1
|
Pereira G, Castillo-Novales D, Salazar C, Atala C, Arriagada-Escamilla C. Gigaspora roseae and Coriolopsis rigida Fungi Improve Performance of Quillaja saponaria Plants Grown in Sandy Substrate with Added Sewage Sludge. J Fungi (Basel) 2024; 11:2. [PMID: 39852422 PMCID: PMC11766083 DOI: 10.3390/jof11010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/26/2025] Open
Abstract
The use of living organisms to treat human by-products, such as residual sludge, has gained interest in the last years. Fungi have been used for bioremediation and improving plant performance in contaminated soils. We investigated the impact of the mycorrhizal fungus (MF) Gigaspora roseae and the saprophytic fungus (SF) Coriolopsis rigida on the survival and growth of Quillaja saponaria seedlings cultivated in a sandy substrate supplemented with residual sludge. Q. saponaria is a sclerophyllous tree endemic to Chile, known for its high content of saponins. We inoculated plants with the MF, the SF, and a combination of both (MF + SF). Following inoculation, varying doses of liquid residual sludge equivalent to 0, 75, and 100% of the substrate's field capacity were applied. After 11 months, we found a positive influence of the utilized microorganisms on the growth of Q. saponaria. Particularly, inoculation with the SF resulted in higher plant growth, mycorrhizal colonization percentage, and higher enzymatic activity, especially after the application of the sludge. This increase was more evident with higher doses of the applied sludge. These results highlight the potential of combined microorganism and residual sludge application as a sustainable strategy for enhancing plant growth and reducing waste.
Collapse
Affiliation(s)
- Guillermo Pereira
- Departamento de Ciencias y Tecnologia Vegetal, Campus Los Ángeles, Universidad de Concepción, Juan Antonio Coloma 0201, Casilla 341, Los Ángeles 4451032, Chile; (G.P.); (C.S.)
| | - Diyanira Castillo-Novales
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química, Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
| | - Cristian Salazar
- Departamento de Ciencias y Tecnologia Vegetal, Campus Los Ángeles, Universidad de Concepción, Juan Antonio Coloma 0201, Casilla 341, Los Ángeles 4451032, Chile; (G.P.); (C.S.)
| | - Cristian Atala
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Campus Curauma, Avenida Universidad 330, Valparaíso 8331150, Chile;
| | - Cesar Arriagada-Escamilla
- Laboratorio de Biorremediación, Departamento de Ciencias Forestales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Casilla 54-D, Temuco 4811230, Chile
| |
Collapse
|
2
|
Essghaier B, Naccache C, Ben-Miled H, Mottola F, Ben-Mahrez K, Mezghani Khemakhem M, Rocco L. Discovery and characterization of novel lipopeptides produced by Virgibacillus massiliensis with biosurfactant and antimicrobial activities. 3 Biotech 2024; 14:258. [PMID: 39372494 PMCID: PMC11452367 DOI: 10.1007/s13205-024-04100-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024] Open
Abstract
The study aimed to evaluate the biosurfactants (BSs) production by SM-23 strain of Virgibacillus identified by phenotypical and WGS analysis as Virgibacillus massiliensis. We first demonstrated the lipopeptides production by Virgibacillus massiliensis specie and studied their biochemical and molecular analysis as well as their biological potential. The GC-MS analysis indicated that methyl.2-hyroxydodecanoate was the major fatty acid compound with 33.22%. The maximum BSs production was obtained in LB medium supplemented by 1% olive oil (v/v) at 30 °C and 5% NaCl with 1.92 g/l. The obtained results revealed the significant biosurfactants/bioemulsifier potential compared to triton X100 with E24 of 100%, and an emulsification stability SE of 83%. The lipopeptides types were identified by FTIR analysis. A strong antimicrobial action was observed by the produced lipopeptides by the agar diffusion method against E.coli, K. pneumoniae, S. aureus, Fusarium sp, Alternaria sp, and Phytophtora sp. The complete genome sequencing showed genes involved in the synthesis of multiple compounds identified as amphipathic cyclic lipopeptides such as locillomycin/locillomycin B/locillomycin C and bacillibactin. Our results highlighted significant lipopeptides properties displayed by V. massiliensis that can be exploited to develop a novel strategy in the formulation of natural biocidal and fungicidal agents. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04100-9.
Collapse
Affiliation(s)
- Badiaa Essghaier
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis Elmanar, 2092 Elmanar II, Tunisia
| | - Chahnez Naccache
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis Elmanar, 2092 Elmanar II, Tunisia
| | - Houda Ben-Miled
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis Elmanar, 2092 Elmanar II, Tunisia
| | - Filomena Mottola
- Department of Environmental Biological and Pharmaceutical and Technologies (DiSTABiF), University of Campania L.Vanvitelli-Via Vivaldi, 43-81100 Caserta, Italy
| | - Kamel Ben-Mahrez
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis Elmanar, 2092 Elmanar II, Tunisia
| | - Maha Mezghani Khemakhem
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis Elmanar, 2092 Elmanar II, Tunisia
| | - Lucia Rocco
- Department of Environmental Biological and Pharmaceutical and Technologies (DiSTABiF), University of Campania L.Vanvitelli-Via Vivaldi, 43-81100 Caserta, Italy
| |
Collapse
|
3
|
Xu L, Dai H, Wei S, Skuza L, Shi J. High-efficiency combination washing agents with eco-friendliness simultaneously removing Cd, Cu and Ni from soil of e-waste recycling site: A lab-scale experiment. CHEMOSPHERE 2024; 357:142047. [PMID: 38621485 DOI: 10.1016/j.chemosphere.2024.142047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/17/2024] [Accepted: 04/13/2024] [Indexed: 04/17/2024]
Abstract
Soil washing technology plays an important role in the removal of heavy metals, and the efficacy of this process depends on the washing agent used. Due to the difficulty in treating soils contaminated by multiple heavy metals, there is still a need for further exploration of efficient washing agents with low environmental impact. Although single washing agents, such as chelators, can also effectively remove heavy metals from soil, combining efficient washing agents and determining their optimal washing conditions can effectively improve their removal efficiency for multiple heavy metals in soil simultaneously. Based on the previous research, the present study was carried out to combine different types of washing agents to remediate contaminated soils at a commonly e-waste recycling site. The objectives were to investigate their efficient washing conditions and assess the impact of the washing process on the speciation distribution and pollution level associated with heavy metals in soil. The results showed that the combination of HEDP (1-hydroxyethylidene-1,1-diphosphonic acid) and FeCl3 at a ratio of 6:4 exhibited the most effective removal of Cd, Cu and Ni from the contaminated soil at an e-waste recycling site. Under optimal washing conditions, with a soil-to-liquid ratio of 1:20 and a washing time of 48 h, the removal rates of Cd, Cu and Ni were 96.72%, 69.91% and 76.08%, respectively. It needed to be emphasized that the combination washing agents were able to remove most of the acid-soluble, reducible and oxidizable fractions of heavy metals, and even the removal rates of the stable residual fraction (e.g., of Cd) was at a relatively high level. In addition, the washing process significantly reduced the pollution level associated with heavy metals in soil. This study aid in the development of combined efficient washing agents and explores optimal washing strategies for the remediation of Cd, Cu, and Ni-contaminated soil at e-waste recycling sites. The findings may play a role in enhancing the remediation capabilities for soils contaminated with multiple heavy metals, due to its characteristics of and high-efficiency and environmental friendliness.
Collapse
Affiliation(s)
- Lei Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-Resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources and Ecological Environment Jointly Built by Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong, 723001, China.
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Lidia Skuza
- Institute of Biology, Centre for Molecular Biology and Biotechnology, University of Szczecin, Szczecin, 71-415, Poland
| | - Jiachun Shi
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
4
|
Chia XK, Hadibarata T, Kristanti RA, Jusoh MNH, Tan IS, Foo HCY. The function of microbial enzymes in breaking down soil contaminated with pesticides: a review. Bioprocess Biosyst Eng 2024; 47:597-620. [PMID: 38456898 PMCID: PMC11093808 DOI: 10.1007/s00449-024-02978-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024]
Abstract
The use of pesticides and the subsequent accumulation of residues in the soil has become a worldwide problem. Organochlorine (OC) pesticides have spread widely in the environment and caused contamination from past agricultural activities. This article reviews the bioremediation of pesticide compounds in soil using microbial enzymes, including the enzymatic degradation pathway and the recent development of enzyme-mediated bioremediation. Enzyme-mediated bioremediation is divided into phase I and phase II, where the former increases the solubility of pesticide compounds through oxidation-reduction and hydrolysis reactions, while the latter transforms toxic pollutants into less toxic or nontoxic products through conjugation reactions. The identified enzymes that can degrade OC insecticides include dehalogenases, phenol hydroxylase, and laccases. Recent developments to improve enzyme-mediated bioremediation include immobilization, encapsulation, and protein engineering, which ensure its stability, recyclability, handling and storage, and better control of the reaction.
Collapse
Affiliation(s)
- Xing Kai Chia
- Environmental Engineering Program, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia
| | - Tony Hadibarata
- Environmental Engineering Program, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia.
| | - Risky Ayu Kristanti
- Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih I, Jakarta, 14430, Indonesia
| | | | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia
| | - Henry Chee Yew Foo
- Department of Chemical and Energy Engineering, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia
| |
Collapse
|
5
|
da Silva RR, Santos JCV, Meira HM, Almeida SM, Sarubbo LA, Luna JM. Microbial Biosurfactant: Candida bombicola as a Potential Remediator of Environments Contaminated by Heavy Metals. Microorganisms 2023; 11:2772. [PMID: 38004783 PMCID: PMC10673205 DOI: 10.3390/microorganisms11112772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Industrial interest in surfactants of microbial origin has intensified recently due to the characteristics of these compounds, such as biodegradability and reduced toxicity, and their efficiency in removing heavy metals and hydrophobic organic compounds from soils and waters. The aim of this study was to produce a biosurfactant using Candida bombicola URM 3712 in a low-cost medium containing 5.0% molasses, 3.0% corn steep liquor and 2.5% residual frying oil for 144 h at 200 rmp. Measurements of engine oil tension and emulsification were made under extreme conditions of temperature (0 °C, 5 °C, 70 °C, 100 °C and 120 °C), pH (2-12) and NaCl concentrations (2-12), demonstrating the stability of the biosurfactant. The isolated biosurfactant was characterized as an anionic molecule with the ability to reduce the surface tension of water from 72 to 29 mN/m, with a critical micellar concentration of 0.5%. The biosurfactant had no toxic effect on vegetable seeds or on Eisenia fetida as a bioindicator. Applications in the removal of heavy metals from contaminated soils under dynamic conditions demonstrated the potential of the crude and isolated biosurfactant in the removal of Fe, Zn and Pb with percentages between 70 and 88%, with the highest removal of Pb being 48%. The highest percentage of removal was obtained using the cell-free metabolic liquid, which was able to remove 48, 71 and 88% of lead, zinc and iron from the soil, respectively. Tests in packed columns also confirmed the biosurfactant's ability to remove Fe, Zn and Pb between 40 and 65%. The removal kinetics demonstrated an increasing percentage, reaching removal of 50, 70 and 85% for Pb, Zn and Fe, respectively, reaching a greater removal efficiency at the end of 24 h. The biosurfactant was also able to significantly reduce the electrical conductivity of solutions containing heavy metals. The biosurfactant produced by Candida bombicola has potential as an adjuvant in industrial processes for remediating soils and effluents polluted by inorganic contaminants.
Collapse
Affiliation(s)
- Renata Raianny da Silva
- Northeast Biotechnology Network (Renorbio), Federal Rural University of Pernambuco, Rua Dom Manuel de Medeiros, Recife 52171-900, PE, Brazil;
| | - Júlio C. V. Santos
- Environmental Process Development (PPGDPA), Catholic University of Pernambuco, Rua do Príncipe, n. 526, Boa Vista, Recife 50050-900, PE, Brazil;
| | - Hugo M. Meira
- Advanced Institute of Technology and Innovation (IATI), Rua Potira de Brito, n.216, Boa Vista, Recife 50050-900, PE, Brazil
| | - Sérgio M. Almeida
- School of Health and Life Sciences, Catholic University of Pernambuco, Rua do Príncipe, n. 526, Recife 50050-900, PE, Brazil;
| | - Leonie A. Sarubbo
- Advanced Institute of Technology and Innovation (IATI), Rua Potira de Brito, n.216, Boa Vista, Recife 50050-900, PE, Brazil
- Icam Tech School, Catholic University of Pernambuco, Rua do Príncipe, n. 526, Boa Vista, Recife 50050-900, PE, Brazil
| | - Juliana M. Luna
- School of Health and Life Sciences, Catholic University of Pernambuco, Rua do Príncipe, n. 526, Recife 50050-900, PE, Brazil;
| |
Collapse
|
6
|
Rahman S, Rahman IMM, Hasegawa H. Management of arsenic-contaminated excavated soils: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118943. [PMID: 37748284 DOI: 10.1016/j.jenvman.2023.118943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/26/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023]
Abstract
Ongoing global sustainable development and underground space utilization projects have inadvertently exposed many excavated soils naturally contaminated with geogenic arsenic (As). Recent investigations have revealed that As in certain excavated soils, especially those originating from deep construction projects, has exceeded regulatory limits, threatening the environment and human health. While numerous remediation techniques exist for treating As-contaminated soil, the unique characteristics of geogenic As contamination in excavated soil require specific measures when leachable As content surpasses established regulatory limits. Consequently, several standard leaching tests have been developed globally to assess As leaching from contaminated soil. However, a comprehensive comparative analysis of these methods and their implementation in contaminated excavated soils remains lacking. Furthermore, the suitability and efficacy of most conventional and advanced techniques for remediating As-contaminated excavated soils remained unexplored. Therefore, this study critically reviews relevant literature and summarize recent research findings concerning the management and mitigation of geogenic As in naturally contaminated excavated soil. The objective of this study was to outline present status of excavated soil globally, the extent and mode of As enrichment, management and mitigation approaches for As-contaminated soil, global excavated soil recycling strategies, and relevant soil contamination countermeasure laws. Additionally, the study provides a concise overview and comparison of standard As leaching tests developed across different countries. Furthermore, this review assessed the suitability of prominent and widely accepted As remediation techniques based on their applicability, acceptability, cost-effectiveness, duration, and overall treatment efficiency. This comprehensive review contributes to a more profound comprehension of the challenges linked to geogenic As contamination in excavated soils.
Collapse
Affiliation(s)
- Shafiqur Rahman
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan.
| | - Ismail M M Rahman
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima, 960-1296, Japan.
| | - Hiroshi Hasegawa
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan.
| |
Collapse
|
7
|
Oztunc O, Sumer Okkali G, Zeinali S, Nalbantsoy A, Boke Sarikahya N. Four new triterpene saponins from Cephalaria speciosa and their potent cytotoxic and immunomodulatory activities. Sci Rep 2023; 13:16964. [PMID: 37807002 PMCID: PMC10560666 DOI: 10.1038/s41598-023-44114-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Four new triterpene saponins, namely speciosides A-D (1-4) along with six known saponins were isolated from the n-butanol extract of Cephalaria speciosa. In addition to these, three new prosapogenins (2a-4a) were obtained after alkaline hydrolysis. Elucidation of the structures of the isolated compounds was carried out by 1D, 2D NMR, HR-ESI/MS and GC-MS analyses. Cytotoxic activity was investigated on A549, CCD34-Lu, MDA-MB-231, PC-3, U-87MG, HeLa, HepG-2 cells by MTT method. Additionally, the immunomodulatory effect of compounds was evaluated for macrophage polarization with/without inactivated IBV D274 antigen treatment on THP-1 cells originated macrophage cells in terms of M1 or M2. According to the cytotoxicity results, compound 1 and prosapogenin 2a exhibit significant cytotoxicity than doxorubicin by comparison. The results demonstrated that saponin molecules treated THP-1 originated macrophages were induced M1 and/or M2 polarization. Additionally, macrophage cells treated with/without IBV D274 antigen contained saponin compounds were triggered significantly M2 polarization relative to M1. Notably, monodesmosidic saponins (1 and 2a-4a) in comparison with bisdesmosidic ones (2-4) demonstrated the most effect on M2 polarization. In conclusion, the results showed that all the isolated new saponins and their prosapogenins have immunomodulatory potential on macrophage cells increasing immune response without significant cytotoxic effect on THP-1 originated macrophages.
Collapse
Affiliation(s)
- Ozan Oztunc
- Department of Chemistry, Faculty of Science, Ege University, 35100, Bornova, Izmir, Türkiye
| | - Gaye Sumer Okkali
- Department of Chemistry, Faculty of Science, Ege University, 35100, Bornova, Izmir, Türkiye
| | - Sevda Zeinali
- Department of Biotechnology, Faculty of Engineering, Ege University, 35100, Bornova, Izmir, Türkiye
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Bornova, Izmir, Türkiye
| | - Nazli Boke Sarikahya
- Department of Chemistry, Faculty of Science, Ege University, 35100, Bornova, Izmir, Türkiye.
| |
Collapse
|
8
|
Vu KA, Mulligan CN. Remediation of oil-contaminated soil using Fe/Cu nanoparticles and biosurfactants. ENVIRONMENTAL TECHNOLOGY 2023; 44:3446-3458. [PMID: 35361056 DOI: 10.1080/09593330.2022.2061381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Oil (or petroleum), consisting of a mixture of hydrocarbons, can leak from oil exploration, production, and use. Due to their complex mixture and interaction with the subsurface soil and water, they are hard to treat and can become a significant environmental concern. Rhamnolipid and sophorolipid biosurfactants, biologically produced surfactants, can be used to remove petroleum hydrocarbons. Nanoparticles have gained attention as promising materials for soil remediation. In this study, suspensions of Fe-Cu nanoparticles and biosurfactants were employed for the remediation of oil-contaminated soil. The results showed that these suspensions displayed a high oil removal rate from contaminated soil, which followed the first-order reaction. For batch experiments, the oil remediation efficiency was up to 84%. Optimum conditions to achieve the highest oil remediation performance included a rhamnolipid biosurfactant: nanoparticle ratio of 10:1 (wt%: wt%), pH 7, room temperature, and shaking speed of 60 rpm for 60 min. The remediation rate was improved by higher temperature and lower ionic strength. In the presence and absence of nanoparticles, rhamnolipid biosurfactant demonstrated a higher remediation efficiency than sophorolipid biosurfactant and ultraplex surfactant. The presence of other surfactants decreased the treatment productivity by 9-14% compared to using only rhamnolipid biosurfactant. Nanoparticles were reused with a remediation efficiency of 59% after three cycles by rhamnolipid biosurfactant. These results suggested that biosurfactants/Fe-Cu nanoparticle suspension showed promise for the remediation of oil-contaminated soil.
Collapse
Affiliation(s)
- Kien A Vu
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada
| | - Catherine N Mulligan
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada
| |
Collapse
|
9
|
Bi H, Mulligan CN, Lee K, An C, Wen J, Yang X, Lyu L, Qu Z. Preparation, characteristics, and performance of the microemulsion system in the removal of oil from beach sand. MARINE POLLUTION BULLETIN 2023; 193:115234. [PMID: 37399736 DOI: 10.1016/j.marpolbul.2023.115234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
Oil deposited on shoreline substrates has serious adverse effects on the coastal environment and can persist for a long time. In this study, a green and effective microemulsion (ME) derived from vegetable oil was developed as a washing fluid to remove stranded oil from beach sand. The pseudo-ternary phase diagrams of the castor oil/water (without or without NaCl)/Triton X-100/ethanol were constructed to determine ME regions, and they also demonstrated that the phase behaviors of ME systems were almost independent of salinity. ME-A and ME-B exhibited high oil removal performance, low surfactant residues, and economic benefits, which were determined to be the W/O microstructure. Under optimal operation conditions, the oil removal efficiencies for both ME systems were 84.3 % and 86.8 %, respectively. Moreover, the reusability evaluation showed that the ME system still had over 70 % oil removal rates, even though it was used six times, implying its sustainability and reliability.
Collapse
Affiliation(s)
- Huifang Bi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Catherine N Mulligan
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, ON K1A 0E6, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada.
| | - Jiyuan Wen
- Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Xiaohan Yang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Linxiang Lyu
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Zhaonian Qu
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| |
Collapse
|
10
|
Gautam K, Sharma P, Dwivedi S, Singh A, Gaur VK, Varjani S, Srivastava JK, Pandey A, Chang JS, Ngo HH. A review on control and abatement of soil pollution by heavy metals: Emphasis on artificial intelligence in recovery of contaminated soil. ENVIRONMENTAL RESEARCH 2023; 225:115592. [PMID: 36863654 DOI: 10.1016/j.envres.2023.115592] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
"Save Soil Save Earth" is not just a catchphrase; it is a necessity to protect soil ecosystem from the unwanted and unregulated level of xenobiotic contamination. Numerous challenges such as type, lifespan, nature of pollutants and high cost of treatment has been associated with the treatment or remediation of contaminated soil, whether it be either on-site or off-site. Due to the food chain, the health of non-target soil species as well as human health were impacted by soil contaminants, both organic and inorganic. In this review, the use of microbial omics approaches and artificial intelligence or machine learning has been comprehensively explored with recent advancements in order to identify the sources, characterize, quantify, and mitigate soil pollutants from the environment for increased sustainability. This will generate novel insights into methods for soil remediation that will reduce the time and expense of soil treatment.
Collapse
Affiliation(s)
- Krishna Gautam
- Centre for Energy and Environmental Sustainability, Lucknow, India
| | - Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, India
| | - Shreya Dwivedi
- Institute for Industrial Research & Toxicology, Ghaziabad, Lucknow, India
| | - Amarnath Singh
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - Vivek Kumar Gaur
- Centre for Energy and Environmental Sustainability, Lucknow, India; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India; School of Energy and Chemical Engineering, UNIST, Ulsan, 44919, Republic of Korea.
| | - Sunita Varjani
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248 007, India.
| | | | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow, India; Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248 007, India
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental, Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| |
Collapse
|
11
|
Vu KA, Mulligan CN. An Overview on the Treatment of Oil Pollutants in Soil Using Synthetic and Biological Surfactant Foam and Nanoparticles. Int J Mol Sci 2023; 24:ijms24031916. [PMID: 36768251 PMCID: PMC9915329 DOI: 10.3390/ijms24031916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Oil-contaminated soil is one of the most concerning problems due to its potential damage to human, animals, and the environment. Nanoparticles have effectively been used to degrade oil pollution in soil in the lab and in the field for a long time. In recent years, surfactant foam and nanoparticles have shown high removal of oil pollutants from contaminated soil. This review provides an overview on the remediation of oil pollutants in soil using nanoparticles, surfactant foams, and nanoparticle-stabilized surfactant foams. In particular, the fate and transport of oil compounds in the soil, the interaction of nanoparticles and surfactant foam, the removal mechanisms of nanoparticles and various surfactant foams, the effect of some factors (e.g., soil characteristics and amount, nanoparticle properties, surfactant concentration) on remediation efficiency, and some advantages and disadvantages of these methods are evaluated. Different nanoparticles and surfactant foam can be effectively utilized for treating oil compounds in contaminated soil. The treatment efficiency is dependent on many factors. Thus, optimizing these factors in each scenario is required to achieve a high remediation rate while not causing negative effects on humans, animals, and the environment. In the future, more research on the soil types, operating cost, posttreatment process, and recycling and reuse of surfactants and nanoparticles need to be conducted.
Collapse
Affiliation(s)
- Kien A. Vu
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Catherine N. Mulligan
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
- Correspondence:
| |
Collapse
|
12
|
Sarkodie EK, Jiang L, Li K, Yang J, Guo Z, Shi J, Deng Y, Liu H, Jiang H, Liang Y, Yin H, Liu X. A review on the bioleaching of toxic metal(loid)s from contaminated soil: Insight into the mechanism of action and the role of influencing factors. Front Microbiol 2022; 13:1049277. [PMID: 36569074 PMCID: PMC9767989 DOI: 10.3389/fmicb.2022.1049277] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
The anthropogenic activities in agriculture, industrialization, mining, and metallurgy combined with the natural weathering of rocks, have led to severe contamination of soils by toxic metal(loid)s. In an attempt to remediate these polluted sites, a plethora of conventional approaches such as Solidification/Stabilization (S/S), soil washing, electrokinetic remediation, and chemical oxidation/reduction have been used for the immobilization and removal of toxic metal(loid)s in the soil. However, these conventional methods are associated with certain limitations. These limitations include high operational costs, high energy demands, post-waste disposal difficulties, and secondary pollution. Bioleaching has proven to be a promising alternative to these conventional approaches in removing toxic metal(loid)s from contaminated soil as it is cost-effective, environmentally friendly, and esthetically pleasing. The bioleaching process is influenced by factors including pH, temperature, oxygen, and carbon dioxide supply, as well as nutrients in the medium. It is crucial to monitor these parameters before and throughout the reaction since a change in any, for instance, pH during the reaction, can alter the microbial activity and, therefore, the rate of metal leaching. However, research on these influencing factors and recent innovations has brought significant progress in bioleaching over the years. This critical review, therefore, presents the current approaches to bioleaching and the mechanisms involved in removing toxic metal(loid)s from contaminated soil. We further examined and discussed the fundamental principles of various influencing factors that necessitate optimization in the bioleaching process. Additionally, the future perspectives on adding omics for bioleaching as an emerging technology are discussed.
Collapse
Affiliation(s)
- Emmanuel Konadu Sarkodie
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Kewei Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Jiejie Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Ziwen Guo
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Jiaxin Shi
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Yan Deng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Huidan Jiang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|
13
|
Vu KA, Mulligan CN. Utilization of a biosurfactant foam/nanoparticle mixture for treatment of oil pollutants in soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88618-88629. [PMID: 35834082 DOI: 10.1007/s11356-022-21938-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/05/2022] [Indexed: 05/29/2023]
Abstract
Oil contamination has become a primary environmental concern due to increased exploration, production, and use. When oil enters the soil, it may attach or adsorb to soil particles and stay in the soil for an extended period, contaminating the soil and surrounding areas. Nanoparticles have been widely used for the treatment of organic pollutants in the soil. Surfactant foam has effectively been employed to remediate various soil contaminants or recover oil compounds. In this research, a mixture of biosurfactant foam/nanoparticle was utilized for remediation of oil-contaminated soil. The results demonstrated that the biosurfactant/nanoparticle mixture and nitrogen gas formed high-quality and stable foams. The foam stability depended on the foam quality, biosurfactant concentration, and nanoparticle dosage. The pressure gradient change in the soil column relied on the flowrate (N2 gas + surfactant/nanoparticle mixture), foam quality, and biosurfactant concentration. The optimal conditions to obtain good quality and stable foams and high oil removal efficiency involved 1 vol% rhamnolipid, 1 wt% nanoparticle, and 1 mL/min flowrate. Biosurfactant foam/nanoparticle mixture was effectively used to remediate oil-contaminated soil, whereas the highest treatment efficiency was 67%, 59%, and 52% for rhamnolipid biosurfactant foam/nanoparticle, rhamnolipid biosurfactant/nanoparticle, and only rhamnolipid biosurfactant, respectively. The oil removal productivity decreased with the increase of flowrate due to the shorter contact time between the foam mixture and oil droplets. The breakthrough curves of oil pollutants in the soil column also suggested that the foam mixture's maximum oil treatment efficiency was higher than biosurfactant/nanoparticle suspension and only biosurfactant.
Collapse
Affiliation(s)
- Kien A Vu
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Catherine N Mulligan
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada.
| |
Collapse
|
14
|
Poirier A, Ozkaya K, Gredziak J, Talbot D, Baccile N. Heavy metal removal from water using the metallogelation properties of a new glycolipid biosurfactant. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alexandre Poirier
- Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP Sorbonne Université, CNRS Paris France
| | - Korin Ozkaya
- Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP Sorbonne Université, CNRS Paris France
| | - Julie Gredziak
- Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP Sorbonne Université, CNRS Paris France
- Laboratoire de Physicochimie des Electrolytes et Nanosystèmes Interfaciaux, PHENIX Sorbonne Université, CNRS Paris France
| | - Delphine Talbot
- Laboratoire de Physicochimie des Electrolytes et Nanosystèmes Interfaciaux, PHENIX Sorbonne Université, CNRS Paris France
| | - Niki Baccile
- Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP Sorbonne Université, CNRS Paris France
| |
Collapse
|
15
|
Sarma H, Narayan M, Peralta-Videa JR, Lam SS. Exploring the significance of nanomaterials and organic amendments - Prospect for phytoremediation of contaminated agroecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119601. [PMID: 35709913 DOI: 10.1016/j.envpol.2022.119601] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/10/2022] [Accepted: 06/07/2022] [Indexed: 05/22/2023]
Abstract
Emerging micro-pollutants have rapidly contaminated the agro-ecosystem, posing serious challenges to a sustainable future. The vast majority of them have infiltrated the soil and damaged agricultural fields and crops after being released from industry. These pollutants and their transformed products are also transported in vast quantities which further exacerbate the damage. Sustainable remediation techniques are warranted for such large amounts of contaminants. As aforementioned, many of them have been detected at very high concentrations in soil and water which adversely affect crop physiology by disrupting different metabolic processes. To combat this situation, nanomaterials and other organic amendments assisted phytoremediation ware considered as a viable alternative. It is a potent synergistic activity between the biological system and the supplied organic or nanomaterial material to eliminate emerging contaminants and micropollutants from crop fields. This can be effectively be applied to degraded crop fields and could potentially embody a green technology for sustainable agriculture.
Collapse
Affiliation(s)
- Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar(BTR), Assam, 783370, India; Institutional Biotech Hub, Department of Botany, Nanda Nath Saikia College, Titabar, Assam, 785630, India.
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79968, USA
| | - Jose R Peralta-Videa
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79968, USA
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| |
Collapse
|
16
|
Rahman S, Rahman IMM, Ni S, Harada Y, Kasai S, Nakakubo K, Begum ZA, Wong KH, Mashio AS, Ohta A, Hasegawa H. Enhanced remediation of arsenic-contaminated excavated soil using a binary blend of biodegradable surfactant and chelator. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128562. [PMID: 35248963 DOI: 10.1016/j.jhazmat.2022.128562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
The reclamation of geogenic As-contaminated excavated soils as construction additives can reduce the post-disposal impact on the ecosystem and space. Although retaining soil characteristics while reducing contaminant load is a challenging task, washing remediation with biodegradable surfactants or chelators is a promising alternative to non-biodegradable counterparts. In this study, newly synthesized biodegradable surfactants (SDG: sodium N-dodecanoyl-glycinate, SDBA: sodium N-dodecanoyl-β-alaninate, SDGBH: sodium N-dodecanoyl-α,γ-glutamyl-bis-hydroxyprolinate, SDT: sodium N-dodecanoyl-taurinate, and DCPC: N-dodecyl-3-carbamoyl-pyridinium-chloride) and biodegradable chelators (EDDS: ethylenediamine N,N'-disuccinic acid, GLDA: L-glutamate-N, N'-diacetic acid, and HIDS: 3-hydroxy-2,2'-imino disuccinic acid) are evaluated for the remediation of As-contaminated soil. The operating variables, such as washing duration, solution pH, and surfactant or chelator concentration, are optimized for maximum As extraction. SDT shows the highest As-extraction efficiency irrespective of solution pH and surfactant variants, while HIDS is the superior chelator under acidic or alkaline conditions. A binary blend of SDT and HIDS is evaluated for As extraction under varying operating conditions. The SDT-HIDS binary blend demonstrates 6.9 and 1.6-times higher As-extraction rates than the SDT and HIDS-only washing, respectively, under acidic conditions. The proposed approach with a binary blend of a biodegradable surfactant and chelator is a green solution for recycling As-contaminated excavated soils for geotechnical applications.
Collapse
Affiliation(s)
- Shafiqur Rahman
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan.
| | - Ismail M M Rahman
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima 960-1296, Japan.
| | - Shengbin Ni
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Yasuhiro Harada
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Shuto Kasai
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Keisuke Nakakubo
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Zinnat A Begum
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima 960-1296, Japan; Department of Civil Engineering, Southern University, Arefin Nagar, Bayezid Bostami, Chattogram 4210, Bangladesh
| | - Kuo H Wong
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Asami S Mashio
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Akio Ohta
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan.
| | - Hiroshi Hasegawa
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan.
| |
Collapse
|
17
|
Eras-Muñoz E, Farré A, Sánchez A, Font X, Gea T. Microbial biosurfactants: a review of recent environmental applications. Bioengineered 2022; 13:12365-12391. [PMID: 35674010 PMCID: PMC9275870 DOI: 10.1080/21655979.2022.2074621] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Microbial biosurfactants are low-molecular-weight surface-active compounds of high industrial interest owing to their chemical properties and stability under several environmental conditions. The chemistry of a biosurfactant and its production cost are defined by the selection of the producer microorganism, type of substrate, and purification strategy. Recently, biosurfactants have been applied to solve or contribute to solving some environmental problems, with this being their main field of application. The most referenced studies are based on the bioremediation of contaminated soils with recalcitrant pollutants, such as hydrocarbons or heavy metals. In the case of heavy metals, biosurfactants function as chelating agents owing to their binding capacity. However, the mechanism by which biosurfactants typically act in an environmental field is focused on their ability to reduce the surface tension, thus facilitating the emulsification and solubilization of certain pollutants (in-situ biostimulation and/or bioaugmentation). Moreover, despite the low toxicity of biosurfactants, they can also act as biocidal agents at certain doses, mainly at higher concentrations than their critical micellar concentration. More recently, biosurfactant production using alternative substrates, such as several types of organic waste and solid-state fermentation, has increased its applicability and research interest in a circular economy context. In this review, the most recent research publications on the use of biosurfactants in environmental applications as an alternative to conventional chemical surfactants are summarized and analyzed. Novel strategies using biosurfactants as agricultural and biocidal agents are also presented in this paper.
Collapse
Affiliation(s)
- Estefanía Eras-Muñoz
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Abel Farré
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Antoni Sánchez
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Xavier Font
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Teresa Gea
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
18
|
Efficient Inorganic/Organic Acid Leaching for the Remediation of Protogenetic Lead-Contaminated Soil. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, inorganic acid and organic acid were used to leach and remediate superheavy, lead-contaminated protogenetic soil with a lead pollution level of 8043 mg∙kg−1. Among the compounds studied, HCl and citric acid (CA) presented the best effects, respectively. Under the optimal experimental conditions, the remediation efficiency of 0.05 mol∙L−1 CA reached 53.6%, while that of 0.2 mol∙L−1 HCl was 70.3%. According to the lead morphology analysis, CA and HCl have certain removal ability to different fractions of lead. Among them, the removal rates of acid-soluble lead in soil by HCl and CA are 93% and 83%, and the soil mobility factor (MF) value decreased from 34.4% to 7.74 % and 12.3%, respectively, indicating that the harm of lead in soil was greatly reduced. Meanwhile, the leaching mechanisms of CA and HCl were studied. The pH values of the soil after leaching with HCl and CA were 3.88 and 6.97, respectively, showing that HCl leaching has caused serious acidification of the soil, while the process of CA leaching is more mild. CA has a relatively high remediation efficiency at such a low concentration, especially for the highly active acid-soluble fraction lead when maintaining the neutrality of the leached soil. Hence, CA is more suitable for the remediation of lead-contaminated soil.
Collapse
|
19
|
Kariyawasam T, Doran GS, Howitt JA, Prenzler PD. Polycyclic aromatic hydrocarbon contamination in soils and sediments: Sustainable approaches for extraction and remediation. CHEMOSPHERE 2022; 291:132981. [PMID: 34826448 DOI: 10.1016/j.chemosphere.2021.132981] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic environmental pollutants that are extremely hydrophobic in nature and resistant to biological degradation. Extraction of PAHs from environmental matrices is the first and most crucial step in PAH quantification. Extraction followed by quantification is essential to understand the extent of contamination prior to the application of remediation approaches. Due to their non-polar structures, PAHs can be adsorbed tightly to the organic matter in soils and sediments, making them more difficult to be extracted. Extraction of PAHs can be achieved by a variety of methods. Techniques such as supercritical and subcritical fluid extraction, microwave-assisted solvent extraction, plant oil-assisted extraction and some microextraction techniques provide faster PAH extraction using less organic solvents, while providing a more environmentally friendly and safer process with minimum matrix interferences. More recently, more environmentally friendly methods for soil and sediment remediation have been explored. This often involves using natural chemicals, such as biosurfactants, to solubilize PAHs in contaminated soils and sediments to allow subsequent microbial degradation. Vermiremediation and microbial enzyme-mediated remediation are emerging approaches, which require further development. The following summarises the existing literature on traditional PAH extraction and bioremediation methods and contrasts them to newer, more environmentally friendly ways.
Collapse
Affiliation(s)
- Thiloka Kariyawasam
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia; Institute for Land, Water and Society, Charles Sturt University, Albury, NSW, 2702, Australia
| | - Gregory S Doran
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia.
| | - Julia A Howitt
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia; Institute for Land, Water and Society, Charles Sturt University, Albury, NSW, 2702, Australia
| | - Paul D Prenzler
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| |
Collapse
|
20
|
Remediation of Smelter Contaminated Soil by Sequential Washing Using Biosurfactants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182412875. [PMID: 34948484 PMCID: PMC8701185 DOI: 10.3390/ijerph182412875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 11/17/2022]
Abstract
This paper presents experimental results from the use of biosurfactants in the remediation of a soil from a smelter in Poland. In the soil, concentrations of Cu (1659.1 mg/kg) and Pb (290.8 mg/kg) exceeded the limit values. Triple batch washing was tested as a soil treatment. Three main variants were used, each starting with a different plant-derived (saponin, S; tannic acid, T) or microbial (rhamnolipids, R) biosurfactant solution in the first washing, followed by 9 different sequences using combinations of the tested biosurfactants (27 in total). The efficiency of the washing was determined based on the concentration of metal removed after each washing (CR), the cumulative removal efficiency (Ecumulative) and metal stability (calculated as the reduced partition index, Ir, based on the metal fractions from BCR sequential extraction). The type of biosurfactant sequence influenced the CR values. The variants that began with S and R had the highest average Ecumulative for Cu and Pb, respectively. The Ecumulative value correlated very strongly (r > 0.8) with the stability of the residual metals in the soil. The average Ecumulative and stability of Cu were the highest, 87.4% and 0.40, respectively, with the S-S-S, S-S-T, S-S-R and S-R-T sequences. Lead removal and stability were the highest, 64-73% and 0.36-0.41, respectively, with the R-R-R, R-R-S, R-S-R and R-S-S sequences. Although the loss of biosurfactants was below 10% after each washing, sequential washing with biosurfactants enriched the soil with external organic carbon by an average of 27-fold (S-first variant), 24-fold (R first) or 19-fold (T first). With regard to environmental limit values, metal stability and organic carbon resources, sequential washing with different biosurfactants is a beneficial strategy for the remediation of smelter-contaminated soil with given properties.
Collapse
|
21
|
Zhu Z, Zhang B, Cai Q, Cao Y, Ling J, Lee K, Chen B. A critical review on the environmental application of lipopeptide micelles. BIORESOURCE TECHNOLOGY 2021; 339:125602. [PMID: 34311406 DOI: 10.1016/j.biortech.2021.125602] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
The importance of lipopeptide micelles in environmental applications has been highlighted. These vessels exhibit various sizes, shapes, and surface properties under different environmental conditions. An in-depth understanding of the tunable assembling behavior of biosurfactant micelles is of great importance for their applications. However, a systematic review of such behaviors with assorted micro/nano micellar structures under given environmental conditions, particularly under low temperature and high salinity, remains untapped. Such impacts on their environmental applications have yet to be summarized. This review tried to fill the knowledge gaps by providing a comprehensive summary of the recent knowledge advancement in genetically regulated lipopeptides production, micelles associated decontamination mechanisms in low temperature and high salinity environments, and up-to-date environmental applications. This work is expected to deliver valuable insights to guide lipopeptide design and discovery. The mechanisms concluded in this study could inspire the forthcoming research efforts in the advanced environmental application of lipopeptide micelles.
Collapse
Affiliation(s)
- Zhiwen Zhu
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Baiyu Zhang
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada.
| | - Qinhong Cai
- Biotechnology Research Institute of the National Research Council of Canada, Montreal, QC, Canada
| | - Yiqi Cao
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Jingjing Ling
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, ON, Canada
| | - Bing Chen
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| |
Collapse
|
22
|
Mishra S, Lin Z, Pang S, Zhang Y, Bhatt P, Chen S. Biosurfactant is a powerful tool for the bioremediation of heavy metals from contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126253. [PMID: 34119972 DOI: 10.1016/j.jhazmat.2021.126253] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 05/05/2023]
Abstract
Heavy metal toxicity has become a pressing ecological problem that affects the ecosystems through bioaccumulation, representing a serious public health hazard. Many conventional strategies have been developed and applied to decontaminate and restore metal-contaminated areas. However, these conventional approaches are not very suitable and environmentally safe for heavy metal remediation because of their high operational costs, high energy requirements, post-waste disposal problems, and secondary pollutant generation. Thus, biosurfactant-based bioremediation of heavy metals is a sustainable and promising approach because of its biodegradation capability, economic effectiveness, and ecofriendly nature. Pseudomonas sp., Bacillus sp., Citrobacter freundii, and Candida tropicalis have been isolated as potential sources of biosurfactants and produce compounds such as surfactin, rhamnolipids, and sophorolipids. Owing to the severity of heavy metal pollution in certain parts of the environment, biosurfactants have garnered great interest and attention as an emerging multi-functional technology of the new century for successful removal of heavy metal pollutants. The present study describes the role of biosurfactants in the bioremediation of heavy metals from contaminated environments. Moreover, the interaction mechanism underlying biosurfactant-metal complexation and metal remediation are discussed. Based on the review of the literature, further research is warranted to elucidate the mechanistic roles and explore the structural characterization and gene regulation of biosurfactants to improve their productivity and expand their applicability in bioremediation.
Collapse
Affiliation(s)
- Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|