobacteria, but unlike for other genera (e.g., E. coli or L. lactis), the impact it may have on the overall physiology of the bacteria has not been studied in detail to date. Using glucose and galactose as model substrates in Bifidobacterium longum NCC 2705, we established that the strain displayed fast and slow growth rates on those carbohydrates, respectively. We show that these differential growth conditions are accompanied by global transcriptional changes and adjustments of central carbon fluxes. In addition, when grown on galactose, NCC 2705 cells were significantly smaller, exhibited an expanded capacity to import and metabolized different sugars and displayed an increased acid-stress resistance, a phenotypic signature associated with generalized fitness. We predict that part of the observed adaptation is regulated by the previously described bifidobacterial global transcriptional regulator AraQ, which we propose to reflect a catabolite-repression-like response in B. longum. With this manuscript, we demonstrate that not only growth rate but also various physiological characteristics of B. longum NCC 2705 are responsive to the carbon source used for growth, which is relevant in the context of its lifestyle in the human infant gut where galactose-containing oligosaccharides are prominent.
Collapse
|
6
|
Manganese Modulates Metabolic Activity and Redox Homeostasis in Translationally Blocked Lactococcus cremoris, Impacting Metabolic Persistence, Cell Culturability, and Flavor Formation. Microbiol Spectr 2022; 10:e0270821. [PMID: 35638825 PMCID: PMC9241929 DOI: 10.1128/spectrum.02708-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Manganese (Mn) is an essential trace element that is supplemented in microbial media with varying benefits across species and growth conditions. We found that growth of Lactococcus cremoris was unaffected by manganese omission from the growth medium. The main proteome adaptation to manganese omission involved increased manganese transporter production (up to 2,000-fold), while the remaining 10 significant proteome changes were between 1.4- and 4-fold. Further investigation in translationally blocked (TB), nongrowing cells showed that Mn supplementation (20 μM) led to approximately 1.5 X faster acidification compared with Mn-free conditions. However, this faster acidification stagnated within 24 h, likely due to draining of intracellular NADH that coincides with substantial loss of culturability. Conversely, without manganese, nongrowing cells persisted to acidify for weeks, albeit at a reduced rate, but maintaining redox balance and culturability. Strikingly, despite being unculturable, α-keto acid-derived aldehydes continued to accumulate in cells incubated in the presence of manganese, whereas without manganese cells predominantly formed the corresponding alcohols. This is most likely reflecting NADH availability for the alcohol dehydrogenase-catalyzed conversion. Overall, manganese influences the lactococcal acidification rate, and flavor formation capacity in a redox dependent manner. These are important industrial traits especially during cheese ripening, where cells are in a non-growing, often unculturable state. IMPORTANCE In nature as well as in various biotechnology applications, microorganisms are often in a nongrowing state and their metabolic persistence determines cell survival and functionality. Industrial examples are dairy fermentations where bacteria remain active during the ripening phases that can take up to months and even years. Here we investigated environmental factors that can influence lactococcal metabolic persistence throughout such prolonged periods. We found that in the absence of manganese, acidification of nongrowing cells remained active for weeks while in the presence of manganese it stopped within 1 day. The latter coincided with the accumulation of amino acid derived volatile metabolites. Based on metabolic conversions, proteome analysis, and a reporter assay, we demonstrated that the manganese elicited effects were NADH dependent. Overall the results show the effect of environmental modulation on prolonged cell-based catalysis, which is highly relevant to non-growing cells in nature and biotechnological applications.
Collapse
|
7
|
Engels W, Siu J, van Schalkwijk S, Wesselink W, Jacobs S, Bachmann H. Metabolic Conversions by Lactic Acid Bacteria during Plant Protein Fermentations. Foods 2022; 11:foods11071005. [PMID: 35407092 PMCID: PMC8997616 DOI: 10.3390/foods11071005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/17/2022] Open
Abstract
To secure a sustainable food supply for the rapidly growing global population, great efforts towards a plant-based diet are underway. However, the use of plant proteins comes with several challenges, such as improvement or removal of undesired flavours, and generation of desired texture properties. Fermentation holds large potential to alter these properties, but compared to dairy fermentations, our knowledge on strain properties in different plant-based substrates is still limited. Here, we explored different lactic acid bacteria for their ability to grow, produce flavour compounds, or remove off-flavour compounds from different plant proteins. For this, 151 LAB strains from dairy and non-dairy origins were cultured in plant protein plus coconut oil emulsions supplemented with glucose. Pea, chickpea, mung, fava, and soybean proteins were used in the study and bacterial strains for screening included the genera Streptococcus, Lactococcus, Lactobacillus, and Leuconostoc. Efficient, high throughput, screening on plant proteins was developed and strains were assessed for their ability to (i) acidify and decrease the pH; (ii) express key enzymes involved in the formation of amino acid derived flavours, which included PepN (aminopeptidase N), PepXP (X-prolyl dipeptidyl peptidase), EstA (esterase), BcAT (branched chain aminotransferase), CBL (cystathione beta lyase), and ArAT (aromatic aminotransferase); and (iii) improve the overall aroma profile by generating dairy/cheesy notes and decreasing off flavours. Suitable screening conditions were determined, and highlighted the importance that a sufficient heat treatment must be applied to samples containing plant proteins, prior to fermentation, as an outgrowth of spore forming Bacillus cereus was observed if the material was only pasteurised. Enzyme activities for strains measured in rich broth vs. a buffered protein solution showed little-to-no correlation, which illustrated the importance of screening conditions to obtain predictive enzyme measurements. Aroma formation analysis allowed to identify strains that were able to increase key aromas such as diacetyl, acetoin, 2- and 3-methyl butanol, and 2,3-pentanedione, as well as decrease the off-flavours hexanal, pentanal, and nonanal. Our findings illustrate the importance of strain specific differences in the assessed functionalities and how a methodical approach to screening LAB can be applied to select suitable microorganisms that show promise in fermentation of plant proteins when applied in non-dairy cheese applications.
Collapse
Affiliation(s)
- Wim Engels
- NIZO, Kernhemseweg 2, 6718 ZB Ede, The Netherlands; (J.S.); (S.v.S.); (W.W.); (S.J.); (H.B.)
- Correspondence:
| | - Jamie Siu
- NIZO, Kernhemseweg 2, 6718 ZB Ede, The Netherlands; (J.S.); (S.v.S.); (W.W.); (S.J.); (H.B.)
- Daiya Foods Inc., 3100 Production Way, Burnaby, BC V5A 4R4, Canada
| | - Saskia van Schalkwijk
- NIZO, Kernhemseweg 2, 6718 ZB Ede, The Netherlands; (J.S.); (S.v.S.); (W.W.); (S.J.); (H.B.)
| | - Wilma Wesselink
- NIZO, Kernhemseweg 2, 6718 ZB Ede, The Netherlands; (J.S.); (S.v.S.); (W.W.); (S.J.); (H.B.)
| | - Simon Jacobs
- NIZO, Kernhemseweg 2, 6718 ZB Ede, The Netherlands; (J.S.); (S.v.S.); (W.W.); (S.J.); (H.B.)
| | - Herwig Bachmann
- NIZO, Kernhemseweg 2, 6718 ZB Ede, The Netherlands; (J.S.); (S.v.S.); (W.W.); (S.J.); (H.B.)
- Systems Biology Lab, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
8
|
Douwenga S, van Tatenhove-Pel RJ, Zwering E, Bachmann H. Stationary Lactococcus cremoris: Energetic State, Protein Synthesis Without Nitrogen and Their Effect on Survival. Front Microbiol 2021; 12:794316. [PMID: 34975819 PMCID: PMC8719527 DOI: 10.3389/fmicb.2021.794316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
During storage and ripening of fermented foods, Lactococcus cremoris is predominantly in a non-growing state. L. cremoris can become stationary due to starvation or acidification, and its metabolism in these non-growing states affects the fermented product. Available studies on the response of L. cremoris to acid and starvation stress are based on population level data. We here characterized the energetic state and the protein synthesis capacity of stationary L. cremoris cultures at the single cell level. We show that glucose starved stationary cells are energy-depleted, while acid-induced stationary cells are energized and can maintain a pH gradient over their membrane. In the absence of glucose and arginine, a small pH gradient can still be maintained. Subpopulations of stationary cells can synthesize protein without a nitrogen source, and the subpopulation size decreases with increasing stationary phase length. Protein synthesis capacity during starvation only benefits culturability after 6 days. These results highlight significant differences between glucose starved stationary and acid-induced stationary cells. Furthermore, they show that the physiology of stationary phase L. cremoris cells is multi-facetted and heterogeneous, and the presence of an energy source during stationary phase impacts the cells capacity to adapt to their environment.
Collapse
Affiliation(s)
- Sieze Douwenga
- TiFN, Wageningen, Netherlands
- Systems Biology Lab, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rinke J. van Tatenhove-Pel
- Systems Biology Lab, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Emile Zwering
- Systems Biology Lab, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Herwig Bachmann
- TiFN, Wageningen, Netherlands
- Systems Biology Lab, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- NIZO, Ede, Netherlands
- *Correspondence: Herwig Bachmann,
| |
Collapse
|
9
|
Developments in effective use of volatile organic compound analysis to assess flavour formation during cheese ripening. J DAIRY RES 2021; 88:461-467. [PMID: 34866564 DOI: 10.1017/s0022029921000790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the burgeoning demand for optimization of cheese production, ascertaining cheese flavour formation during the cheese making process has been the focal point of determining cheese quality. In this research reflection, we have highlighted how valuable volatile organic compound (VOC) analysis has been in assessing contingent cheese flavour compounds arising from non-starter lactic acid bacteria (NSLAB) along with starter lactic acid bacteria (SLAB), and whether VOC analysis associated with other high-throughput data might help provide a better understanding the cheese flavour formation during cheese process. It is widely known that there is a keen interest to merge all omics data to find specific biomarkers and/or to assess aroma formation of cheese. Towards that end, results of VOC analysis have provided valuable insights into the cheese flavour profile. In this review, we are pinpointing the effective use of flavour compound analysis to perceive flavour-forming ability of microbial strains that are convenient for dairy production, intertwining microbiome and metabolome to unveil potential biomarkers that occur during cheese ripening. In doing so, we summarised the functionality and integration of aromatic compound analysis in cheese making and gave reflections on reconsidering what the role of flavour-based analysis might have in the future.
Collapse
|
10
|
Growth, dormancy and lysis: the complex relation of starter culture physiology and cheese flavour formation. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Douwenga S, Janssen P, Teusink B, Bachmann H. A centrifugation-based clearing method allows high-throughput acidification and growth-rate measurements in milk. J Dairy Sci 2021; 104:8530-8540. [PMID: 33934870 DOI: 10.3168/jds.2020-20108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/25/2021] [Indexed: 11/19/2022]
Abstract
The turbidity of milk prohibits the use of optical density measurements for strain characterizations. This often limits research to laboratory media. Here, we cleared milk through centrifugation to remove insoluble milk solids. This resulted in a clear liquid phase, termed milk serum, in which optical density measurements can be used to track microbial growth until a pH of 5.2 is reached. At pH 5.2 coagulation of the soluble protein occurs, making the medium opaque again. We found that behavior in milk serum was predictive of that in milk for 39 Lactococcus lactis (R2 = 0.81) and to a lesser extent for 42 Lactiplantibacillus plantarum (formerly Lactobacillus plantarum; R2 = 0.49) strains. Hence, milk serum can be used as an optically clear alternative to milk for comparison of microbial growth and metabolic characteristics. Characterization of the growth rate, specific acidification rate for optical density at a wavelength of 600 nm, and the amount of acid produced per unit of biomass for all these strains in milk serum, showed that almost all strains could grow in milk, with higher specific acidification and growth rates of Lc. lactis strains compared with Lb. plantarum strains. Nondairy Lc. lactis isolates had a lower growth and specific acidification rate than dairy isolates. The amount of acid produced per unit biomass was relatively high and similar for Lc. lactis dairy and nondairy isolates, as opposed to Lb. plantarum isolates. Lactococcus lactis ssp. lactis showed slightly lower growth and acidification rates when compared with ssp. cremoris. For Lc. lactis strains a doubling of the specific acidification rate occurred with a doubling of the maximum growth rate. This relation was not found for Lb. plantarum strains, where the acidification rate remained relatively constant across 39 strains with growth rates ranging from 0.2 h-1 to 0.3 h-1. We conclude that milk serum is a valuable alternative to milk for high-throughput strain characterization during milk fermentation.
Collapse
Affiliation(s)
- Sieze Douwenga
- TI Food and Nutrition, 6709 PA, Wageningen, the Netherlands; Systems Biology Lab, Vrije Universiteit Amsterdam, 1081 HZ, Amsterdam, the Netherlands
| | - Patrick Janssen
- TI Food and Nutrition, 6709 PA, Wageningen, the Netherlands; Health Department, NIZO Food Research, 6718 ZB, Ede, the Netherlands
| | - Bas Teusink
- TI Food and Nutrition, 6709 PA, Wageningen, the Netherlands; Systems Biology Lab, Vrije Universiteit Amsterdam, 1081 HZ, Amsterdam, the Netherlands
| | - Herwig Bachmann
- TI Food and Nutrition, 6709 PA, Wageningen, the Netherlands; Systems Biology Lab, Vrije Universiteit Amsterdam, 1081 HZ, Amsterdam, the Netherlands; Health Department, NIZO Food Research, 6718 ZB, Ede, the Netherlands.
| |
Collapse
|