1
|
Renaud LI, Béland K, Asselin E. Video microscopy: an old story with a bright biological future. Biomed Eng Online 2025; 24:44. [PMID: 40241123 PMCID: PMC12004724 DOI: 10.1186/s12938-025-01375-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Single-cell analysis is increasingly popular in the field of biology, enabling more precise analyses of heterogeneous phenomena, particularly in the fields of embryology and the study of different diseases. At the heart of this evolution is video microscopy, an ancient but revolutionary technique. From its first use on embryos, through the study of C. Elegans, with the development of algorithms for its automation, the history of video microscopy has been fascinating. Unfortunately, many unresolved issues remain, such as the sheer volume of data produced and the quality of the images taken. The aim of this review is to explore the past, present and future of this technique, which could become indispensable in recent decades, to understand cell fate and how diseases affect their destiny.
Collapse
Affiliation(s)
- Léa-Isabelle Renaud
- Département de Biologie Médicale, Laboratoire de Gynéco-Oncologie Moléculaire, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Kelliane Béland
- Département de Biologie Médicale, Laboratoire de Gynéco-Oncologie Moléculaire, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Eric Asselin
- Département de Biologie Médicale, Laboratoire de Gynéco-Oncologie Moléculaire, Université du Québec à Trois-Rivières, Trois-Rivières, Canada.
| |
Collapse
|
2
|
Kim JH, Yang D, Park S. Raman Spectroscopy in Cellular and Tissue Aging Research. Aging Cell 2025; 24:e14494. [PMID: 39876576 PMCID: PMC11822629 DOI: 10.1111/acel.14494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/26/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025] Open
Abstract
The establishment of various molecular, physiological, and genetic markers for cellular senescence and aging-associated conditions has progressed the aging study. To identify such markers, a combination of optical, proteomic-, and sequencing-based tools is primarily used, often accompanying extrinsic labels. Yet, the tools for clinical detection at the molecular, cellular, and tissue levels are still lacking which profoundly hinders advancements in the specific detection and timely prevention of aging-related diseases and pathologies. Raman spectroscopy, with its capability for rapid, label-free, and non-invasive analysis of molecular compositions and alterations in aging cells and tissues, holds considerable promise for in vivo applications. In this review, we present recent advancements in the application of Raman spectroscopy to the study of aging in cells and tissues. We explore the use of Raman spectroscopy and related techniques for detecting cellular aging and senescence, focusing on the molecular alterations that accompany these processes. Subsequently, we provide a review of the application of Raman spectroscopy in identifying aging-related changes in various molecules within tissues and organs.
Collapse
Affiliation(s)
- Jeong Hee Kim
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Daejong Yang
- Department of Mechanical and Automotive EngineeringKongju National UniversityCheonanRepublic of Korea
| | - Seungman Park
- Department of Mechanical EngineeringUniversity of Nevada, Las VegasLas VegasNevadaUSA
- Interdisciplinary Biomedical Engineering ProgramUniversity of Nevada, Las VegasLas VegasNevadaUSA
| |
Collapse
|
3
|
Kosar N, Ayub K, Al-Saadi AA, Imran M, Mahmood T. Optimization of nonlinear properties of C 6O 6Li 6-doped alkalides via group I/III doping for unprecedented charge transfer and advancements in optoelectronics. Phys Chem Chem Phys 2025; 27:2033-2045. [PMID: 39751906 DOI: 10.1039/d4cp03890h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The design and synthesis of nonlinear optical (NLO) materials are rapidly growing fields in optoelectronics. Considering the high demand for newly designed materials with superior optoelectronic characteristics, we investigated the doping process of Group-IIIA elements (namely, B, Al and Ga) onto alkali metal (AM = Li, Na and K)-supported C6O6Li6 (AM@C6O6Li6) complexes to enhance their NLO response. The AM-C6O6Li6 complexes retained their structural features following interaction with the Group-IIIA elements. Interaction energies as high as -109 kcal mol-1 demonstrated the high thermodynamic stability of these complexes. An exceptional charge transfer behavior was predicted in these complexes, where the electronic density of the Group-III metals shifted toward the alkali metals, making these complexes behave as alkalides. The π conjugation of C6O6Li6 was found to withdraw excess electrons from the Group IIIA metals in these alkalides, which were subsequently transferred to the Group IA metals. The energy gap of the frontier molecular orbitals (FMOs) in the AM-C6O6Li6 complexes was notably reduced upon alkalide formation. UV-visible analysis explicitly showed a bathochromic shift in the alkalides. The first hyperpolarizability (β0) was calculated to confirm the NLO properties of these alkalides. B-C6O6Li6-K exhibited the highest β0 value of 1.75 × 105 au. The vibrational frequency-dependent first and second hyperpolarizability values illustrated an increase in hyperpolarizability at a frequency of 532 nm. A higher n2 value of 8.39 × 10-12 cm2 W-1 was obtained for B-C6O6Li6-Na at 532 nm. These results highlight the promising NLO response of the designed alkalides and their potential applications in the field of optics.
Collapse
Affiliation(s)
- Naveen Kosar
- Department of Chemistry, University of Management and Technology (UMT), C-11, Johar Town Lahore, Pakistan.
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan.
| | - Abdulaziz A Al-Saadi
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Tariq Mahmood
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan.
- Department of Chemistry, College of Science, University of Bahrain, P.O. Box 32038, Sakhir, Bahrain
| |
Collapse
|
4
|
Shakibi R, Yazdipour F, Abadijoo H, Manoochehri N, Rostami Pouria F, Bajooli T, Simaee H, Abdolmaleki P, Khatibi A, Abdolahad M, Moosavi-Movahhedi AA, Khayamian MA. From resting potential to dynamics: advances in membrane voltage indicators and imaging techniques. Q Rev Biophys 2025; 58:e7. [PMID: 39817368 DOI: 10.1017/s0033583524000210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The membrane potential is a critical aspect of cellular physiology, essential for maintaining homeostasis, facilitating signal transduction, and driving various cellular processes. While the resting membrane potential (RMP) represents a key physiological parameter, membrane potential fluctuations, such as depolarization and hyperpolarization, are equally vital in understanding dynamic cellular behavior. Traditional techniques, such as microelectrodes and patch-clamp methods, offer valuable insights but are invasive and less suited for high-throughput applications. Recent advances in voltage indicators, including fast and slow dyes, and novel imaging modalities such as second harmonic generation (SHG) and photoacoustic imaging, enable noninvasive, high-resolution measurement of both RMP and membrane potential dynamics. This review explores the mechanisms, development, and applications of these tools, emphasizing their transformative potential in neuroscience and cellular electrophysiology research.
Collapse
Affiliation(s)
- Reyhaneh Shakibi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- Integrated Biophysics and Bioengineering Lab (iBL), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Yazdipour
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- Integrated Biophysics and Bioengineering Lab (iBL), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hamed Abadijoo
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- Integrated Biophysics and Bioengineering Lab (iBL), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Navid Manoochehri
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- Integrated Biophysics and Bioengineering Lab (iBL), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Farshid Rostami Pouria
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- Integrated Biophysics and Bioengineering Lab (iBL), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Taraneh Bajooli
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- Integrated Biophysics and Bioengineering Lab (iBL), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Hossein Simaee
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- Integrated Biophysics and Bioengineering Lab (iBL), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Parviz Abdolmaleki
- Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Khatibi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Mohammad Abdolahad
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | | | - Mohammad Ali Khayamian
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- Integrated Biophysics and Bioengineering Lab (iBL), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Yushina ID, Masunov AE, Bartashevich EV. Covalent Organic Frameworks in Computational Design of Second-Harmonic Generation Materials: Role of Tetrel Atoms and Their Interactions. J Phys Chem A 2024; 128:8105-8110. [PMID: 39264812 DOI: 10.1021/acs.jpca.4c04633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Modern approaches to the design of nonlinear optical materials often rely on computational techniques. Here, we discuss the effects of the variation in the center tetrel atoms, Tt = C, Si, or Ge, in a series of covalent organic frameworks of the COF-102 family. The effects of halogen substitution, Hal = Cl, Br, or I on intramolecular tetrel bonding are also discussed. The characteristics of the calculated electron density have been implemented to describe the features of the electron distribution around the central fragment involving a tetrahedral tetrel atom. The effect of the central Tt atom leads to a dramatic change in the character of electron delocalization on the Tt-Car bond with aromatic rings. The location of the halogen atom at the ortho-position of the aromatic ring leads to the formation of tetrel bonds, halogen bonds, or other noncovalent interactions. The changes in the second-order electric susceptibility χ(2) have been studied in order to describe the strength of nonlinear optical properties within the periodic couple-perturbed Kohn-Sham approach. A counterintuitive trend for the χ(2) decrease is observed upon substitution of H > Cl > Br > I at the ortho-position of the phenyl ring. This is due to the corresponding elongation of the Tt-Car bond.
Collapse
Affiliation(s)
- Irina D Yushina
- South Ural State University, Lenin pr. 76, Chelyabinsk 454080, Russia
| | - Artëm E Masunov
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, Florida 32826, United States
- School of Modeling, Simulation & Training, University of Central Florida, 3100 Technology Parkway, Orlando, Florida 32826, United States
| | | |
Collapse
|
6
|
Sarkar B, Rana N, Singh C, Singh A. Medicinal herbal remedies in neurodegenerative diseases: an update on antioxidant potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5483-5511. [PMID: 38472370 DOI: 10.1007/s00210-024-03027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
It has been widely documented that medicinal herbal remedies are effective, have fewer side effects than conventional medicine, and have a synergistic effect on health collaborations in the fight against complicated diseases. Traditional treatments for neurological problems in ancient times sometimes involved the use of herbal remedies and conventional methods from East Asian countries including India, Japan, China, and Korea. We collected and reviewed studies on plant-derived neuroprotective drugs and tested them in neurotoxic models. Basic research, preclinical and clinical transgene research can benefit from in silico, in vitro, and in vivo investigations. Research, summaries of the extracts, fractions, and herbal ingredients were compiled from popular scientific databases, which were then examined according to origin and bioactivity. Given the complex and varied causes of neurodegeneration, it may be beneficial to focus on multiple mechanisms of action and a neuroprotection approach. This approach aims to prevent cell death and restore function to damaged neurons, offering promising strategies for preventing and treating neurodegenerative diseases. Neurodegenerative illnesses can potentially be treated with natural compounds that have been identified as neuroprotective agents. To gain deeper insights into the neuropharmacological mechanisms underlying the neuroprotective and therapeutic properties of naturally occurring antioxidant phytochemical compounds in diverse neurodegenerative diseases, this study aims to comprehensively review such compounds, focusing on their modulation of apoptotic markers such as caspase, Bax, Bcl-2, and proinflammatory markers. In addition, we delve into a range of efficacies of antioxidant phytochemical compounds as neuroprotective agents in animal models. They reduce the oxidative stress of the brain and have been shown to have anti-apoptotic effects. Many researches have demonstrated that plant extracts or bioactive compounds can fight neurodegenerative disorders. Herbal medications may offer neurodegenerative disease patients' new treatments. This may be a cheaper and more culturally appropriate alternative to standard drugs for millions of people with age-related NDDs.
Collapse
Affiliation(s)
- Biplob Sarkar
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India
| | - Nitasha Rana
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Chauras Campus, Distt. Tehri Garhwal, Srinagar, 249161, Uttarakhand, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India.
| |
Collapse
|
7
|
Niemann R, Mueller NS, Wasserroth S, Lu G, Wolf M, Caldwell JD, Paarmann A. Spectroscopic and Interferometric Sum-Frequency Imaging of Strongly Coupled Phonon Polaritons in SiC Metasurfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312507. [PMID: 38895889 DOI: 10.1002/adma.202312507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Phonon polaritons enable waveguiding and localization of infrared light with extreme confinement and low losses. The spatial propagation and spectral resonances of such polaritons are usually probed with complementary techniques such as near-field optical microscopy and far-field reflection spectroscopy. Here, infrared-visible sum-frequency spectro-microscopy is introduced as a tool for spectroscopic imaging of phonon polaritons. The technique simultaneously provides sub-wavelength spatial resolution and highly-resolved spectral resonance information. This is implemented by resonantly exciting polaritons using a tunable infrared laser and wide-field microscopic detection of the upconverted light. The technique is employed to image hybridization and strong coupling of localized and propagating surface phonon polaritons in a metasurface of SiC micropillars. Spectro-microscopy allows to measure the polariton dispersion simultaneously in momentum space by angle-dependent resonance imaging, and in real space by polariton interferometry. Notably, it is possible to directly image how strong coupling affects the spatial localization of polaritons, inaccessible with conventional spectroscopic techniques. The formation of edge states is observed at excitation frequencies where strong coupling prevents polariton propagation into the metasurface. The technique is applicable to the wide range of polaritonic materials with broken inversion symmetry and can be used as a fast and non-perturbative tool to image polariton hybridization and propagation.
Collapse
Affiliation(s)
- Richarda Niemann
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Niclas S Mueller
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Sören Wasserroth
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Guanyu Lu
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Present address: Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Martin Wolf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Joshua D Caldwell
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Interdisciplinary Materials Science Graduate Program, Vanderbilt University, Nashville, TN 37235, USA
| | - Alexander Paarmann
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| |
Collapse
|
8
|
Patel D, Shetty S, Acha C, Pantoja IEM, Zhao A, George D, Gracias DH. Microinstrumentation for Brain Organoids. Adv Healthc Mater 2024; 13:e2302456. [PMID: 38217546 DOI: 10.1002/adhm.202302456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/10/2023] [Indexed: 01/15/2024]
Abstract
Brain organoids are three-dimensional aggregates of self-organized differentiated stem cells that mimic the structure and function of human brain regions. Organoids bridge the gaps between conventional drug screening models such as planar mammalian cell culture, animal studies, and clinical trials. They can revolutionize the fields of developmental biology, neuroscience, toxicology, and computer engineering. Conventional microinstrumentation for conventional cellular engineering, such as planar microfluidic chips; microelectrode arrays (MEAs); and optical, magnetic, and acoustic techniques, has limitations when applied to three-dimensional (3D) organoids, primarily due to their limits with inherently two-dimensional geometry and interfacing. Hence, there is an urgent need to develop new instrumentation compatible with live cell culture techniques and with scalable 3D formats relevant to organoids. This review discusses conventional planar approaches and emerging 3D microinstrumentation necessary for advanced organoid-machine interfaces. Specifically, this article surveys recently developed microinstrumentation, including 3D printed and curved microfluidics, 3D and fast-scan optical techniques, buckling and self-folding MEAs, 3D interfaces for electrochemical measurements, and 3D spatially controllable magnetic and acoustic technologies relevant to two-way information transfer with brain organoids. This article highlights key challenges that must be addressed for robust organoid culture and reliable 3D spatiotemporal information transfer.
Collapse
Affiliation(s)
- Devan Patel
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Saniya Shetty
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Chris Acha
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Itzy E Morales Pantoja
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Alice Zhao
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Derosh George
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - David H Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, 21218, USA
- Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Center for MicroPhysiological Systems (MPS), Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
9
|
Mürer FK, Tekseth KR, Chattopadhyay B, Olstad K, Akram MN, Breiby DW. Multimodal 2D and 3D microscopic mapping of growth cartilage by computational imaging techniques - a short review including new research. Biomed Phys Eng Express 2024; 10:045041. [PMID: 38744257 DOI: 10.1088/2057-1976/ad4b1f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Being able to image the microstructure of growth cartilage is important for understanding the onset and progression of diseases such as osteochondrosis and osteoarthritis, as well as for developing new treatments and implants. Studies of cartilage using conventional optical brightfield microscopy rely heavily on histological staining, where the added chemicals provide tissue-specific colours. Other microscopy contrast mechanisms include polarization, phase- and scattering contrast, enabling non-stained or 'label-free' imaging that significantly simplifies the sample preparation, thereby also reducing the risk of artefacts. Traditional high-performance microscopes tend to be both bulky and expensive.Computational imagingdenotes a range of techniques where computers with dedicated algorithms are used as an integral part of the image formation process. Computational imaging offers many advantages like 3D measurements, aberration correction and quantitative phase contrast, often combined with comparably cheap and compact hardware. X-ray microscopy is also progressing rapidly, in certain ways trailing the development of optical microscopy. In this study, we first briefly review the structures of growth cartilage and relevant microscopy characterization techniques, with an emphasis on Fourier ptychographic microscopy (FPM) and advanced x-ray microscopies. We next demonstrate with our own results computational imaging through FPM and compare the images with hematoxylin eosin and saffron (HES)-stained histology. Zernike phase contrast, and the nonlinear optical microscopy techniques of second harmonic generation (SHG) and two-photon excitation fluorescence (TPEF) are explored. Furthermore, X-ray attenuation-, phase- and diffraction-contrast computed tomography (CT) images of the very same sample are presented for comparisons. Future perspectives on the links to artificial intelligence, dynamic studies andin vivopossibilities conclude the article.
Collapse
Affiliation(s)
- Fredrik K Mürer
- Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
- SINTEF Helgeland AS, Halvor Heyerdahls vei 33, 8626 Mo i Rana, Norway
| | - Kim R Tekseth
- Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Basab Chattopadhyay
- Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Kristin Olstad
- Faculty of Veterinary Medicine, Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences (NMBU), Equine section, PO Box 5003, 1432 Ås, Norway
| | - Muhammad Nadeem Akram
- Department of Microsystems, University of South-Eastern Norway (USN), 3184 Borre, Norway
| | - Dag W Breiby
- Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
- Department of Microsystems, University of South-Eastern Norway (USN), 3184 Borre, Norway
| |
Collapse
|
10
|
Steves MA, He C, Xu K. Single-Molecule Spectroscopy and Super-Resolution Mapping of Physicochemical Parameters in Living Cells. Annu Rev Phys Chem 2024; 75:163-183. [PMID: 38360526 DOI: 10.1146/annurev-physchem-070623-034225] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
By superlocalizing the positions of millions of single molecules over many camera frames, a class of super-resolution fluorescence microscopy methods known as single-molecule localization microscopy (SMLM) has revolutionized how we understand subcellular structures over the past decade. In this review, we highlight emerging studies that transcend the outstanding structural (shape) information offered by SMLM to extract and map physicochemical parameters in living mammalian cells at single-molecule and super-resolution levels. By encoding/decoding high-dimensional information-such as emission and excitation spectra, motion, polarization, fluorescence lifetime, and beyond-for every molecule, and mass accumulating these measurements for millions of molecules, such multidimensional and multifunctional super-resolution approaches open new windows into intracellular architectures and dynamics, as well as their underlying biophysical rules, far beyond the diffraction limit.
Collapse
Affiliation(s)
- Megan A Steves
- Department of Chemistry, University of California, Berkeley, California, USA;
| | - Changdong He
- Department of Chemistry, University of California, Berkeley, California, USA;
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, California, USA;
| |
Collapse
|
11
|
Liu S, Wang X, Dou Y, Wang Q, Kim J, Slebodnick C, Yan Y, Quan L. Direct Observation of Circularly Polarized Nonlinear Optical Activities in Chiral Hybrid Lead Halides. J Am Chem Soc 2024; 146:11835-11844. [PMID: 38570347 PMCID: PMC11066869 DOI: 10.1021/jacs.4c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Circularly polarized light emission is a crucial application in imaging, sensing, and photonics. However, utilizing low-energy photons to excite materials, as opposed to high-energy light excitation, can facilitate deep-tissue imaging and sensing applications. The challenge lies in finding materials capable of directly generating circularly polarized nonlinear optical effects. In this study, we introduce a chiral hybrid lead halide (CHLH) material system, R/S-DPEDPb3Br8·H2O (DPED = 1,2-diphenylethylenediammonium), which can directly produce circularly polarized second harmonic generation (CP-SHG) through linearly polarized infrared light excitation, exhibiting a polarization efficiency as high as 37% at room temperature. To understand the spin relaxation mechanisms behind the high polarization efficiency, we utilized two models, so-called D'yakonov-Perel' (DP) and Bir-Aronov-Pikus (BAP) mechanisms. The unique zigzag inorganic frameworks within the hybrid structure are believed to reduce the dielectric confinement and exciton binding energy, thus enhancing spin polarization, especially in regions with a high excitation pump fluence based on the DP mechanism. In the case of low excitation pump fluence, the BAP mechanism dominates, as evidenced by the observed decrease in the polarization ratio from CP-SHG measurement. Using density functional theory analysis, we elucidate how the distinctive 8-coordination environment of lead bromide building blocks effectively suppresses spin-orbit coupling at the conduction band minimum. This suppression significantly diminishes spin-splitting, thereby slowing the spin relaxation rate.
Collapse
Affiliation(s)
- Sunhao Liu
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xiaoming Wang
- Department
of Physics and Astronomy and Wright Center for Photovoltaics Innovation
and Commercialization, The University of
Toledo, Toledo, Ohio 43606, United States
| | - Yixuan Dou
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Qian Wang
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jiyoon Kim
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Carla Slebodnick
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yanfa Yan
- Department
of Physics and Astronomy and Wright Center for Photovoltaics Innovation
and Commercialization, The University of
Toledo, Toledo, Ohio 43606, United States
| | - Lina Quan
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Materials and Science Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
12
|
Zhang J, Sarollahi M, Luckhart S, Harrison MJ, Vasdekis AE. Quantitative phase imaging by gradient retardance optical microscopy. Sci Rep 2024; 14:9754. [PMID: 38679622 PMCID: PMC11056386 DOI: 10.1038/s41598-024-60057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/18/2024] [Indexed: 05/01/2024] Open
Abstract
Quantitative phase imaging (QPI) has become a vital tool in bioimaging, offering precise measurements of wavefront distortion and, thus, of key cellular metabolism metrics, such as dry mass and density. However, only a few QPI applications have been demonstrated in optically thick specimens, where scattering increases background and reduces contrast. Building upon the concept of structured illumination interferometry, we introduce Gradient Retardance Optical Microscopy (GROM) for QPI of both thin and thick samples. GROM transforms any standard Differential Interference Contrast (DIC) microscope into a QPI platform by incorporating a liquid crystal retarder into the illumination path, enabling independent phase-shifting of the DIC microscope's sheared beams. GROM greatly simplifies related configurations, reduces costs, and eradicates energy losses in parallel imaging modalities, such as fluorescence. We successfully tested GROM on a diverse range of specimens, from microbes and red blood cells to optically thick (~ 300 μm) plant roots without fixation or clearing.
Collapse
Affiliation(s)
- Jinming Zhang
- Department of Physics, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844, USA
| | - Mirsaeid Sarollahi
- Department of Physics, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844, USA
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844, USA
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844, USA
| | | | - Andreas E Vasdekis
- Department of Physics, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844, USA.
| |
Collapse
|
13
|
Szwaj M, Davidson IA, Johnson PB, Jasion G, Jung Y, Sandoghchi SR, Herdzik KP, Bourdakos KN, Wheeler NV, Mulvad HC, Richardson DJ, Poletti F, Mahajan S. Double-Clad Antiresonant Hollow-Core Fiber and Its Comparison with Other Fibers for Multiphoton Micro-Endoscopy. SENSORS (BASEL, SWITZERLAND) 2024; 24:2482. [PMID: 38676099 PMCID: PMC11054428 DOI: 10.3390/s24082482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024]
Abstract
Label-free and multiphoton micro-endoscopy can transform clinical histopathology by providing an in situ tool for diagnostic imaging and surgical treatment in diseases such as cancer. Key to a multiphoton imaging-based micro-endoscopic device is the optical fiber, for distortion-free and efficient delivery of ultra-short laser pulses to the sample and effective signal collection. In this work, we study a new hollow-core (air-filled) double-clad anti-resonant fiber (DC-ARF) as a high-performance candidate for multiphoton micro-endoscopy. We compare the fiber characteristics of the DC-ARF with a single-clad anti-resonant fiber (SC-ARF) and a solid core fiber (SCF). In this work, while the DC-ARF and the SC-ARF enable low-loss (<0.2 dBm-1), close to dispersion-free excitation pulse delivery (<10% pulse width increase at 900 nm per 1 m fiber) without any induced non-linearities, the SCF resulted in spectral broadening and pulse-stretching (>2000% of pulse width increase at 900 nm per 1 m fiber). An ideal optical fiber endoscope needs to be several meters long and should enable both excitation and collection through the fiber. Therefore, we performed multiphoton imaging on endoscopy-compatible 1 m and 3 m lengths of fiber in the back-scattered geometry, wherein the signals were collected either directly (non-descanned detection) or through the fiber (descanned detection). Second harmonic images were collected from barium titanate crystals as well as from biological samples (mouse tail tendon). In non-descanned detection conditions, the ARFs outperformed the SCF by up to 10 times in terms of signal-to-noise ratio of images. Significantly, only the DC-ARF, due to its high numerical aperture (NA) of 0.45 and wide-collection bandwidth (>1 µm), could provide images in the de-scanned detection configuration desirable for endoscopy. Thus, our systematic characterization and comparison of different optical fibers under different image collection configurations, confirms and establishes the utility of DC-ARFs for high-performing label-free multiphoton imaging-based micro-endoscopy.
Collapse
Affiliation(s)
- Marzanna Szwaj
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Ian A. Davidson
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Peter B. Johnson
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Greg Jasion
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Yongmin Jung
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Seyed Reza Sandoghchi
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Krzysztof P. Herdzik
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Konstantinos N. Bourdakos
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Natalie V. Wheeler
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Hans Christian Mulvad
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - David J. Richardson
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Francesco Poletti
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Sumeet Mahajan
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
14
|
Kariman BS, Diaspro A, Bianchini P. Numerical study of transient absorption saturation in single-layer graphene for optical nanoscopy applications. Sci Rep 2024; 14:8392. [PMID: 38600103 PMCID: PMC11350070 DOI: 10.1038/s41598-024-57462-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Transient absorption, or pump-probe microscopy is an absorption-based technique that can explore samples ultrafast dynamic properties and provide fluorescence-free contrast mechanisms. When applied to graphene and its derivatives, this technique exploits the graphene transient response caused by the ultrafast interband transition as the imaging contrast mechanism. The saturation of this transition is fundamental to allow for super-resolution optical far-field imaging, following the reversible saturable optical fluorescence transitions (RESOLFT) concept, although not involving fluorescence. With this aim, we propose a model to numerically compute the temporal evolution under saturation conditions of the single-layer graphene molecular states, which are involved in the transient absorption. Exploiting an algorithm based on the fourth order Runge-Kutta (RK4) method, and the density matrix approach, we numerically demonstrate that the transient absorption signal of single-layer graphene varies linearly as a function of excitation intensity until it reaches saturation. We experimentally verify this model using a custom pump-probe super-resolution microscope. The results define the intensities necessary to achieve super-resolution in a pump-probe nanoscope while studying graphene-based materials and open the possibility of predicting such a saturation process in other light-matter interactions that undergo the same transition.
Collapse
Affiliation(s)
- Behjat S Kariman
- Nanoscopy and NIC@IIT, Center for Human Technology, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Genoa, Italy
- Department of Physics, Politecnico di Milano, Milan, Italy
| | - Alberto Diaspro
- Nanoscopy and NIC@IIT, Center for Human Technology, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
- DIFILAB, Department of Physics, University of Genoa, Genoa, Italy
| | - Paolo Bianchini
- Nanoscopy and NIC@IIT, Center for Human Technology, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy.
- DIFILAB, Department of Physics, University of Genoa, Genoa, Italy.
| |
Collapse
|
15
|
Abdur-Rashid K, Saha SK, Mugisha J, Teale S, Wang S, Saber M, Lough AJ, Sargent EH, Fekl U. Organic Polar Crystals, Second Harmonic Generation, and Piezoelectric Effects from Heteroadamantanes in the Space Group R3m. Chemistry 2024; 30:e202302998. [PMID: 38231551 DOI: 10.1002/chem.202302998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/18/2024]
Abstract
Polar crystalline materials, a subset of the non-centrosymmetric materials, are highly sought after. Their symmetry properties make them pyroelectric and also piezoelectric and capable of second-harmonic generation (SHG). For SHG and piezoelectric applications, metal oxides are commonly used. The advantages of oxides are durability and hardness - downsides are the need for high-temperature synthesis/processing and often the need to include toxic metals. Organic polar crystals, on the other hand, can avoid toxic metals and can be amenable to solution-state processing. While the vast majority of polar organic molecules crystallize in non-polar space groups, we found that both 7-chloro-1,3,5-triazaadamantane, for short Cl-TAA, and also the related Br-TAA (but not I-TAA) form polar crystals in the space group R3m, easily obtained from dichloromethane solution. Measurements confirm piezoelectric and SHG properties for Cl-TAA and Br-TAA. When the two species are crystallized together, solid solutions form, suggesting that properties of future materials can be tuned continuously.
Collapse
Affiliation(s)
- Kareem Abdur-Rashid
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, Canada, M5S 3H6
- Department of Chemical and Physical Sciences, 3359 Mississauga Road, University of Toronto Mississauga, Mississauga, Ontario, Canada, L5L 1 C
| | - Shraman K Saha
- Department of Chemical and Physical Sciences, 3359 Mississauga Road, University of Toronto Mississauga, Mississauga, Ontario, Canada, L5L 1 C
| | - Jules Mugisha
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, Canada, M5S 3H6
- Department of Chemical and Physical Sciences, 3359 Mississauga Road, University of Toronto Mississauga, Mississauga, Ontario, Canada, L5L 1 C
| | - Sam Teale
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, Canada, M5S 3G8
| | - Sasa Wang
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, Canada, M5S 3G8
| | - Meelad Saber
- Department of Chemical and Physical Sciences, 3359 Mississauga Road, University of Toronto Mississauga, Mississauga, Ontario, Canada, L5L 1 C
| | - Alan J Lough
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, Canada, M5S 3H6
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, Canada, M5S 3G8
| | - Ulrich Fekl
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, Canada, M5S 3H6
- Department of Chemical and Physical Sciences, 3359 Mississauga Road, University of Toronto Mississauga, Mississauga, Ontario, Canada, L5L 1 C
| |
Collapse
|
16
|
Hu Y, Zhang RQ, Liu SL, Wang ZG. In-situ quantification of lipids in live cells through imaging approaches. Biosens Bioelectron 2023; 240:115649. [PMID: 37678059 DOI: 10.1016/j.bios.2023.115649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/03/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Lipids are important molecules that are widely distributed within the cell, and they play a crucial role in several biological processes such as cell membrane formation, signaling, cell motility and division. Monitoring the spatiotemporal dynamics of cellular lipids in real-time and quantifying their concentrations in situ is crucial since the local concentration of lipids initiates various signaling pathways that regulate cellular processes. In this review, we first introduced the historical background of lipid quantification methods. We then delve into the current state of the art of in situ lipid quantification, including the establishment and utility of fluorescence imaging techniques based on sensors of lipid-binding domains labeled with organic dyes or fluorescent proteins, and Raman and magnetic resonance imaging (MRI) techniques that do not require lipid labeling. Next, we highlighted the biological applications of live-cell lipid quantification techniques in the study of in situ lipid distribution, lipid transformation, and lipid-mediated signaling pathways. Finally, we discussed the technical challenges and prospects for the development of lipid quantification in live cells, with the aim of promoting the development of in situ lipid quantification in live cells, which may have a profound impact on the biological and medical fields.
Collapse
Affiliation(s)
- Yusi Hu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin, 300071, China
| | - Rui-Qiao Zhang
- Qingdao Academy of Agricultural Sciences, Qingdao, 266100, China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
17
|
Balasubramanian H, Hobson CM, Chew TL, Aaron JS. Imagining the future of optical microscopy: everything, everywhere, all at once. Commun Biol 2023; 6:1096. [PMID: 37898673 PMCID: PMC10613274 DOI: 10.1038/s42003-023-05468-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023] Open
Abstract
The optical microscope has revolutionized biology since at least the 17th Century. Since then, it has progressed from a largely observational tool to a powerful bioanalytical platform. However, realizing its full potential to study live specimens is hindered by a daunting array of technical challenges. Here, we delve into the current state of live imaging to explore the barriers that must be overcome and the possibilities that lie ahead. We venture to envision a future where we can visualize and study everything, everywhere, all at once - from the intricate inner workings of a single cell to the dynamic interplay across entire organisms, and a world where scientists could access the necessary microscopy technologies anywhere.
Collapse
Affiliation(s)
| | - Chad M Hobson
- Advanced Imaging Center; Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Teng-Leong Chew
- Advanced Imaging Center; Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Jesse S Aaron
- Advanced Imaging Center; Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, 20147, USA.
| |
Collapse
|
18
|
Mao W, Bui HTD, Cho W, Yoo HS. Spectroscopic techniques for monitoring stem cell and organoid proliferation in 3D environments for therapeutic development. Adv Drug Deliv Rev 2023; 201:115074. [PMID: 37619771 DOI: 10.1016/j.addr.2023.115074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/22/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Spectroscopic techniques for monitoring stem cell and organoid proliferation have gained significant attention in therapeutic development. Spectroscopic techniques such as fluorescence, Raman spectroscopy, and infrared spectroscopy offer noninvasive and real-time monitoring of biochemical and biophysical changes that occur during stem cell and organoid proliferation. These techniques provide valuable insight into the underlying mechanisms of action of potential therapeutic agents, allowing for improved drug discovery and screening. This review highlights the importance of spectroscopic monitoring of stem cell and organoid proliferation and its potential impact on therapeutic development. Furthermore, this review discusses recent advances in spectroscopic techniques and their applications in stem cell and organoid research. Overall, this review emphasizes the importance of spectroscopic techniques as valuable tools for studying stem cell and organoid proliferation and their potential to revolutionize therapeutic development in the future.
Collapse
Affiliation(s)
- Wei Mao
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hoai-Thuong Duc Bui
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Wanho Cho
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea; Institue of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
19
|
Bresci A, Kim JH, Ghislanzoni S, Manetti F, Wu L, Vernuccio F, Ceconello C, Sorrentino S, Barman I, Bongarzone I, Cerullo G, Vanna R, Polli D. Noninvasive morpho-molecular imaging reveals early therapy-induced senescence in human cancer cells. SCIENCE ADVANCES 2023; 9:eadg6231. [PMID: 37703362 PMCID: PMC10881071 DOI: 10.1126/sciadv.adg6231] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023]
Abstract
Anticancer therapy screening in vitro identifies additional treatments and improves clinical outcomes. Systematically, although most tested cells respond to cues with apoptosis, an appreciable portion enters a senescent state, a critical condition potentially driving tumor resistance and relapse. Conventional screening protocols would strongly benefit from prompt identification and monitoring of therapy-induced senescent (TIS) cells in their native form. We combined complementary all-optical, label-free, and quantitative microscopy techniques, based on coherent Raman scattering, multiphoton absorption, and interferometry, to explore the early onset and progression of this phenotype, which has been understudied in unperturbed conditions. We identified TIS manifestations as early as 24 hours following treatment, consisting of substantial mitochondrial rearrangement and increase of volume and dry mass, followed by accumulation of lipid vesicles starting at 72 hours. This work holds the potential to affect anticancer treatment research, by offering a label-free, rapid, and accurate method to identify initial TIS in tumor cells.
Collapse
Affiliation(s)
- Arianna Bresci
- Department of Physics, Politecnico di Milano, Milan, Italy
| | - Jeong Hee Kim
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Silvia Ghislanzoni
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | - Lintong Wu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Italia Bongarzone
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Giulio Cerullo
- Department of Physics, Politecnico di Milano, Milan, Italy
- CNR-Institute for Photonics and Nanotechnologies (CNR-IFN), Milan, Italy
| | - Renzo Vanna
- CNR-Institute for Photonics and Nanotechnologies (CNR-IFN), Milan, Italy
| | - Dario Polli
- Department of Physics, Politecnico di Milano, Milan, Italy
- CNR-Institute for Photonics and Nanotechnologies (CNR-IFN), Milan, Italy
| |
Collapse
|
20
|
Hou G, Dong Z, Qin Y, Zhang Z, Liu M, Xia Y. Imaging and component analysis of pumpkin stem tissue with simultaneous SF-CARS and TPEF microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:4862-4874. [PMID: 37791252 PMCID: PMC10545196 DOI: 10.1364/boe.497260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/23/2023] [Accepted: 08/16/2023] [Indexed: 10/05/2023]
Abstract
A multimodal nonlinear optical imaging platform based on a single femtosecond oscillator is built for simultaneous TPEF and SF-CARS imaging. TPEF microscopy and SF-CARS microscopy is utilized for mapping the distribution of the lignin component and the polysaccharide component, respectively. Visualization of vessel structure is realized. And the relative distribution of lignin and polysaccharide of vessel structure is mapped. Two pumpkin stem tissue areas with different degrees of lignification are observed with simultaneous TPEF and SF-CARS imaging, and two types of cell walls are identified. The different distribution patterns of lignin and polysaccharide in these two types of cell walls, induced by different degrees of lignification, are analyzed in detail.
Collapse
Affiliation(s)
- Guozhong Hou
- Harbin Institute of Technology, National Key Laboratory of Science and Technology on Tunable Laser, Harbin, 150080, China
- Hebei University of Technology, Center for Advanced Laser Technology, Tianjin, 300401, China
| | - Zhiwei Dong
- Harbin Institute of Technology, National Key Laboratory of Science and Technology on Tunable Laser, Harbin, 150080, China
| | - Yifan Qin
- Key Laboratory of In-Fiber Integrated Optics, Ministry of Education, Harbin Engineering University, Harbin, 150001, China
| | - Ze Zhang
- Hebei University of Technology, Center for Advanced Laser Technology, Tianjin, 300401, China
| | - Meng Liu
- Hebei University of Technology, School of Science, Tianjin, 300401, China
| | - Yuanqin Xia
- Harbin Institute of Technology, National Key Laboratory of Science and Technology on Tunable Laser, Harbin, 150080, China
- Hebei University of Technology, Center for Advanced Laser Technology, Tianjin, 300401, China
| |
Collapse
|
21
|
Olumba ME, O'Donnell RM, Rohrabaugh TN, Teets TS. Triplet-Triplet Energy Transfer in Bis-Cyclometalated Iridium Complexes with Pyrene-Substituted Isocyanides. Inorg Chem 2023; 62:13702-13711. [PMID: 37579498 DOI: 10.1021/acs.inorgchem.3c00457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Nonlinear optical (NLO) materials are able to modulate responses of electromagnetic radiation, leading to phenomena critical to modern telecommunications technologies. The last two decades have seen significant advances in the area of molecular nonlinear chromophores, particularly with respect to reverse-saturable absorption (RSA). Here, we introduce a strategy for intense excited-state absorption (ESA) that involves bis-cyclometalated iridium complexes with isocyanide ancillary ligands decorated with pyrene triplet acceptors. Upon excitation, the complexes undergo rapid triplet-triplet energy transfer (TTET) to the acceptor excited states. This report describes five bis-cyclometalated iridium complexes using two different pyrene-substituted isocyanides with the general formula [Ir(C^N)2(CNAr)2]PF6 (C^N = cyclometalating ligand, CNAr = isocyanide ancillary ligand: CNArpyr = 2,6-dimethyl-4-(1-pyrenyl)phenyl isocyanide, CNpyr = 1-pyrenyl isocyanide). The synthesized complexes were thoroughly characterized via 1H and 13C{1H} NMR spectroscopy, Fourier-transform Infrared spectroscopy, and electrospray ionization mass spectrometry. The excited states were evaluated with UV-vis absorption, steady-state and time-resolved photoluminescence, and transient absorption spectroscopy. Phosphorescence is completely quenched at room temperature, but in the solvent glass matrix at 77 K, there is luminescence originating from a π → π* triplet state on the pyrene moiety, abbreviated herein as 3pyrene. All five complexes display intense and long-lived ESA originating from the 3pyrene state. The localization of the ground-state absorption on the cyclometalating ligands and the excited-state absorption on the pyrene moiety allows for independent tuning of ground-state absorption (GSA) and ESA to optimize RSA and other NLO attributes.
Collapse
Affiliation(s)
- Morris E Olumba
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Room 112, Houston, Texas 77204-5003, United States
| | - Ryan M O'Donnell
- U.S. Army Combat Capabilities Development Command, Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, United States
| | - Thomas N Rohrabaugh
- U.S. Army Combat Capabilities Development Command, Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783, United States
| | - Thomas S Teets
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Room 112, Houston, Texas 77204-5003, United States
| |
Collapse
|
22
|
Markus MA, Ferrari DP, Alves F, Ramos-Gomes F. Effect of tissue fixation on the optical properties of structural components assessed by non-linear microscopy imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:3988-4002. [PMID: 37799688 PMCID: PMC10549744 DOI: 10.1364/boe.488453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 10/07/2023]
Abstract
Fixation methods such as formalin are commonly used for the preservation of tissue with the aim of keeping their structure as close as possible to the native condition. However, fixatives chemically interact with tissue molecules, such as collagen in the extracellular matrix (ECM) or myosin, and may thus modify their structure. Taking advantage of the second- and third-harmonic generation (SHG and THG) emission capabilities of such components, we used nonlinear two-photon microscopy (NL2PM) to evaluate the effect that preservation methods, such as chemical fixatives, have on the nonlinear capabilities of protein components within mouse tissues. Our results show that depending on the preservation technique used, the nonlinear capabilities of collagen, lipid droplets and myosin microarchitecture are strongly affected. Parameters of collagen fibers, such as density and branch points, especially in collagen-sparse regions, e.g., in kidneys, were found to be altered upon formalin fixation. Moreover, cryo-freezing drastically reduced SHG signals from myosin. Our findings provide valuable information to select the best tissue fixation method for visualization and quantification of structural proteins, such as collagen and myosin by advanced NL2PM imaging techniques. This may advance the interpretation of the role these proteins play in disease.
Collapse
Affiliation(s)
- M. Andrea Markus
- Translational Molecular Imaging Group,
Max-Planck Institute for Multidisciplinary Sciences, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Daniele P. Ferrari
- Translational Molecular Imaging Group,
Max-Planck Institute for Multidisciplinary Sciences, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Frauke Alves
- Translational Molecular Imaging Group,
Max-Planck Institute for Multidisciplinary Sciences, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
- Clinic of Haematology and Medical Oncology, Institute of Interventional and Diagnostic Radiology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Fernanda Ramos-Gomes
- Translational Molecular Imaging Group,
Max-Planck Institute for Multidisciplinary Sciences, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| |
Collapse
|
23
|
Parisi M, Lucidi M, Visca P, Cincotti G. Super-Resolution Optical Imaging of Bacterial Cells. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 2023; 29:1-13. [DOI: 10.1109/jstqe.2022.3228121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Miranda Parisi
- Engineering Department, University Roma Tre, Rome, Italy
| | | | - Paolo Visca
- Science Department, University Roma Tre, Rome, Italy
| | | |
Collapse
|
24
|
Naim C, Vangheluwe R, Ledoux-Rak I, Champagne B, Tonnelé C, Blanchard-Desce M, Matito E, Castet F. Electric-field induced second harmonic generation responses of push-pull polyenic dyes: experimental and theoretical characterizations. Phys Chem Chem Phys 2023; 25:13978-13988. [PMID: 37191226 DOI: 10.1039/d3cp00750b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The second-order nonlinear optical properties of four series of amphiphilic cationic chromophores involving different push-pull extremities and increasingly large polyenic bridges have been investigated both experimentally, by means of electric field induced second harmonic (EFISH) generation, and theoretically, using a computational approach combining classical molecular dynamics (MD) and quantum chemical (QM) calculations. This theoretical methodology allows to describe the effects of structural fluctuations on the EFISH properties of the complexes formed by the dye and its iodine counterion, and provides a rationale to EFISH measurements. The good agreement between experimental and theoretical results proves that this MD + QM scheme constitutes a useful tool for a rational, computer-aided, design of SHG dyes.
Collapse
Affiliation(s)
- Carmelo Naim
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France.
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018 Donostia, Euskadi, Spain.
| | - Raphaël Vangheluwe
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France.
| | - Isabelle Ledoux-Rak
- Laboratoire Lumière, Matière et Interfaces, Institut d'Alembert-ENS Paris Saclay-CNRS-CentraleSupelec, 4 Avenue des Sciences, 91190, Gif-sur-Yvette, France
| | - Benoît Champagne
- Unité de Chimie Physique Théorique et Structurale, Chemistry Department, Namur Institute of Structured Matter, University of Namur, Belgium
| | - Claire Tonnelé
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018 Donostia, Euskadi, Spain.
| | | | - Eduard Matito
- Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018 Donostia, Euskadi, Spain.
- Ikerbasque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Euskadi, Spain
| | - Frédéric Castet
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France.
| |
Collapse
|
25
|
Aslam I, Bravo M, Zundert IV, Rocha S, Roeffaers MBJ. Label-Free Identification of Carbonaceous Particles Using Nonlinear Optical Microscopy. Anal Chem 2023; 95:8045-8053. [PMID: 37172070 DOI: 10.1021/acs.analchem.3c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The adverse health effects of ambient carbonaceous particles (CPs) such as carbon black (CB), black carbon (BC), and brown carbon (BrC) are becoming more evident and depend on their composition and emission source. Therefore, identifying and quantifying these particles in biological samples are important to better understand their toxicity. Here, we report the development of a nonlinear optical approach for the identification of CPs such as CB and BrC using imaging conditions compatible with biomedical samples. The unique visible light fingerprint of CB and BrC nanoparticles (NPs) upon illumination with a femtosecond (fs) pulsed laser at 1300 nm excitation wavelength is an effective approach for their identification in their biological context. The emission from spectral features of these CPs was investigated with time-domain fluorescence lifetime imaging (FLIM) to further support their identification. This study is performed for different types of CPs embedded in agarose gel as well as in in vitro mammalian cells. The unique nonlinear emissive behavior of CP NPs used for their label-free identification is further complementary with fluorophores typically used for specific staining of biological samples thus providing the relevant bio-context.
Collapse
Affiliation(s)
- Imran Aslam
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy for Sustainable Solutions, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Maria Bravo
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Indra Van Zundert
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
- Synthetic Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Susana Rocha
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Maarten B J Roeffaers
- Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy for Sustainable Solutions, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
26
|
Bielak K, Benkowska-Biernacka D, Ptak M, Stolarski J, Kalka M, Ożyhar A, Dobryszycki P. Otolin-1, an otolith- and otoconia-related protein, controls calcium carbonate bioinspired mineralization. Biochim Biophys Acta Gen Subj 2023; 1867:130327. [PMID: 36791829 DOI: 10.1016/j.bbagen.2023.130327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Otoliths and otoconia are calcium carbonate biomineral structures that form in the inner ear of fish and humans, respectively. The formation of these structures is tightly linked to the formation of an organic matrix framework with otolin-1, a short collagen-like protein from the C1q family as one of its major constituents. METHODS In this study, we examined the activity of recombinant otolin-1 originating from Danio rerio and Homo sapiens on calcium carbonate bioinspired mineralization with slow-diffusion method and performed crystals characterization with scanning electron microscopy, two-photon excited fluorescence microscopy, confocal laser scanning microscopy and micro-Raman spectroscopy. RESULTS We show that both proteins are embedded in the core of CaCO3 crystals that form through the slow-diffusion mineralization method. Both of them influence the morphology but do not change the polymorphic mineral phase. D.rerio otolin-1 also closely adheres to the crystal surface. GENERAL SIGNIFICANCE The results suggest, that otolin-1 is not a passive scaffold, but is directly involved in regulating the morphology of the resulting calcium carbonate biocrystals.
Collapse
Affiliation(s)
- Klaudia Bielak
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Dominika Benkowska-Biernacka
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Maciej Ptak
- Division of Optical Spectroscopy, Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422 Wroclaw, Poland
| | - Jarosław Stolarski
- Institute of Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warsaw, Poland
| | - Marta Kalka
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Piotr Dobryszycki
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
27
|
Talone B, Bresci A, Manetti F, Vernuccio F, De la Cadena A, Ceconello C, Schiavone ML, Mantero S, Menale C, Vanna R, Cerullo G, Sobacchi C, Polli D. Label-free multimodal nonlinear optical microscopy reveals features of bone composition in pathophysiological conditions. Front Bioeng Biotechnol 2022; 10:1042680. [PMID: 36483771 PMCID: PMC9723390 DOI: 10.3389/fbioe.2022.1042680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/08/2022] [Indexed: 09/10/2024] Open
Abstract
Bone tissue features a complex microarchitecture and biomolecular composition, which determine biomechanical properties. In addition to state-of-the-art technologies, innovative optical approaches allowing the characterization of the bone in native, label-free conditions can provide new, multi-level insight into this inherently challenging tissue. Here, we exploited multimodal nonlinear optical (NLO) microscopy, including co-registered stimulated Raman scattering, two-photon excited fluorescence, and second-harmonic generation, to image entire vertebrae of murine spine sections. The quantitative nature of these nonlinear interactions allowed us to extract accurate biochemical, morphological, and topological information on the bone tissue and to highlight differences between normal and pathologic samples. Indeed, in a murine model showing bone loss, we observed increased collagen and lipid content as compared to the wild type, along with a decreased craniocaudal alignment of bone collagen fibres. We propose that NLO microscopy can be implemented in standard histopathological analysis of bone in preclinical studies, with the ambitious future perspective to introduce this technique in the clinical practice for the analysis of larger tissue sections.
Collapse
Affiliation(s)
| | - Arianna Bresci
- Department of Physics, Politecnico di Milano, Milan, Italy
| | | | | | | | | | | | - Stefano Mantero
- IRCCS Humanitas Research Hospital, Milano, Italy
- CNR-Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy
| | - Ciro Menale
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Renzo Vanna
- CNR-Institute for Photonics and Nanotechnologies (CNR-IFN), Milan, Italy
| | - Giulio Cerullo
- Department of Physics, Politecnico di Milano, Milan, Italy
- CNR-Institute for Photonics and Nanotechnologies (CNR-IFN), Milan, Italy
| | - Cristina Sobacchi
- IRCCS Humanitas Research Hospital, Milano, Italy
- CNR-Institute for Genetic and Biomedical Research (CNR-IRGB), Milan, Italy
| | - Dario Polli
- Department of Physics, Politecnico di Milano, Milan, Italy
- CNR-Institute for Photonics and Nanotechnologies (CNR-IFN), Milan, Italy
| |
Collapse
|
28
|
Hamilton J, Breggia A, Fitzgerald TL, Jones MA, Brooks PC, Tilbury K, Khalil A. Multiscale anisotropy analysis of second-harmonic generation collagen imaging of human pancreatic cancer. Front Oncol 2022; 12:991850. [PMID: 36330487 PMCID: PMC9623060 DOI: 10.3389/fonc.2022.991850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers with a minority (< 10%) of patients surviving five years past diagnosis. This could be improved with the development of new imaging modalities for early differentiation of benign and cancerous fibrosis. This study intends to explore the application of a two-photon microscopy technique known as second harmonic generation to PDAC using the 2D Wavelet Transform Modulus Maxima (WTMM) Anisotropy method to quantify collagen organization in fibrotic pancreatic tissue. Forty slides from PDAC patients were obtained and eight images were captured per each tissue category on each slide. Brownian surface motion and white noise images were generated for calibration and testing of a new variable binning approach to the 2D WTMM Anisotropy method. The variable binning method had greater resistance to wavelet scaling effects and white noise images were found to have the lowest anisotropy factor. Cancer and fibrosis had greater anisotropy factors (Fa) at small wavelet scales than normal and normal adjacent tissue. At a larger scale of 21 μm this relationship changed with normal tissue having a higher Fa than all other tissue groups. White noise is the best representative image for isotropy and the 2D WTMM anisotropy method is sensitive to changes induced in collagen by PDAC.
Collapse
Affiliation(s)
- Joshua Hamilton
- Chemical and Biomedical Engineering, University of Maine, Orono, ME, United States
- CompuMAINE Laboratory University of Maine, Orono, ME, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
| | - Anne Breggia
- Center for Applied Science and Technology, Maine Health Institute for Research, Scarborough, ME, United States
| | | | | | - Peter C. Brooks
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, United States
| | - Karissa Tilbury
- Chemical and Biomedical Engineering, University of Maine, Orono, ME, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
| | - Andre Khalil
- Chemical and Biomedical Engineering, University of Maine, Orono, ME, United States
- CompuMAINE Laboratory University of Maine, Orono, ME, United States
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
| |
Collapse
|
29
|
Wei W, Qiu Z. Diagnostics and theranostics of central nervous system diseases based on aggregation-induced emission luminogens. Biosens Bioelectron 2022; 217:114670. [PMID: 36126555 DOI: 10.1016/j.bios.2022.114670] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
Central nervous system (CNS) diseases include Alzheimer's disease (AD), Parkinson's disease (PD), brain tumors, strokes, and other important diseases that are harmful and fatal to human beings. CNS diseases have the characteristics of high fatality rates, difficult diagnosis, and costly treatment. The diagnosis and treatment of CNS diseases by molecular imaging are usually limited by the depth of tissue penetration and the blood-brain barrier (BBB). Therefore, it is still a huge challenge to distinguish between the lesion and the surrounding parenchymal boundary with high sensitivity and specificity. Compared with traditional fluorophores with aggregation-caused quenching effect, luminogens with aggregation-induced emission (AIE) characteristics have strong near-infrared deep penetration, large Stokes shift, excellent biocompatibility, light stability, and desirable BBB permeability. In view of this, developing novel AIE-based materials for diagnostics and theranostics of CNS diseases is promising and of great significance. Herein, we highlight the recent research progress in this field with a special focus on near-infrared imaging and AIE nanorobots for CNS diseases. The design principle of AIE probes is discussed in detail, and the outlook is presented as well.
Collapse
Affiliation(s)
- Weichen Wei
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, United States
| | - Zijie Qiu
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong, 518172, China; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| |
Collapse
|
30
|
Tarricone G, Carmagnola I, Chiono V. Tissue-Engineered Models of the Human Brain: State-of-the-Art Analysis and Challenges. J Funct Biomater 2022; 13:146. [PMID: 36135581 PMCID: PMC9501967 DOI: 10.3390/jfb13030146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Neurological disorders affect billions of people across the world, making the discovery of effective treatments an important challenge. The evaluation of drug efficacy is further complicated because of the lack of in vitro models able to reproduce the complexity of the human brain structure and functions. Some limitations of 2D preclinical models of the human brain have been overcome by the use of 3D cultures such as cell spheroids, organoids and organs-on-chip. However, one of the most promising approaches for mimicking not only cell structure, but also brain architecture, is currently represented by tissue-engineered brain models. Both conventional (particularly electrospinning and salt leaching) and unconventional (particularly bioprinting) techniques have been exploited, making use of natural polymers or combinations between natural and synthetic polymers. Moreover, the use of induced pluripotent stem cells (iPSCs) has allowed the co-culture of different human brain cells (neurons, astrocytes, oligodendrocytes, microglia), helping towards approaching the central nervous system complexity. In this review article, we explain the importance of in vitro brain modeling, and present the main in vitro brain models developed to date, with a special focus on the most recent advancements in tissue-engineered brain models making use of iPSCs. Finally, we critically discuss achievements, main challenges and future perspectives.
Collapse
Affiliation(s)
- Giulia Tarricone
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- PolitoBioMedLab, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principle in Teaching and Research, Centro 3R, 56122 Pisa, Italy
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Irene Carmagnola
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- PolitoBioMedLab, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principle in Teaching and Research, Centro 3R, 56122 Pisa, Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- PolitoBioMedLab, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principle in Teaching and Research, Centro 3R, 56122 Pisa, Italy
| |
Collapse
|
31
|
Almagro-Ruiz A, Torres-Peiró S, Muñoz-Marco H, Cunquero M, Castro-Olvera G, Dauliat R, Jamier R, Shulika OV, Romero R, Guerreiro PT, Miranda M, Crespo H, Roy P, Loza-Álvarez P, Pérez-Millán P. Few-cycle all-fiber supercontinuum laser for ultrabroadband multimodal nonlinear microscopy. OPTICS EXPRESS 2022; 30:29044-29062. [PMID: 36299089 DOI: 10.1364/oe.454726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/15/2022] [Indexed: 06/16/2023]
Abstract
Temporally coherent supercontinuum sources constitute an attractive alternative to bulk crystal-based sources of few-cycle light pulses. We present a monolithic fiber-optic configuration for generating transform-limited temporally coherent supercontinuum pulses with central wavelength at 1.06 µm and duration as short as 13.0 fs (3.7 optical cycles). The supercontinuum is generated by the action of self-phase modulation and optical wave breaking when pumping an all-normal dispersion photonic crystal fiber with pulses of hundreds of fs duration produced by all-fiber chirped pulsed amplification. Avoidance of free-space propagation between stages confers unequalled robustness, efficiency and cost-effectiveness to this novel configuration. Collectively, the features of all-fiber few-cycle pulsed sources make them powerful tools for applications benefitting from the ultrabroadband spectra and ultrashort pulse durations. Here we exploit these features and the deep penetration of light in biological tissues at the spectral region of 1 µm, to demonstrate their successful performance in ultrabroadband multispectral and multimodal nonlinear microscopy.
Collapse
|
32
|
Autofluorescent Biomolecules in Diptera: From Structure to Metabolism and Behavior. Molecules 2022; 27:molecules27144458. [PMID: 35889334 PMCID: PMC9318335 DOI: 10.3390/molecules27144458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Light-based phenomena in insects have long attracted researchers’ attention. Surface color distribution patterns are commonly used for taxonomical purposes, while optically-active structures from Coleoptera cuticle or Lepidoptera wings have inspired technological applications, such as biosensors and energy accumulation devices. In Diptera, besides optically-based phenomena, biomolecules able to fluoresce can act as markers of bio-metabolic, structural and behavioral features. Resilin or chitinous compounds, with their respective blue or green-to-red autofluorescence (AF), are commonly related to biomechanical and structural properties, helpful to clarify the mechanisms underlying substrate adhesion of ectoparasites’ leg appendages, or the antennal abilities in tuning sound detection. Metarhodopsin, a red fluorescing photoproduct of rhodopsin, allows to investigate visual mechanisms, whereas NAD(P)H and flavins, commonly relatable to energy metabolism, favor the investigation of sperm vitality. Lipofuscins are AF biomarkers of aging, as well as pteridines, which, similarly to kynurenines, are also exploited in metabolic investigations. Beside the knowledge available in Drosophila melanogaster, a widely used model to study also human disorder and disease mechanisms, here we review optically-based studies in other dipteran species, including mosquitoes and fruit flies, discussing future perspectives for targeted studies with various practical applications, including pest and vector control.
Collapse
|
33
|
Dyer L, Parker A, Paphiti K, Sanderson J. Lightsheet Microscopy. Curr Protoc 2022; 2:e448. [PMID: 35838628 DOI: 10.1002/cpz1.448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this paper, we review lightsheet (selective plane illumination) microscopy for mouse developmental biologists. There are different means of forming the illumination sheet, and we discuss these. We explain how we introduced the lightsheet microscope economically into our core facility and present our results on fixed and living samples. We also describe methods of clearing fixed samples for three-dimensional imaging and discuss the various means of preparing samples with particular reference to mouse cilia, adipose spheroids, and cochleae. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Laura Dyer
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Andrew Parker
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Keanu Paphiti
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| | - Jeremy Sanderson
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, UK
| |
Collapse
|
34
|
Nonlinear Optical Microscopy and Plasmon Enhancement. NANOMATERIALS 2022; 12:nano12081273. [PMID: 35457978 PMCID: PMC9026522 DOI: 10.3390/nano12081273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 12/19/2022]
Abstract
Improving nonlinear optics efficiency is currently one of the hotspots in modern optical research. Moreover, with the maturity of nonlinear optical microscope systems, more and more biology, materials, medicine, and other related disciplines have higher imaging resolution and detection accuracy requirements for nonlinear optical microscope systems. Surface plasmons of metal nanoparticle structures could confine strong localized electromagnetic fields in their vicinity to generate a new electromagnetic mode, which has been widely used in surface-enhanced Raman scattering, surface-enhanced fluorescence, and photocatalysis. In this review, we summarize the mechanism of nonlinear optical effects and surface plasmons and also review some recent work on plasmon-enhanced nonlinear optical effects. In addition, we present some latest applications of nonlinear optical microscopy system research.
Collapse
|
35
|
Khoshravesh R, Hoffmann N, Hanson DT. Leaf microscopy applications in photosynthesis research: identifying the gaps. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1868-1893. [PMID: 34986250 DOI: 10.1093/jxb/erab548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Leaf imaging via microscopy has provided critical insights into research on photosynthesis at multiple junctures, from the early understanding of the role of stomata, through elucidating C4 photosynthesis via Kranz anatomy and chloroplast arrangement in single cells, to detailed explorations of diffusion pathways and light utilization gradients within leaves. In recent decades, the original two-dimensional (2D) explorations have begun to be visualized in three-dimensional (3D) space, revising our understanding of structure-function relationships between internal leaf anatomy and photosynthesis. In particular, advancing new technologies and analyses are providing fresh insight into the relationship between leaf cellular components and improving the ability to model net carbon fixation, water use efficiency, and metabolite turnover rate in leaves. While ground-breaking developments in imaging tools and techniques have expanded our knowledge of leaf 3D structure via high-resolution 3D and time-series images, there is a growing need for more in vivo imaging as well as metabolite imaging. However, these advances necessitate further improvement in microscopy sciences to overcome the unique challenges a green leaf poses. In this review, we discuss the available tools, techniques, challenges, and gaps for efficient in vivo leaf 3D imaging, as well as innovations to overcome these difficulties.
Collapse
Affiliation(s)
| | - Natalie Hoffmann
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - David T Hanson
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
36
|
Combined TPEF and SHG Imaging for the Microstructural Characterization of Different Wood Species Used in Artworks. PHOTONICS 2022. [DOI: 10.3390/photonics9030170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The morphological and chemical conformation of wood microstructures is characteristic of individual species and strongly influences the macromechanical properties of the material, as well as its sensitivity to deterioration factors. Noninvasive techniques enabling the visualization of wood microstructures, while simultaneously providing compositional information, can significantly facilitate the analysis of wooden artworks for conservation purposes. In this paper, we present the application of combined two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) imaging as a versatile diagnostic tool for the microcharacterization of three hardwood species never analyzed by this method. Multimodal mapping of the molecular constituents based on the detected nonlinear signals provides useful information for studying the biological and biochemical deterioration of wood, opening a new field of application for a well-established and widely used imaging technology.
Collapse
|
37
|
Peres C, Nardin C, Yang G, Mammano F. Commercially derived versatile optical architecture for two-photon STED, wavelength mixing and label-free microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:1410-1429. [PMID: 35414982 PMCID: PMC8973165 DOI: 10.1364/boe.444525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Multimodal microscopy combines multiple non-linear techniques that take advantage of different optical processes to generate contrast and increase the amount of information that can be obtained from biological samples. However, the most advanced optical architectures are typically custom-made and often require on-site adjustment of optical components performed by trained personnel for optimal performance. Here, we describe a hybrid system we built based on a commercial upright microscope. We show that our multimodal imaging platform can be used to seamlessly perform two-photon STED, wavelength mixing and label-free microscopy in both ex vivo and in vivo turbid samples. The system is stable and endowed with remote alignment hardware that ensures long-term operability also for non-expert users, using the alignment protocol described in this article and in the related material. This optical architecture is an important step forward towards a wider practical applicability of non-linear optics to bioimaging.
Collapse
Affiliation(s)
- Chiara Peres
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Rome, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padova, 35131 Padova, Italy
| | - Chiara Nardin
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Rome, Italy
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China
| | - Fabio Mammano
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Rome, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padova, 35131 Padova, Italy
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210 Shanghai, China
| |
Collapse
|
38
|
Wang X, Zhang D, Zhang X, Xing Y, Wu J, Sui X, Huang X, Chang G, Li L. Application of Multiphoton Microscopic Imaging in Study of Gastric Cancer. Technol Cancer Res Treat 2022; 21:15330338221133244. [PMID: 36379591 PMCID: PMC9676310 DOI: 10.1177/15330338221133244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024] Open
Abstract
Multiphoton microscopy (MPM) imaging relies on the nonlinear interaction between ultrashort optical pulses and the samples to achieve image contrast. Featuring larger penetration depth, less phototoxicity, 3-dimensional sectioning capability, no need for labeling, MPM become a powerful medical imaging technique that can identify structural characteristics of tissues at the cellular and subcellular levels. In this review paper, we introduce the working principle of MPM imaging, present the current results of MPM imaging applied to the study of gastric tumors, and discuss the future prospects of this interdisciplinary research field.
Collapse
Affiliation(s)
- Xiaoying Wang
- Strategic Support Force Medical Center, Beijing, China
| | - Di Zhang
- Ningxia Jingyuan County People's Hospital, Ningxia, China
| | - Xiaochun Zhang
- General Hospital of Ningxia Medical University, Ningxia, China
| | - Yuting Xing
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Jihua Wu
- Strategic Support Force Medical Center, Beijing, China
| | - Xinke Sui
- Strategic Support Force Medical Center, Beijing, China
| | - Xin Huang
- Strategic Support Force Medical Center, Beijing, China
| | - Guoqing Chang
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Lianyong Li
- Strategic Support Force Medical Center, Beijing, China
| |
Collapse
|
39
|
Khan A, Ramos-Gomes F, Markus A, Mietsch M, Hinkel R, Alves F. Label-free imaging of age-related cardiac structural changes in non-human primates using multiphoton nonlinear microscopy. BIOMEDICAL OPTICS EXPRESS 2021; 12:7009-7023. [PMID: 34858695 PMCID: PMC8606147 DOI: 10.1364/boe.432102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Heart failure is one of the most common causes of morbidity and mortality. Both maturational abnormalities and age-associated cardiac pathologies contribute to heart failure. Imaging-based assessment to discern detailed cardiac structure at various maturational stages is imperative for understanding mechanisms behind cardiac growth and aging. Using multiphoton nonlinear optical microscopy (NLOM) based label-free imaging, we investigated cardiac structural composition in a human-relevant aging model, the common marmoset monkey (Callithrix jacchus). Animals were divided into three different age groups including neonatal, young adult and old. By devising a unique strategy for segregating collagen and myosin emitted second harmonic generation (SHG) signals, we performed a volumetric assessment of collagen and total scattering tissue (collagen + myosin). Aged marmoset hearts exhibited an increase in collagen and total scattering tissue volume at the sites of severe tissue remodelling indicating age-related cardiac fibrosis. Significantly low scattering tissue volume in neonatal marmoset hearts was attributed to a lack of binding between the myofibrils in maturing cardiac tissue. Comprehensive quantitative assessment of structural composition during maturation and aging of marmoset hearts revealed significant differences in myofibril length, alignment, curvature and angular distribution. In conclusion, label-free high-resolution NLOM facilitates visualization and quantification of subcellular structural features for understanding vital age-related morphological alterations in the marmoset heart.
Collapse
Affiliation(s)
- Amara Khan
- Max-Planck-Institute for Experimental Medicine, Translational Molecular Imaging, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner site Göttingen, 37077 Göttingen, Germany
| | - Fernanda Ramos-Gomes
- Max-Planck-Institute for Experimental Medicine, Translational Molecular Imaging, Göttingen, Germany
| | - Andrea Markus
- Max-Planck-Institute for Experimental Medicine, Translational Molecular Imaging, Göttingen, Germany
| | - Matthias Mietsch
- DZHK (German Center for Cardiovascular Research), Partner site Göttingen, 37077 Göttingen, Germany
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Rabea Hinkel
- DZHK (German Center for Cardiovascular Research), Partner site Göttingen, 37077 Göttingen, Germany
- Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Stiftung Tierärztliche Hochschule Hannover, Hannover, Germany
| | - Frauke Alves
- Max-Planck-Institute for Experimental Medicine, Translational Molecular Imaging, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner site Göttingen, 37077 Göttingen, Germany
- University Medical Center Göttingen, Institute for Diagnostic and Interventional Radiology & Clinic for Hematology and Medical Oncology, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells,” Göttingen, Germany
| |
Collapse
|
40
|
From Zygote to Blastocyst: Application of Ultrashort Lasers in the Field of Assisted Reproduction and Developmental Biology. Diagnostics (Basel) 2021; 11:diagnostics11101897. [PMID: 34679594 PMCID: PMC8534476 DOI: 10.3390/diagnostics11101897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022] Open
Abstract
Although the use of lasers in medical diagnosis and therapies, as well as in fundamental biomedical research is now almost routine, advanced laser sources and new laser-based methods continue to emerge. Due to the unique ability of ultrashort laser pulses to deposit energy into a microscopic volume in the bulk of a transparent material without disrupting the surrounding tissues, the ultrashort laser-based microsurgery of cells and subcellular components within structurally complex and fragile specimens such as embryos is becoming an important tool in developmental biology and reproductive medicine. In this review, we discuss the mechanisms of ultrashort laser pulse interaction with the matter, advantages of their application for oocyte and preimplantation embryo microsurgery (e.g., for oocyte/blastomere enucleation and embryonic cell fusion), as well as for nonlinear optical microscopy for studying the dynamics of embryonic development and embryo quality assessment. Moreover, we focus on ultrashort laser-based approaches and techniques that are increasingly being applied in the fundamental research and have the potential for successful translation into the IVF (in vitro fertilization) clinics, such as laser-mediated individual embryo labelling and controlled laser-assisted hatching.
Collapse
|
41
|
Lanin AA, Chebotarev AS, Kelmanson IV, Pochechuev MS, Fetisova ES, Bilan DS, Shevchenko EK, Ivanov AA, Fedotov AB, Belousov VV, Zheltikov AM. Single-beam multimodal nonlinear-optical imaging of structurally complex events in cell-cycle dynamics. JPHYS PHOTONICS 2021. [DOI: 10.1088/2515-7647/ac159a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract
We demonstrate a multimodal nonlinear-optical imaging that combines second- and third-harmonic generation (SHG and THG) with three-photon-excited fluorescence (3PEF) as a means to resolve fine details of the cell structure and trace its transformations throughout structurally complex episodes of cell-cycle dynamics, including the key stages and signatures in cell division. When zoomed in on cell mitosis, this technique enables a high-contrast multimodal imaging of intra- and extracellular signatures of cell division, detecting, via a multiplex, 3PEF/SHG/THG readout, a remarkable diversity of shapes, sizes, and symmetries in a truly single-beam setting, with no need for beam refocusing or field-waveform re-adjustment.
Collapse
|
42
|
Algorri JF, Ochoa M, Roldán-Varona P, Rodríguez-Cobo L, López-Higuera JM. Photodynamic Therapy: A Compendium of Latest Reviews. Cancers (Basel) 2021; 13:4447. [PMID: 34503255 PMCID: PMC8430498 DOI: 10.3390/cancers13174447] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising therapy against cancer. Even though it has been investigated for more than 100 years, scientific publications have grown exponentially in the last two decades. For this reason, we present a brief compendium of reviews of the last two decades classified under different topics, namely, overviews, reviews about specific cancers, and meta-analyses of photosensitisers, PDT mechanisms, dosimetry, and light sources. The key issues and main conclusions are summarized, including ways and means to improve therapy and outcomes. Due to the broad scope of this work and it being the first time that a compendium of the latest reviews has been performed for PDT, it may be of interest to a wide audience.
Collapse
Affiliation(s)
- José Francisco Algorri
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Mario Ochoa
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Pablo Roldán-Varona
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | | | - José Miguel López-Higuera
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| |
Collapse
|
43
|
Poole JJA, Mostaço-Guidolin LB. Optical Microscopy and the Extracellular Matrix Structure: A Review. Cells 2021; 10:1760. [PMID: 34359929 PMCID: PMC8308089 DOI: 10.3390/cells10071760] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Biological tissues are not uniquely composed of cells. A substantial part of their volume is extracellular space, which is primarily filled by an intricate network of macromolecules constituting the extracellular matrix (ECM). The ECM serves as the scaffolding for tissues and organs throughout the body, playing an essential role in their structural and functional integrity. Understanding the intimate interaction between the cells and their structural microenvironment is central to our understanding of the factors driving the formation of normal versus remodelled tissue, including the processes involved in chronic fibrotic diseases. The visualization of the ECM is a key factor to track such changes successfully. This review is focused on presenting several optical imaging microscopy modalities used to characterize different ECM components. In this review, we describe and provide examples of applications of a vast gamut of microscopy techniques, such as widefield fluorescence, total internal reflection fluorescence, laser scanning confocal microscopy, multipoint/slit confocal microscopy, two-photon excited fluorescence (TPEF), second and third harmonic generation (SHG, THG), coherent anti-Stokes Raman scattering (CARS), fluorescence lifetime imaging microscopy (FLIM), structured illumination microscopy (SIM), stimulated emission depletion microscopy (STED), ground-state depletion microscopy (GSD), and photoactivated localization microscopy (PALM/fPALM), as well as their main advantages, limitations.
Collapse
Affiliation(s)
| | - Leila B. Mostaço-Guidolin
- Department of Systems and Computer Engineering, Faculty of Engineering and Design, Carleton University 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada;
| |
Collapse
|
44
|
Parodi V, Jacchetti E, Bresci A, Talone B, Valensise CM, Osellame R, Cerullo G, Polli D, Raimondi MT. Characterization of Mesenchymal Stem Cell Differentiation within Miniaturized 3D Scaffolds through Advanced Microscopy Techniques. Int J Mol Sci 2020; 21:E8498. [PMID: 33187392 PMCID: PMC7696107 DOI: 10.3390/ijms21228498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
Three-dimensional culture systems and suitable substrates topographies demonstrated to drive stem cell fate in vitro by mechanical conditioning. For example, the Nichoid 3D scaffold remodels stem cells and shapes nuclei, thus promoting stem cell expansion and stemness maintenance. However, the mechanisms involved in force transmission and in biochemical signaling at the basis of fate determination are not yet clear. Among the available investigation systems, confocal fluorescence microscopy using fluorescent dyes enables the observation of cell function and shape at the subcellular scale in vital and fixed conditions. Contrarily, nonlinear optical microscopy techniques, which exploit multi-photon processes, allow to study cell behavior in vital and unlabeled conditions. We apply confocal fluorescence microscopy, coherent anti-Stokes Raman scattering (CARS), and second harmonic generation (SHG) microscopy to characterize the phenotypic expression of mesenchymal stem cells (MSCs) towards adipogenic and chondrogenic differentiation inside Nichoid scaffolds, in terms of nuclear morphology and specific phenotypic products, by comparing these techniques. We demonstrate that the Nichoid maintains a rounded nuclei during expansion and differentiation, promoting MSCs adipogenic differentiation while inhibiting chondrogenesis. We show that CARS and SHG techniques are suitable for specific estimation of the lipid and collagenous content, thus overcoming the limitations of using unspecific fluorescent probes.
Collapse
Affiliation(s)
- Valentina Parodi
- Department of Chemistry, Materials and Chemical Engineering «G. Natta», Politecnico di Milano, 20133 Milano, Italy; (E.J.); (A.B.); (M.T.R.)
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering «G. Natta», Politecnico di Milano, 20133 Milano, Italy; (E.J.); (A.B.); (M.T.R.)
| | - Arianna Bresci
- Department of Chemistry, Materials and Chemical Engineering «G. Natta», Politecnico di Milano, 20133 Milano, Italy; (E.J.); (A.B.); (M.T.R.)
- Department of Physics, Politecnico di Milano, 20133 Milano, Italy; (B.T.); (C.M.V.); (R.O.); (G.C.); (D.P.)
- Istituto di Fotonica e Nanotecnologie (IFN), Consiglio Nazionale delle Ricerche (CNR), 20133 Milano, Italy
| | - Benedetta Talone
- Department of Physics, Politecnico di Milano, 20133 Milano, Italy; (B.T.); (C.M.V.); (R.O.); (G.C.); (D.P.)
- Istituto di Fotonica e Nanotecnologie (IFN), Consiglio Nazionale delle Ricerche (CNR), 20133 Milano, Italy
| | - Carlo M. Valensise
- Department of Physics, Politecnico di Milano, 20133 Milano, Italy; (B.T.); (C.M.V.); (R.O.); (G.C.); (D.P.)
- Istituto di Fotonica e Nanotecnologie (IFN), Consiglio Nazionale delle Ricerche (CNR), 20133 Milano, Italy
| | - Roberto Osellame
- Department of Physics, Politecnico di Milano, 20133 Milano, Italy; (B.T.); (C.M.V.); (R.O.); (G.C.); (D.P.)
- Istituto di Fotonica e Nanotecnologie (IFN), Consiglio Nazionale delle Ricerche (CNR), 20133 Milano, Italy
| | - Giulio Cerullo
- Department of Physics, Politecnico di Milano, 20133 Milano, Italy; (B.T.); (C.M.V.); (R.O.); (G.C.); (D.P.)
- Istituto di Fotonica e Nanotecnologie (IFN), Consiglio Nazionale delle Ricerche (CNR), 20133 Milano, Italy
| | - Dario Polli
- Department of Physics, Politecnico di Milano, 20133 Milano, Italy; (B.T.); (C.M.V.); (R.O.); (G.C.); (D.P.)
- Istituto di Fotonica e Nanotecnologie (IFN), Consiglio Nazionale delle Ricerche (CNR), 20133 Milano, Italy
| | - Manuela T. Raimondi
- Department of Chemistry, Materials and Chemical Engineering «G. Natta», Politecnico di Milano, 20133 Milano, Italy; (E.J.); (A.B.); (M.T.R.)
| |
Collapse
|