1
|
Anshory Tamhid H, Sukmarini L, Fitria A, Davi Setiawan I, Wahyu Wardana A, Ilyas M, Pramisandi A, Triastuti A. Biodiversity and Bioprospecting of Fungal Endophytes from Houttuynia cordata Thunb. as a Potential Antibacterial and Anticancer Agent. Chem Biodivers 2025; 22:e202401705. [PMID: 39376130 DOI: 10.1002/cbdv.202401705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/11/2024] [Accepted: 10/07/2024] [Indexed: 10/09/2024]
Abstract
Endophytic fungi are considered a new source of bioactive compounds that have important applications in agriculture and medicine. This study aims to investigate the biodiversity and potential of endophytic fungi isolated from Houttuynia cordata Thunb. as antimicrobials and anticancer agents. Out of ten isolated endophytes, four species have never been reported to be associated with H. cordata: Ceratobasidium sp., Cladosporium sp., Phomopsis sp., and Fusarium sp. The antibacterial activity assay revealed that the ethyl acetate extract of Ceratobasidium sp. HCS-3 possessed most potent antibacterial activity against Escherichia coli and Staphylococcus aureus. In addition, its cytotoxic activity test showed the promising anticancer activity on lung cancer A549, osteosarcoma MG-63, and cervical cancer HeLa cells with IC50 of 4.55±1.16, 32.14±2.78, and 1.54±0.66 ppm, respectively. Furthermore, metabolite profiling identified 66 compounds suggesting that benzoic acid, farnesol, and cyclopeptides may contribute to the antibacterial activity, while 4-methoxycinnamic acid may have anticancer potential.
Collapse
Affiliation(s)
- Hady Anshory Tamhid
- Department of Pharmacy, Universitas Islam Indonesia, Yogyakarta, Indonesia
- Herbal Research Center, Department of Pharmacy, Universitas Islam Indonesia, Yogyakarta, Indonesia
| | - Linda Sukmarini
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Annisa Fitria
- Department of Pharmacy, Universitas Islam Indonesia, Yogyakarta, Indonesia
| | | | | | - Muhammad Ilyas
- Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Amila Pramisandi
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Asih Triastuti
- Department of Pharmacy, Universitas Islam Indonesia, Yogyakarta, Indonesia
- Herbal Research Center, Department of Pharmacy, Universitas Islam Indonesia, Yogyakarta, Indonesia
| |
Collapse
|
2
|
Liu J, Zou J, Wang J, Wang R, Zhai S, Chang X, Zhang X, Sun J, Luan F, Shi Y. Extraction, purification, structural features, and pharmacological properties of polysaccharides from Houttuynia cordata: A review. Int J Biol Macromol 2024; 279:135230. [PMID: 39218180 DOI: 10.1016/j.ijbiomac.2024.135230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/13/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Houttuynia cordata Thunb, also known as "Chinese medicine antibiotic", is a medicine food homology plant. It has functions of clearing heat, eliminating toxins, in folk medicine. The extraction purification and bioactivity of Houttuynia cordata polysaccharides (HCPs) have been of wide interest to researchers in recent years studies. Studies have confirmed that HCPs exhibit various biofunctionalities, such as anti-inflammatory, antiviral, antibacterial, antioxidant, immunomodulatory, regulation of gut microbiota, and gut-lung axis, as well as anti-radiation, and anti-cancer properties. Therefore, a comprehensive systematic review is needed to summarize the recent advances of HCPs and facilitate a better understanding of their biofunctionalities. This paper reviews the research progress of HCPs in extraction and purification methods, chemical structures, biological activities, possible mechanisms of action, and potential application prospects, which can provide some valuable insights and updated information for their further development and application of HCPs in the fields of therapeutic agents, functional foods, cosmetics, animal feeds.
Collapse
Affiliation(s)
- Jing Liu
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jingyuan Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Rui Wang
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Xi'an 712046, Shaanxi, PR China
| | - Sicheng Zhai
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Xi'an 712046, Shaanxi, PR China
| | - Xing Chang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
3
|
Thakur A, Thakur K, Kumar A, Warghat AR, Kumar D, Pandey SS. Endophyte-based fungal elicitors for enhanced production of valepotriates and sesquiterpenoids in leaf cell suspension cultures of Valeriana jatamansi Jones. J Appl Microbiol 2024; 135:lxae242. [PMID: 39289002 DOI: 10.1093/jambio/lxae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
AIMS The immense therapeutic value of Valeriana jatamansi is attributed to the presence of bioactive secondary metabolites (valepotriates and sesquiterpenoids). Its over-exploitation in wild habitats resulted in extensive depletion, necessitating alternative approaches to produce its therapeutic metabolites. This study sought to assess the ability of endophytes of V. jatamansi to boost the biosynthesis of secondary metabolites in the leaf-cell suspension (LCS) culture of V. jatamansi. METHODS AND RESULTS A total of 11 fungal endophytes were isolated from the rhizomes of V. jatamansi. Isolated endophytes were found to belong to phylum Ascomycota, Basidiomycota, and Mucoromycota. Supplementation of extracts of endophyte Phaeosphaeriaceae sp. VRzFB, Mucor griseocyanus VRzFD, Penicillium raistrickii VRzFK, and Penicillium sajarovii VRzFL in the LCS culture of V. jatamansi increased the fresh cell biomass by 19.6%-39.1% and dry cell biomass by 23.4%-37.8%. Most of the endophytes' extract could increase the content of valepotriates (26.5%-76.5% valtrate and 40.5%-77.9% acevaltrate) and sesquiterpenoids (19.9%-61.1% hydroxyl valerenic acid) in LCS culture. However, only two endophytes, Irpex lacteus VRzFI and Fusarium oxysporum VRzFF, could increase the sesquiterpenoids acetoxy valerenic acid (36.9%-55.3%). In contrast, some endophytes' extracts caused negative or no significant effect on the cell biomass and targeted metabolites. Increased secondary metabolites were corroborated with increased expression of iridoid biosynthesis genes in LCS culture. Production of H2O2 and lipid peroxidation was also varied with different endophytes indicating the modulation of cellular oxidative stress due to endophyte elicitors. CONCLUSIONS The results suggest the distinct effect of different fungal endophytes-extract on LCS culture, and endophytes can serve as biotic elicitors for increasing the secondary metabolite production in plant in vitro systems.
Collapse
Affiliation(s)
- Ankita Thakur
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kanika Thakur
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anil Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical Technology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur 176061, India
| | - Ashish Rambhau Warghat
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dinesh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical Technology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur 176061, India
| | - Shiv Shanker Pandey
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Wei L, Fan L, Yang C, Jin M, Osei R. Analysis of Bioactive Compounds Produced by Bacillus mojavensis ZA1 and Their Antagonistic Effect on Colletotrichum coccodes by GC-MS. Appl Biochem Biotechnol 2024; 196:4914-4933. [PMID: 37982968 DOI: 10.1007/s12010-023-04771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/21/2023]
Abstract
The plant disease Colletotrichum coccodes, which lowers potato yields, poses a severe danger to the booming potato industry. Isolated plant endophytic bacteria from highland pasture can produce a variety of metabolites that lessen the risk that the pathogen C. coccodes poses to plant growth and development. Therefore, the objective of our work was to assess substances with antipathogenic properties made by the endophytic bacteria Bacillus mojavensis ZA1. Gas chromatography-mass spectrometry (GC-MS) was used in our investigation to accomplish a thorough structural elucidation of the antipathogenic compounds produced by the endophytic bacterial strain B. mojavensis ZA1. The results showed that the metabolites extracted from ethyl acetate as an extractant were the most effective in inhibiting the pathogen C. coccodes, with 60.95% inhibition. Thirty-five distinct chemicals, including acids, esters, ketones, alcohols, amino acid ammonium salts, cyclic ethers, aromatic hydrocarbons, and heterocyclic compounds, were among the metabolites that may inhibit C. coccodes. Further analysis of the chemical groups in the compound structures revealed the potential of driving groups, such as hydroxyl, carbonyl, ester, benzene, carbon-carbon double bonds, and carbon rings, that prevent C. coccodes from performing its function. This study opens up new opportunities for plant protection programs by demonstrating that natural chemicals produced by B. mojavensis ZA1 can be used as candidates for cutting-edge plant disease management treatments.
Collapse
Affiliation(s)
- Lijuan Wei
- College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070, China
| | - Lijuan Fan
- College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070, China
| | - Chengde Yang
- College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China.
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070, China.
| | - Mengjun Jin
- College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070, China
| | - Richard Osei
- College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, China
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Lanzhou, 730070, China
| |
Collapse
|
5
|
Okechukwu VO, Kappo AP, Njobeh PB, Mamo MA. Morphed aflaxotin concentration produced by Aspergillus flavus strain VKMN22 on maize grains inoculated on agar culture. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 8:100197. [PMID: 38468716 PMCID: PMC10925925 DOI: 10.1016/j.fochms.2024.100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/13/2024] [Accepted: 02/25/2024] [Indexed: 03/13/2024]
Abstract
This study identified and monitored the levels of aflatoxins (B1 and B2) produced by Aspergillus flavus isolate VKMN22 (OP355447) in maize samples sourced from a local shop in Johannesburg, South Africa. Maize samples underwent controlled incubation after initial rinsing, and isolates were identified through morphological and molecular methods. In another experiment, autoclaved maize grains were intentionally re-inoculated with the identified fungal isolate using spore suspension (106 spore/mL), after which 1 g of the contaminated maize sample was inoculated on PDA media and cultured for seven days. The aflatoxin concentrations in the A. flavus contaminated maize inoculated on culture media was monitored over seven weeks and then measured using liquid chromatography-mass spectroscopy (LC-MS). Results confirmed the successful isolation of A. flavus strain VKMN22 with accession number OP355447, which consistently produced higher levels of AFB1 compared to AFB2. AF concentrations increased from week one to five, then declined in week six and seven. AFB1 levels ranged from 594.3 to 9295.33 µg/kg (week 1-5) and then reduced from 5719.67 to 2005 µg/kg in week six and seven), while AFB2 levels ranged from 4.92 to 901.67 µg/kg (weeks 1-5) and then degraded to 184 µg/kg in week six then 55.33 µg/kg (weeks 6-7). Levene's tests confirmed significantly higher mean concentrations of AFB1 compared to AFB2 (p ≤ 0.005). The study emphasizes the importance of consistent biomonitoring for a dynamic understanding of AF contamination, informing accurate prevention and control strategies in agricultural commodities thereby safeguarding food safety.
Collapse
Affiliation(s)
- Viola O. Okechukwu
- Department of Biochemistry, Auckland Park Kingsway Campus, University of Johannesburg, South Africa
| | - Abidemi P. Kappo
- Department of Biochemistry, Auckland Park Kingsway Campus, University of Johannesburg, South Africa
| | - Patrick B. Njobeh
- Department of Food and Biotechnology, PO Box 17011, Doornfontein Campus, University of Johannesburg, South Africa
| | - Messai A. Mamo
- Department of Chemical Sciences, PO Box 2028, Doornfontein Campus, University of Johannesburg, South Africa
| |
Collapse
|
6
|
Metouekel A, Badrana F, Kachkoul R, Chebaibi M, Akhazzane M, El Moussaoui A, Touil N, El Amri H, El Fahime E, El Kazzouli S, El Brahmi N. Genetic Characterization and Chemical Identification of Moroccan Cannabis sativa (L.) Seeds: Extraction, and In Vitro and In Silico Biological Evaluation. PLANTS (BASEL, SWITZERLAND) 2024; 13:1938. [PMID: 39065465 PMCID: PMC11281279 DOI: 10.3390/plants13141938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 07/28/2024]
Abstract
This study investigated the molecular, phytochemical, and biological aspects of ten local Moroccan traditional landrace Cannabis seeds. Genetic polymorphisms were analyzed using DNA barcode determination, revealing two distinct molecular profiles: "Cannabis, species sativa, subspecies indica" and "Cannabis, species sativa, subspecies sativa". Furthermore, a new sequence was identified by sequencing of the THCA synthase coding gene. Chemical profiling via HPLC-ESI-FULL-MS and GC-MS-MS of AMSD1 maceration extracts revealed 13 non-volatile chemicals, including 3 inactive cannabinoids and 3 polyphenols, and 24 intriguing volatile compounds, including 7 previously unreported in Cannabis seed extracts. Moreover, the in vitro/in silico analysis provision of biological activities through their antioxidant power, antimicrobial effect, and cytotoxicity potency, as well as antiviral activity, were realized. These results contribute to a thorough comprehension of Moroccan Cannabis seeds, illuminating their molecular, phytochemical, and biological features. Furthermore, they highlight the seeds as a potential source of nutritious components with antioxidant properties, offering valuable insights for future research.
Collapse
Affiliation(s)
- Amira Metouekel
- Euromed Research Center, Euromed Faculty of Pharmacy, School of Engineering in Biomedical and Biotechnology, Euromed University of Fes (UEMF), Meknes Road, Fez 30000, Morocco;
| | - Fadwa Badrana
- Institute of Genetic Analysis of the Royal Gendarmerie in Rabat (LRAM), Ibn Sina Av., Agdal, Rabat 10040, Morocco; (F.B.)
| | - Rabie Kachkoul
- Laboratory of Biochemistry, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, BP 1893, Km 22, Road of Sidi Harazem, Fez 30000, Morocco;
| | - Mohamed Chebaibi
- Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez 30000, Morocco;
| | - Mohamed Akhazzane
- Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University (USMBA), Fez 30000, Morocco;
| | - Abdelfattah El Moussaoui
- Plant Biotechnology Team, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan 93002, Morocco;
| | - Nadia Touil
- Cell Culture Unit, Center of Virology, Infectious, and Tropical Diseases, Mohammed V Military Hospital, Rabat 10040, Morocco
| | - Hamid El Amri
- Institute of Genetic Analysis of the Royal Gendarmerie in Rabat (LRAM), Ibn Sina Av., Agdal, Rabat 10040, Morocco; (F.B.)
| | - Elmostafa El Fahime
- National Center for Scientific and Technical Research (CNRST), Angle Avenues des FAR and Allal El Fassi, Hay Ryad, Rabat 10102, Morocco
| | - Saïd El Kazzouli
- Euromed Research Center, Euromed Faculty of Pharmacy, School of Engineering in Biomedical and Biotechnology, Euromed University of Fes (UEMF), Meknes Road, Fez 30000, Morocco;
| | - Nabil El Brahmi
- Euromed Research Center, Euromed Faculty of Pharmacy, School of Engineering in Biomedical and Biotechnology, Euromed University of Fes (UEMF), Meknes Road, Fez 30000, Morocco;
| |
Collapse
|
7
|
Wei P, Luo Q, Hou Y, Zhao F, Li F, Meng Q. Houttuynia Cordata Thunb.: A comprehensive review of traditional applications, phytochemistry, pharmacology and safety. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155195. [PMID: 37956635 DOI: 10.1016/j.phymed.2023.155195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/15/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Houttuynia Cordata Thunb. (H. cordata; Saururaceae) is a medicine food homology plant that is grown in many Asian countries. Its main phytochemical constituents are volatile oils, flavonoids, polysaccharides and alkaloids. It has considerable clinical applications and health benefits. PURPOSE This paper reviews the existing literatures and patents, summarizes the phytochemistry, pharmacological activity, safety and economic botanical applications of H. cordata, and provides a reference for systematic study of the pharmacological effects of H. cordata, improvement of quality standards and further development of its medicinal resources. METHODS A comprehensive search of literature and patents on H. cordata and its active ingredients published before June 2023 was conducted using PubMed, Google Scholar, Web of Science, and China Knowledge Network. RESULTS H. cordata is not only edible and medicinal but also used in various aspects of daily life such as fermented beverages, nutraceuticals, feed and cosmetics. The main phytochemical constituents of H. cordata are volatile oils, flavonoids, organic acids and alkaloids. Several in vitro and in vivo studies and clinical trials have found that H. cordata extracts possess antioxidant, anti-inflammatory, antitumor, antibacterial, hepatoprotective and renal, immunomodulatory and potent antiviral effects. The mechanisms of expression of these pharmacological effects are related to the blood-brain barrier, lipophilicity, cAMP signaling and skin permeability, including blocking the MAPK signaling pathway, inhibiting the secretion of inflammatory factors such as TNF-α and IL-1β, and activating the AMPK pathway. CONCLUSION This paper provides a comprehensive review of the progress of research on the traditional applications, botany, chemical composition, pharmacological effects and safety of H. cordata and discusses for the first time the economic botanical aspects, which were not explored in the previous reviews. H. cordata has a wide range of bioactive substances whose therapeutic potential has not been fully exploited, and it could provide a new non-toxic approach to many diseases. This traditional medicinal food plant should receive more attention and in-depth research in the future.
Collapse
Affiliation(s)
- Panpan Wei
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Qin Luo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yun Hou
- Department of Histology and Embryology, Basic Medical College, Binzhou Medical University, Yantai 264003, China
| | - Fenglan Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Feng Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
8
|
Dvorianinova EM, Sigova EA, Mollaev TD, Rozhmina TA, Kudryavtseva LP, Novakovskiy RO, Turba AA, Zhernova DA, Borkhert EV, Pushkova EN, Melnikova NV, Dmitriev AA. Comparative Genomic Analysis of Colletotrichum lini Strains with Different Virulence on Flax. J Fungi (Basel) 2023; 10:32. [PMID: 38248942 PMCID: PMC10817032 DOI: 10.3390/jof10010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/04/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
Colletotrichum lini is a flax fungal pathogen. The genus comprises differently virulent strains, leading to significant yield losses. However, there were no attempts to investigate the molecular mechanisms of C. lini pathogenicity from high-quality genome assemblies until this study. In this work, we sequenced the genomes of three C. lini strains of high (#390-1), medium (#757), and low (#771) virulence. We obtained more than 100× genome coverage with Oxford Nanopore Technologies reads (N50 = 12.1, 6.1, 5.0 kb) and more than 50× genome coverage with Illumina data (150 + 150 bp). Several assembly strategies were tested. The final assemblies were obtained using the Canu-Racon ×2-Medaka-Polca scheme. The assembled genomes had a size of 54.0-55.3 Mb, 26-32 contigs, N50 values > 5 Mb, and BUSCO completeness > 96%. A comparative genomic analysis showed high similarity among mitochondrial and nuclear genomes. However, a rearrangement event and the loss of a 0.7 Mb contig were revealed. After genome annotation with Funannotate, secreting proteins were selected using SignalP, and candidate effectors were predicted among them using EffectorP. The analysis of the InterPro annotations of predicted effectors revealed unique protein categories in each strain. The assembled genomes and the conducted comparative analysis extend the knowledge of the genetic diversity of C. lini and form the basis for establishing the molecular mechanisms of its pathogenicity.
Collapse
Affiliation(s)
- Ekaterina M. Dvorianinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
| | - Elizaveta A. Sigova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | - Timur D. Mollaev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
- Agrarian and Technological Institute, Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Tatiana A. Rozhmina
- Federal Research Center for Bast Fiber Crops, Torzhok 172002, Russia; (T.A.R.); (L.P.K.)
| | | | - Roman O. Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
| | - Anastasia A. Turba
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
| | - Daiana A. Zhernova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Elena V. Borkhert
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
| | - Elena N. Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
| |
Collapse
|
9
|
Moglad E, Elekhnawy E, Negm WA, Eliwa D, Sami Younis S, Mohamed Elmansory B, Mahgoub S, Ahmed EA, Momtaz Al-Fakhrany O. Antibacterial and anti-Toxoplasma activities of Aspergillus niger endophytic fungus isolated from Ficus retusa: in vitro and in vivo approach. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:297-308. [PMID: 37224186 DOI: 10.1080/21691401.2023.2215531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 04/11/2023] [Indexed: 05/26/2023]
Abstract
Emergent records propose that Aspergillus niger endophytic fungus is a vital source for various bioactive molecules possessing many biological properties. The current study was designed to inspect the antibacterial and anti-Toxoplasma potentials of Ficus retusa-derived endophytic fungi. After isolation and identification (using 18S rRNA gene sequencing) of A. niger endophytic fungus, LC/MS was utilized for identification and authentication of the chemical profile of the A. niger endophyte extract. Then, the fungal extract was assessed for its antibacterial and antibiofilm activities against Klebsiella pneumoniae clinical isolates. Additionally, its efficacy against Toxoplasma gondii was elucidated in vivo. The fungal extract displayed antibacterial activity against K. pneumoniae isolates with minimum inhibitory concentration values of 64-512 µg/mL. It also possessed a membrane potential dissipating effect using flow cytometry. Moreover, it formed distorted cells with rough surfaces and deformed shapes using a scanning electron microscope (SEM). Regarding its antibiofilm activity, it resulted in a dysregulation of the genes encoding biofilm formation (fimH, mrkA and mrkD) using qRT-PCR in nine K. pneumoniae isolates. The in vivo anti-Toxoplasma potential was demonstrated by decreasing the mortality rate of mice and reducing the tachyzoites' count in the peritoneal fluids and liver impression smears of mice. In addition, the deformities of the parasite decreased, as revealed by SEM and the inflammation in tissues diminished. Thus, A. niger endophytic fungi could be a valuable source of antibacterial and anti-Toxoplasma compounds.
Collapse
Affiliation(s)
- Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Engy Elekhnawy
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Duaa Eliwa
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Salwa Sami Younis
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | - Sebaey Mahgoub
- Department of Basic Research, Proteomics and Metabolomics Research Program, Children's Cancer Hospital 57357, Cairo, Egypt
| | - Eman A Ahmed
- Department of Basic Research, Proteomics and Metabolomics Research Program, Children's Cancer Hospital 57357, Cairo, Egypt
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | | |
Collapse
|
10
|
Tourabi M, Nouioura G, Touijer H, Baghouz A, El Ghouizi A, Chebaibi M, Bakour M, Ousaaid D, Almaary KS, Nafidi HA, Bourhia M, Farid K, Lyoussi B, Derwich E. Antioxidant, Antimicrobial, and Insecticidal Properties of Chemically Characterized Essential Oils Extracted from Mentha longifolia: In Vitro and In Silico Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3783. [PMID: 37960139 PMCID: PMC10650643 DOI: 10.3390/plants12213783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
The present study aimed to explore the phytochemical profile, and evaluate the antioxidant, antimicrobial, and insecticidal properties, of Moroccan Mentha longifolia L. essential oil (ML-EO) using in vitro and in silico assays. Noteworthily, as chromatography (GC-MS/MS) revealed that ML-EO is majorly composed of piperitenone oxide (53.43%), caryophyllene (20.02%), and (-) germacrene D (16.53%). It possesses excellent antioxidant activity with an IC50 of 1.49 ± 0.00 for DPPH and 0.051 ± 0.06 μg/mL for ABTS. Moreover, the RP and TAC activities were 0.80 ± 0.01 μg/mL and 315.532 ± 0.00 mg EAA/g, respectively. ML-EO exhibited a potent antimicrobial effect, specifically against Pseudomonas aeruginosa. It also exhibited strong antifungal ability, especially against Candida albicans. Regarding insecticidal activity, for ML-EO, a dose of 20 µL/mL produced a complete reduction in fecundity, fertility, and emergence of adult C. maculatus with mortality rates reaching 100%. In silico results showed that the antioxidant activity is mostly attributed to α-Cadinol, the antibacterial efficiency is attributed to piperitenone oxide, and antifungal capacity is related to cis-Muurola-4(15),5-diene and piperitenone oxide. Accordingly, ML-EO has high potential to be used as an alternative for preserving food and stored grain and protecting them against microbes and insect pests in the food and pharmaceutical sectors.
Collapse
Affiliation(s)
- Meryem Tourabi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30003, Morocco; (M.T.); (G.N.); (A.E.G.); (M.B.); (D.O.); (B.L.); (E.D.)
| | - Ghizlane Nouioura
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30003, Morocco; (M.T.); (G.N.); (A.E.G.); (M.B.); (D.O.); (B.L.); (E.D.)
| | - Hanane Touijer
- Laboratory of Biotechnology, Environment, Agri-Food and Health, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30003, Morocco;
| | - Asmae Baghouz
- Laboratory of Biotechnology, Conservation, and Valorization of Natural Resources, Department of Biology, Faculty of Science Dhar El Mahraz, University of Sidi Mohamed Ben Abdellah, B.P. 1796 Atlas, Fez 30003, Morocco;
| | - Asmae El Ghouizi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30003, Morocco; (M.T.); (G.N.); (A.E.G.); (M.B.); (D.O.); (B.L.); (E.D.)
- Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez 30000, Morocco;
| | - Mohamed Chebaibi
- Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez 30000, Morocco;
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy of Fez, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30003, Morocco; (M.T.); (G.N.); (A.E.G.); (M.B.); (D.O.); (B.L.); (E.D.)
- Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez 30000, Morocco;
| | - Driss Ousaaid
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30003, Morocco; (M.T.); (G.N.); (A.E.G.); (M.B.); (D.O.); (B.L.); (E.D.)
| | - Khalid S. Almaary
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco
| | - Khallouki Farid
- Ethnopharmacology and Pharmacognosy Team, Department of Biology, Moulay Ismail University of Meknes, Errachidia 52000, Morocco;
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30003, Morocco; (M.T.); (G.N.); (A.E.G.); (M.B.); (D.O.); (B.L.); (E.D.)
| | - Elhoussine Derwich
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30003, Morocco; (M.T.); (G.N.); (A.E.G.); (M.B.); (D.O.); (B.L.); (E.D.)
- Unity of GC/MS, GC-FID, City of Innovation, Sidi Mohamed bin Abdellah University, Fez 30003, Morocco
| |
Collapse
|
11
|
Shukla P, Sakure A, Basaiawmoit B, Khakhariya R, Maurya R, Bishnoi M, Kondepudi KK, Liu Z, Padhi S, Rai AK, Hati S. Molecular binding mechanism and novel antidiabetic and anti-hypertensive bioactive peptides from fermented camel milk with anti-inflammatory activity in raw macrophages cell lines. Amino Acids 2023; 55:1621-1640. [PMID: 37749439 DOI: 10.1007/s00726-023-03335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
The investigation was to determine the effect of camel milk fermented with Limosilactobacillus fermentum KGL4 (MTCC 25515) on ACE-inhibiting, anti-inflammatory, and diabetes-preventing properties and also to release the novel peptides with antidiabetic and anti-hypertensive attributes with molecular interaction studies. Growth conditions were optimised on the basis of total peptide production by inoculating the culture in camel milk at different rates (1.5, 2.0, and 2.5%) along with different incubation periods (12, 24, 36, and 48 h). However, after 48 h of fermentation with a 2.5% rate of inoculum, the highest proteolytic activity was obtained. Reverse phase high-pressure liquid chromatography (RP-HPLC) was used to calculate the % Rpa from permeates of 3 kDa and 10 kDa fractions. Molecular weight distributions of fermented and unfermented camel milk protein fractions were compared using SDS-PAGE. Spots obtained from 2D gel electrophoresis were separated on the basis of pH and molecular weight. Spots obtained from 2D gel were digested with trypsin, and the digested samples were subjected to RP-LC/MS for the generation of peptide sequences. The inhibition of tumour necrosis factor alpha, interleukin-6, and interleukin-1 during fermentation was studied using RAW 264.7 macrophages. In the study, fermented camel milk with KGL4 (CMKGL4) inhibited LPS-induced nitric oxide (NO) production and pro-inflammatory cytokine production (TNF-α, IL-6, and IL-1β) by the murine macrophages. The results showed that the peptide structures (YLEELHRLNK and YLQELYPHSSLKVRPILK) exhibited considerable binding affinity against hPAM and hMGA during molecular interaction studies.
Collapse
Affiliation(s)
- Pratik Shukla
- Dairy Microbiology Department, SMC College of Dairy Science, Kamdhenu University, Anand, 388110, Gujarat, India
| | - Amar Sakure
- Department of Plant Biotechnology, B.A College of Agriculture, Anand Agricultural University, Anand, 388110, Gujarat, India
| | - Bethsheba Basaiawmoit
- Dept. of Rural Development and Agricultural Production, North-Eastern Hill University, Tura Campus, Chasingre, 794002, Meghalaya, India
| | - Ruchita Khakhariya
- Dairy Microbiology Department, SMC College of Dairy Science, Kamdhenu University, Anand, 388110, Gujarat, India
| | - Ruchika Maurya
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector 81, SAS Nagar, 140306, Punjab, India
- Regional Center for Biotechnology, Faridabad, 121001, Haryana, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector 81, SAS Nagar, 140306, Punjab, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector 81, SAS Nagar, 140306, Punjab, India
| | - Zhenbin Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, 18, Xi'an, 710021, China
| | - Srichandan Padhi
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, 737102, Sikkim, India
| | - Amit Kumar Rai
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector 81, SAS Nagar, 140306, Punjab, India
| | - Subrota Hati
- Dairy Microbiology Department, SMC College of Dairy Science, Kamdhenu University, Anand, 388110, Gujarat, India.
| |
Collapse
|
12
|
Sharma S, Padhi S, Chourasia R, Dey S, Patnaik S, Sahoo D. Phytoconstituents from Urtica dioica (stinging nettle) of Sikkim Himalaya and their molecular docking interactions revealed their nutraceutical potential as α-amylase and α-glucosidase inhibitors. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2649-2658. [PMID: 37599855 PMCID: PMC10439086 DOI: 10.1007/s13197-023-05789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 08/22/2023]
Abstract
In this study, antioxidative methanolic leaf extract (MeOH-SIS) of Urtica dioica was characterized for anti-diabetic activity. The extract was purified on a column to yield seven homogenous fractions (F1-F7) which were further determined for DPPH radical scavenging activity. MeOH-SIS and the fraction F1 (selected based on % yield and activity) were evaluated for their in vitro α-amylase and α-glucosidase inhibitory activity. The results showed inhibition of both enzymes in a dose dependent manner and F1 exhibited relatively higher inhibition than its mother extract MeOH-SIS. GC-MS analyses of both the extracts identified 24 major compounds among which 10 were previously described as bioactive compounds. Among all, 5 compounds demonstrated to have quality pharmacokinetics profiles and were examined for possible binding affinity against the active sites of α-amylase and α-glucosidase using molecular docking. The binding interaction of 2R-acetoxymethyl-1,3,3-trimethyl-4 T-(3-methyl-2-buten-1-yl)-1 T-cyclohexanol within the active sites of the target receptors was found to be significant among others, and can be developed as a potential inhibitor of α-amylase and α-glucosidase. The leaf extract can be utilized to develop food additive for the control and management of oxidative stress induced diabetes.
Collapse
Affiliation(s)
- Swati Sharma
- Institute of Bioresources and Sustainable Development, Regional Centre, Gangtok, Sikkim India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha India
| | - Srichandan Padhi
- Institute of Bioresources and Sustainable Development, Regional Centre, Gangtok, Sikkim India
| | - Rounak Chourasia
- Institute of Bioresources and Sustainable Development, Regional Centre, Gangtok, Sikkim India
| | - Sourav Dey
- Gauhati Biotech Park, Gauhati, 781031 India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha India
| | - Dinabandhu Sahoo
- Institute of Bioresources and Sustainable Development, Regional Centre, Gangtok, Sikkim India
- Department of Botany, University of Delhi, New Delhi, India
| |
Collapse
|
13
|
Singh VK, Kumar A. Secondary metabolites from endophytic fungi: Production, methods of analysis, and diverse pharmaceutical potential. Symbiosis 2023; 90:1-15. [PMID: 37360552 PMCID: PMC10249938 DOI: 10.1007/s13199-023-00925-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023]
Abstract
The synthesis of secondary metabolites is a constantly functioning metabolic pathway in all living systems. Secondary metabolites can be broken down into numerous classes, including alkaloids, coumarins, flavonoids, lignans, saponins, terpenes, quinones, xanthones, and others. However, animals lack the routes of synthesis of these compounds, while plants, fungi, and bacteria all synthesize them. The primary function of bioactive metabolites (BM) synthesized from endophytic fungi (EF) is to make the host plants resistant to pathogens. EF is a group of fungal communities that colonize host tissues' intracellular or intercellular spaces. EF serves as a storehouse of the above-mentioned bioactive metabolites, providing beneficial effects to their hosts. BM of EF could be promising candidates for anti-cancer, anti-malarial, anti-tuberculosis, antiviral, anti-inflammatory, etc. because EF is regarded as an unexploited and untapped source of novel BM for effective drug candidates. Due to the emergence of drug resistance, there is an urgent need to search for new bioactive compounds that combat resistance. This article summarizes the production of BM from EF, high throughput methods for analysis, and their pharmaceutical application. The emphasis is on the diversity of metabolic products from EF, yield, method of purification/characterization, and various functions/activities of EF. Discussed information led to the development of new drugs and food additives that were more effective in the treatment of disease. This review shed light on the pharmacological potential of the fungal bioactive metabolites and emphasizes to exploit them in the future for therapeutic purposes.
Collapse
Affiliation(s)
- Vivek Kumar Singh
- Department of Biotechnology, National Institute of Technology, Raipur (CG), Raipur, 492010 Chhattisgarh India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur (CG), Raipur, 492010 Chhattisgarh India
| |
Collapse
|
14
|
Mansinhbhai CH, Sakure A, Liu Z, Maurya R, Das S, Basaiawmoit B, Bishnoi M, Kondepudi KK, Padhi S, Rai AK, Mishra BK, Hati S. Anti-Inflammatory, ACE Inhibitory, Antioxidative Activities and Release of Novel Antihypertensive and Antioxidative Peptides from Whey Protein Hydrolysate with Molecular Interactions. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:371-385. [PMID: 35584265 DOI: 10.1080/07315724.2022.2052201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The aim of the study was to evaluate the whey protein hydrolysate with bio-functional attributes viz. antioxidative, anti-inflammatory and ACE inhibition efficacy and release of bioactive peptides with antioxidative and ACE-inhibitory activity by employing Pepsin. METHOD The antioxidant, Anti-inflammatory, ACE inhibitory and proteolytic activities of the whey protein hydrolysates were studied followed by SDS-PAGE analysis and IEF. Anti-inflammatory activity of whey protein hydrolysate was also studied on RAW 264.7 cell line. The separation of the bioactive peptides from whey protein hydrolysate was achieved by RP-HPLC. The purified bioactive peptides were identified and characterized using RPLC/MS. RESULTS WPC (Whey protein concentrate) hydrolysate with pepsin showed proteolytic activity ranging between 14.46 and 18.87 mg/ml. Using the ABTS assay, the highest antioxidative activity was observed in 10 kDa retentate (84.50%) and 3 kDa retentate (85.96%), followed by the highest proteolytic activity (13.83 mg/ml) and ACE inhibitory activity (58.37%) in a 5% WPC solution at 65 °C after 8 h of pepsin hydrolysis. When the protein hydrolysate concentration was low, the production of proinflammatory cytokines by lipopolysaccharide-treated murine macrophages (RAW 264.7) was reduced. SDS-PAGE results exhibited very little protein bands when comparing with WPC hydrolysates to insoluble WPC. There were no protein spots on 2 D gel electrophoresis and "in-solution trypsin digestion" technique have been utilized to digest protein samples directly from WPC hydrolysates. Novel antioxidative peptides and ACE inhibitory peptides were also observed by comparing two databases, i.e., BIOPEP and AHTPDB respectively. The peptide sequences used in this study were found to have excellent potential to be used as inhibitors of hACE as all of them were able to show substantial interactions against the enzyme's active site. CONCLUSIONS The antihypertensive and antioxidative peptides from whey protein hydrolysates may be beneficial for the future development of physiologically active functional foods. Further, in vivo investigations are required to establish the health claim for each individual bioactive peptide from whey protein hydrolysate. Supplemental data for this article is available online at.
Collapse
Affiliation(s)
| | - Amar Sakure
- Department of Agriculture Biotechnology, Anand Agricultural University, Anand, Gujarat, India
| | - Zhenbin Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Ruchika Maurya
- Regional Center for Biotechnology, Faridabad, Haryana, India
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Knowledge City, Punjab, India
| | - Sujit Das
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura, Meghalaya, India
| | - Bethsheba Basaiawmoit
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura, Meghalaya, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Knowledge City, Punjab, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Knowledge City, Punjab, India
| | - Srichandan Padhi
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Birendra K Mishra
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura, Meghalaya, India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, Gujarat, India
| |
Collapse
|
15
|
Paramita Pal P, Sajeli Begum A, Ameer Basha S, Araya H, Fujimoto Y. New natural pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) and iNOS inhibitors identified from Penicillium polonicum through in vitro and in vivo studies. Int Immunopharmacol 2023; 117:109940. [PMID: 37012863 DOI: 10.1016/j.intimp.2023.109940] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/11/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023]
Abstract
Overexpression of pro-inflammatory cytokines and iNOS have been found to be concomitant with several chronic inflammatory diseases and hence targeting their inhibition would be a useful therapy for inflammation. In view of this, study on discovery of natural pro-inflammatory cytokines inhibitory lead molecules from Penicillium polonicum, an endophytic fungus isolated from the fresh fruits of Piper nigrum was performed. When the culture broth extract of P. polonicum (EEPP) was subjected to LPS-induced cytokines expression (ELISA in RAW 264.7 cells), it exhibited inhibition of TNF-α, IL-6 and IL-1β and this encouraged us to do chemical investigation on EEPP to explore the bioactive components. Four compounds isolated and characterised as 3,5-di-tert-butyl-4-hydroxy-phenyl propionic acid (1), 2,4-di-tert-butyl phenol (2), indole 3-carboxylic acid (3) and tyrosol (4) were tested for their effect on the production of TNF-α, IL-1β and IL-6 in RAW 264.7 cells (ELISA). All the compounds exhibited a highly significant (P < 0.0001) inhibition effect, particularly against IL-1β (IC50: 4-0.91 μM, 1-2.81 μM, 3-4.38 μM, and 2-5.54 μM). Tyrosol (4) was most active with IC50 values of 0.91, 2.67 and 4.60 μM against IL-1β, IL-6 and TNF-α, respectively. On observing the potential activity of the compounds, two compositions C1 and C2 were prepared by mixing equimolar concentrations of compounds 1, 2, 3 & 4 (C1) and compounds 1, 2, 3, 4 & piperine (C2) in equal ratio. A synergistic effect was observed with C1 exhibiting potential suppression of IL-6 secretion (IC50 1.91 μM) and C2 against IL-1β (IC50 5.98 μM). Also, the individual compounds and C1 were effective in controlling iNOS expressions in RAW 264.7 cells (RTPCR). Further, the in vivo performance of the compounds and compositions were studied under two in vivo inflammatory models (LPS-induced endotoxaemia and carrageenan-induced paw oedema). Compounds 1, 2, 3, 4, C1 and C2 at 50 mg/kg oral dose showed a significant control over the LPS-stimulated TNF-α, IL-1β and IL-6 levels in plasma. C1, C2 and 1 exhibited > 50% pan-cytokine inhibition effect. Under the carrageenan-induced anti-inflammatory model, a significant reduction in the paw oedema measured in terms of the difference in the paw thickness was observed. Further, attenuation of pro-inflammatory cytokines levels following ELISA and RT-PCR experiments in the paw tissue homogenate was in agreement with paw thickness results. All compounds and C1 decreased the iNOS gene expression levels, and also the MPO activity and NO production in the paw tissue homogenate with tyrosol (4) as the most active molecule. Further, the mechanism of action was explored by testing the effect of the compounds on the expression of inflammatory markers using western blot analysis (in vitro). They were found to regulate the expression of pro-form and matured-form of IL-1β by inhibiting NFκB. Also, the compounds reduced the translocation of the NF-κB subunit p65 to the nucleus. Thus, compounds 3,5-di-tert-butyl-4-hydroxy-phenyl propionic acid (1), 2,4-di-tert-butyl phenol (2), indole 3-carboxylic acid (3) and tyrosol (4) are reported as new natural multiple pro-inflammatory cytokines inhibitory leads. The interesting results of C1 might lay a footing for the development of a new anti-inflammatory composition.
Collapse
Affiliation(s)
- Pragya Paramita Pal
- Department of Pharmacy, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad 500078, Telangana State, India
| | - Ahil Sajeli Begum
- Department of Pharmacy, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad 500078, Telangana State, India.
| | - S Ameer Basha
- Department of Plant Pathology, Professor Jeyashanker Telangana State Agricultural University, Rajendra Nagar, Hyderabad 500030, Telangana State, India
| | - Hiroshi Araya
- School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Yoshinori Fujimoto
- School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
16
|
Ephedra foeminea as a Novel Source of Antimicrobial and Anti-Biofilm Compounds to Fight Multidrug Resistance Phenotype. Int J Mol Sci 2023; 24:ijms24043284. [PMID: 36834695 PMCID: PMC9965181 DOI: 10.3390/ijms24043284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Plants are considered a wealthy resource of novel natural drugs effective in the treatment of multidrug-resistant infections. Here, a bioguided purification of Ephedra foeminea extracts was performed to identify bioactive compounds. The determination of antimicrobial properties was achieved by broth microdilution assays to evaluate minimal inhibitory concentration (MIC) values and by crystal violet staining and confocal laser scanning microscopy analyses (CLSM) to investigate the antibiofilm capacity of the isolated compounds. Assays were performed on a panel of three gram-positive and three gram-negative bacterial strains. Six compounds were isolated from E. foeminea extracts for the first time. They were identified by nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) analyses as the well-known monoterpenoid phenols carvacrol and thymol and as four acylated kaempferol glycosides. Among them, the compound kaempferol-3-O-α-L-(2″,4″-di-E-p-coumaroyl)-rhamnopyranoside was found to be endowed with strong antibacterial properties and significant antibiofilm activity against S. aureus bacterial strains. Moreover, molecular docking studies on this compound suggested that the antibacterial activity of the tested ligand against S. aureus strains might be correlated to the inhibition of Sortase A and/or of tyrosyl tRNA synthase. Collectively, the results achieved open interesting perspectives to kaempferol-3-O-α-L-(2″,4″-di-E-p-coumaroyl)-rhamnopyranoside applicability in different fields, such as biomedical applications and biotechnological purposes such as food preservation and active packaging.
Collapse
|
17
|
In silico pharmacokinetics, molecular docking and dynamic simulation studies of endolichenic fungi secondary metabolites: An implication in identifying novel kinase inhibitors as potential anticancer agents. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Bora P, Devi NN. Exploration of the chemical constituents and its antioxidant, antibacterial activities of endophytic fungi isolated from the medicinal plant Dillenia indica. Arch Microbiol 2023; 205:67. [PMID: 36653666 DOI: 10.1007/s00203-023-03407-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023]
Abstract
Assam, India being the pool for ethnomedicinal plants harbors diverse endophytic fungi constituting major bioactive metabolites. The present study was designed to screen the antioxidant, antibacterial activities along with the chemical constituents of the endophytic fungi isolated from the fruits of Dillenia indica (commonly known as Otenga in Assam). Screening of such metabolic compounds and their antioxidant, antibacterial activities can have tremendous potential in suppressing certain diseases. Agar well diffusion method has been used to carry out the antibacterial assay against three pathogenic bacteria two gram positive [Bacillus subtilis (MTCC No. 441); Staphylococcus aureus (MTCC No. 740)] and one gram negative [Escherichia coli (MTCC No. 739)]. Aspergillus fumigatus of ethyl acetate extract showed a prominent activity against Staphylococcus aureus followed by Aspergillus flavus and Aspergillus niger. Antioxidants have the potential to neutralize and inhibit the action of free radicals. The highest scavenging activity was exhibited by ethyl acetate extract of Aspergillus fumigatus in DPPH assay. Furthermore, the phytochemical screening revealed the presence of flavonoids, alkaloids, terpenoids and saponins. Result showed that ethyl acetate extract of Aspergillus fumigatus showed the highest phenolic content (236.81 ± 0.2 mg.g-1) and least was shown by Aspergillus flavus (92.12 ± 1.4 mg.g-1). Total flavonoids content for Aspergillus fumigatus (39.08 ± 0.2 mg.g-1) was found to be highest compared to other isolates. Molecular identification of the endophytic fungus showing highest activity was done based on 18S rRNA. The sequenced was submitted in Genbank with accession number MH540721 showing high similarities with Aspergillus fumigatus strain 3,162,954. A. fumigatus strain is subjected to GC/MS analysis that revealed the chemical constituents 2-isopropyl-5-methyl-1-heptanol, dodecane, 1-fluoro-pentanoic acid, 2-ethylhexyl ester, 1-octanol, 2-butyl-1-dodecanol. Thus, the present work reveals that endophytic fungi colonizing in ethnomedicinal plant Dillenia indica could be a promising source for antioxidant and antibacterial activity. Further work is needed to add value in various therapeutic and pharmaceutical fields.
Collapse
Affiliation(s)
- Pinky Bora
- Cotton University, Guwahati, India, 781001
| | | |
Collapse
|
19
|
Munusamy M, Tan K, Nge CE, Gakuubi MM, Crasta S, Kanagasundaram Y, Ng SB. Diversity and Biosynthetic Potential of Fungi Isolated from St. John's Island, Singapore. Int J Mol Sci 2023; 24:1033. [PMID: 36674548 PMCID: PMC9861175 DOI: 10.3390/ijms24021033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Adaptation to a wide variety of habitats allows fungi to develop unique abilities to produce diverse secondary metabolites with diverse bioactivities. In this study, 30 Ascomycetes fungi isolated from St. John's Island, Singapore were investigated for their general biosynthetic potential and their ability to produce antimicrobial secondary metabolites (SMs). All the 30 fungal isolates belong to the Phylum Ascomycota and are distributed into 6 orders and 18 genera with Order Hypocreales having the highest number of representative (37%). Screening for polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) genes using degenerate PCR led to the identification of 23 polyketide synthases (PKSs) and 5 nonribosomal peptide synthetases (NRPSs) grouped into nine distinct clades based on their reduction capabilities. Some of the identified PKSs genes share high similarities between species and known reference genes, suggesting the possibility of conserved biosynthesis of closely related compounds from different fungi. Fungal extracts were tested for their antimicrobial activity against S. aureus, Methicillin-resistant S. aureus (MRSA), and Candida albicans. Bioassay-guided fractionation of the active constituents from two promising isolates resulted in the isolation of seven compounds: Penilumamides A, D, and E from strain F4335 and xanthomegnin, viomellein, pretrichodermamide C and vioxanthin from strain F7180. Vioxanthin exhibited the best antibacterial activity with IC50 values of 3.0 μM and 1.6 μM against S. aureus and MRSA respectively. Viomellein revealed weak antiproliferative activity against A549 cells with an IC50 of 42 μM. The results from this study give valuable insights into the diversity and biosynthetic potential of fungi from this unique habitat and forms a background for an in-depth analysis of the biosynthetic capability of selected strains of interest with the aim of discovering novel fungal natural products.
Collapse
Affiliation(s)
- Madhaiyan Munusamy
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore
| | - Kenneth Tan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore
| | - Choy Eng Nge
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore
| | - Martin Muthee Gakuubi
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Sharon Crasta
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore
| | - Yoganathan Kanagasundaram
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore
| | - Siew Bee Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore
| |
Collapse
|
20
|
A comparative study of fermented buffalo and camel milk with anti-inflammatory, ACE-inhibitory and anti-diabetic properties and release of bio active peptides with molecular interactions: In vitro, in silico and molecular study. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
21
|
Chopada K, Basaiawmoit B, Sakure AA, Maurya R, Bishnoi M, Kondepudi KK, Solanki D, Singh BP, Padhi S, Rai AK, Liu Z, Mishra BK, Hati S. Purification and Characterization of Novel Antihypertensive and Antioxidative Peptides From Whey Protein Fermentate: In Vitro, In Silico, and Molecular Interactions Studies. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2022:1-20. [PMID: 36416542 DOI: 10.1080/27697061.2022.2110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE The goal of this research was to purify and characterize the novel angiotensin-converting enzyme (ACE)-inhibitory and antioxidant peptides from fermented whey protein concentrate produced by Lactobacillus paracasei and Saccharomyces cerevisiae in a co-fermentation system. METHOD Whey protein fermented with lactic acid bacteria and yeast culture was analyzed for antioxidative, ACE inhibition, as well as anti-inflammatory activity followed by SDS-PAGE, isoelectric focusing, and 2-dimensional (2D) analysis. Anti-inflammatory activity of whey protein fermentate was also studied on the RAW 264.7 cell line. The bioactive peptides were separated from the whey protein fermentate using reverse-phase high-performance liquid chromatography (RP-HPLC) and reverse-phase liquid chromatography mass spectrometry (RPLC/MS), and thus identification and characterization of purified bioactive peptide was performed. RESULTS Whey protein fermentate samples' bioactivity was analyzed at specific time intervals at 12, 24, 36, and 48 hours at 37 °C for M11 and at 25 °C for WBS2A. The development settings (incubation time [12, 24, 36, and 48 hours) and inoculation rates [1.5%, 2.0%, and 2.5%]) were optimized for peptide synthesis via the o-phthaldialdehyde (OPA) method (proteolytic activity). Maximum proteolytic activity was observed at 37 °C for M11 (6.50 mg/mL) and at 25 °C for WBS2A (8.59 mg/mL) for 48 hours of incubation. Protein profiling was carried out using SDS-PAGE and 2D gel electrophoresis, in which Sodium dodecyl-sulfate (SDS) exhibited protein bands in the 10- to 55-kDa range, while 2D showed protein bands varying from 10 to 70 kDa. Every spot from 2D was digested by trypsin and identified by RPLC/MS. Protein fractionations (3- and 10-kDa permeates) were carried out employing RP-HPLC. Whey protein fermentate has anti-inflammatory action in RAW 264.7 macrophages that have been exposed to lipopolysaccharide. A molecular docking system was also used to investigate the interactions of peptides (AFLDSRTR, ILGAFIQIITFR) with human myeloperoxidase enzyme. CONCLUSIONS The antihypertensive and antioxidative peptides discovered from whey protein fermentate may be helpful in the design of pharmacologically active healthy ingredients in the upcoming years.
Collapse
Affiliation(s)
- Keval Chopada
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Gandhinagar, Gujarat, India
| | - Bethsheba Basaiawmoit
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura, Meghalaya, India
| | - Amar A Sakure
- Department of Agriculture Biotechnology, Anand Agricultural University, Anand, Gujarat, India
| | - Ruchika Maurya
- Regional Center for Biotechnology, Faridabad, Haryana, India
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Knowledge City, Punjab, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Knowledge City, Punjab, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Knowledge City, Punjab, India
| | - Divyang Solanki
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - B P Singh
- Department of Microbiology, Central University of Haryana, Mahendragarh, Haryana, India
| | - Srichandan Padhi
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Zhenbin Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - B K Mishra
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura, Meghalaya, India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Gandhinagar, Gujarat, India
| |
Collapse
|
22
|
Shukla P, Sakure A, Maurya R, Bishnoi M, Kondepudi KK, Das S, Liu Z, Padhi S, Rai AK, Hati S. Antidiabetic, angiotensin‐converting enzyme inhibitory and anti‐inflammatory activities of fermented camel milk and characterisation of novel bioactive peptides from lactic‐fermented camel milk with molecular interaction study. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pratik Shukla
- Dairy Microbiology Department, SMC College of Dairy Science Anand Agricultural University Anand 388110 Gujarat India
| | - Amar Sakure
- Department of Plant Biotechnology B.A College of Agriculture Anand 388110 Gujarat India
| | - Ruchika Maurya
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, Centre of Excellence in Functional Foods National Agri‐Food Biotechnology Institute (NABI) Knowledge City, Sector 81, SAS Nagar Mohali Punjab 140306 India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, Centre of Excellence in Functional Foods National Agri‐Food Biotechnology Institute (NABI) Knowledge City, Sector 81, SAS Nagar Mohali Punjab 140306 India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, Centre of Excellence in Functional Foods National Agri‐Food Biotechnology Institute (NABI) Knowledge City, Sector 81, SAS Nagar Mohali Punjab 140306 India
| | - Sujit Das
- Department of Rural Development and Agricultural Production North‐Eastern Hill University Tura Campus Chasingre 794002 Meghalaya India
| | - Zhenbin Liu
- School of Food and Biological Engineering Shaanxi University of Science and Technology 18 Xi'an 710021, China
| | - Srichandan Padhi
- Institute of Bioresources and Sustainable Development, Regional Centre Tadong 737102 Sikkim India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development, Regional Centre Tadong 737102 Sikkim India
| | - Subrota Hati
- Dairy Microbiology Department, SMC College of Dairy Science Kamdhenu University Anand ‐388110 Gujarat India
| |
Collapse
|
23
|
Dos Reis JBA, Lorenzi AS, do Vale HMM. Methods used for the study of endophytic fungi: a review on methodologies and challenges, and associated tips. Arch Microbiol 2022; 204:675. [PMID: 36264513 PMCID: PMC9584250 DOI: 10.1007/s00203-022-03283-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/26/2022]
Abstract
Endophytic fungi are microorganisms that colonize the interior of plant tissues (e.g. leaves, seeds, stem, trunk, roots, fruits, flowers) in intracellular and/or extracellular spaces without causing symptoms of disease in host plants. These microorganisms have been isolated from plant species in a wide variety of habitats worldwide, and it is estimated that all terrestrial plants are colonized by one or more species of endophytic fungus. In addition, these microorganisms have been drawing the attention of researchers because of their ability to synthesize a wide range of bioactive molecules with potential for applications in agriculture, medicine and biotechnology. However, several obstacles come up when studying the diversity and chemical potential of endophytic fungi. For example, the usage of an inappropriate surface disinfection method for plant tissue may not eliminate the epiphytic microbiota or may end up interfering with the endophytic mycobiota, which consequently generates erroneous results. Moreover, the composition of the culture medium and the culture conditions can favor the growth of certain species and inhibit others, which generates underestimated results. Other inconsistencies can arise from the fungus misidentification and consequent exploration of its chemical potential. Based on the methodological biases that may occur at all stages of studies dealing with endophytic fungi, the objective of this review is to discuss the main methods employed in these studies as well as highlight the challenges derived from the different approaches. We also report associated tips to help future studies on endophytic fungi as a contribution.
Collapse
Affiliation(s)
| | - Adriana Sturion Lorenzi
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, DF, Brazil
| | - Helson Mario Martins do Vale
- Department of Phytopathology, Institute of Biological Sciences, University of Brasília (UnB), Brasília, DF, Brazil
| |
Collapse
|
24
|
Zhang J, Zhu Y, Si J, Wu L. Metabolites of medicine food homology-derived endophytic fungi and their activities. Curr Res Food Sci 2022; 5:1882-1896. [PMID: 36276242 PMCID: PMC9579210 DOI: 10.1016/j.crfs.2022.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Accepted: 10/06/2022] [Indexed: 11/04/2022] Open
Abstract
Medicine food homology (MFH) substances not only provide essential nutrients as food but also have corresponding factors that can prevent and help treat nutritional imbalances, chronic disease, and other related issues. Endophytic fungi associated with plants have potential for use in drug discovery and food therapy. However, the endophytic fungal metabolites from MFH plants and their effects have been overlooked. Therefore, this review focuses on the various biological activities of 108 new metabolites isolated from 53 MFH-derived endophytic fungi. The paper explores the potential nutritional and medicinal value of metabolites of MFH-derived endophytic fungi for food and medical applications. This research is important for the future development of effective, safe, and nontoxic therapeutic nutraceuticals for the prevention and treatment of human diseases.
Collapse
|
25
|
Sharifi-Rad M, Mohanta YK, Pohl P, Jaradat N, Aboul-Soud MAM, Zengin G. Variation of phytochemical constituents, antioxidant, antibacterial, antifungal, and anti-inflammatory properties of Grantia aucheri (Boiss.) at different growth stages. Microb Pathog 2022; 172:105805. [PMID: 36179974 DOI: 10.1016/j.micpath.2022.105805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022]
Abstract
Phyto-natural products are deeply associated with ethno-medicinal practices with less or more scientific validation for curing many vital diseases. Thus, the present study was carried out to asses chemical constituents and bioactivities of Grantia aucheri Boiss at different growth stages (vegetative, flowering, and seeding). For this aim, the chemical composition of G. aucheri ethanolic extracts was analyzed by gas chromatography with mass spectrometry detection (GC-MS), their total phenolics, total flavonoids, total tannins, and total anthocyanins concentrations were also spectrophotometrically determined. Antifungal and antibacterial activities were determined against three pathogenic fungi and six human pathogenic bacteria. Furthermore, antioxidant activity (DPPH and ABTS scavenging) and anti-inflammatory activity (Human Red Blood Cell Stabilization Method) were evaluated. The highest content of total phenolics, total flavonoids, total tannins, and total anthocyanins were established in the extract of G. aucheri at its flowering stage. Such phyto-compounds as boranyl acetate, β-himachalene and himachalol were major compounds found among 34 chemical constituents identified. The best antioxidant, anti-inflammatory, antifungal, and antibacterial activities were also found for this extract. Its phytochemicals presented bactericidal activities, mainly against Staphylococcus aureus, Bacillus subtilis, and Streptococcus pyogenes along with moderate fungicidal activity, however, it was less effective than the first one. Apart from antioxidant, antimicrobial, and anti-inflammatory activities, chemical constituents of G. aucheri may be potential alternative biomedical applications to reduce synthetic chemicals drugs.
Collapse
Affiliation(s)
- Majid Sharifi-Rad
- Department of Range and Watershed Management, Faculty of Water and Soil, University of Zabol, Zabol, 98613-35856, Iran.
| | - Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Ri-Bhoi, 793101, India
| | - Pawel Pohl
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, University of Science and Technology, Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P.O. Box. 7, Palestine
| | - Mourad A M Aboul-Soud
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, 42130, Turkey
| |
Collapse
|
26
|
Masi M, Castaldi S, Sautua F, Pescitelli G, Carmona MA, Evidente A. Truncatenolide, a Bioactive Disubstituted Nonenolide Produced by Colletotrichum truncatum, the Causal Agent of Anthracnose of Soybean in Argentina: Fungal Antagonism and SAR Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9834-9844. [PMID: 35925677 PMCID: PMC9389607 DOI: 10.1021/acs.jafc.2c02502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/13/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
A bioactive disubstituted nonenolide, named truncatenolide, was produced by Colletotrichum truncatum, which was collected from infected tissues of soybean showing anthracnose symptoms in Argentina. This is a devastating disease that drastically reduces the yield of soybean production in the world. The fungus also produced a new trisubstituted oct-2-en-4-one, named truncatenone, and the well-known tyrosol and N-acetyltyramine. Truncatenolide and truncatenone were characterized by spectroscopic (essentially one-dimensional (1D) and two-dimensional (2D) 1H and 13C NMR and HR ESIMS) and chemical methods as (5E,7R,10R)-7-hydroxy-10-methyl-3,4,7,8,9,10-hexahydro-2H-oxecin-2-one and (Z)-6-hydroxy-3,5-dimethyloct-2-en-4-one, respectively. The geometry of the double bond of truncatenolide was assigned by the value of olefinic proton coupling constant and that of truncatenone by the correlation observed in the corresponding NOESY spectrum. The relative configuration of each stereogenic center was assigned with the help of 13C chemical shift and 1H-1H scalar coupling DFT calculations, while the absolute configuration assignment of truncatenolide was performed by electronic circular dichroism (ECD). When tested on soybean seeds, truncatenolide showed the strongest phytotoxic activity. Tyrosol and N-acetyltyramine also showed phytotoxicity to a lesser extent, while truncatenone weakly stimulated the growth of the seed root in comparison to the control. When assayed against Macrophomina phaseolina and Cercospora nicotianae, other severe pathogens of soybean, truncatenolide showed significant activity against M. phaseolina and total inhibition of C. nicotianae. Thus, some other fungal nonenolides and their derivatives were assayed for their antifungal activity against both fungi in comparison with truncatenolide. Pinolidoxin showed to a less extent antifungal activity against both fungi, while modiolide A selectively and totally inhibited only the growth of C. nicotianae. The SAR results and the potential of truncatenolide, modiolide A, and pinolidoxin as biofungicides were also discussed.
Collapse
Affiliation(s)
- Marco Masi
- Dipartimento
di Scienze Chimiche, Università di
Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Stefany Castaldi
- Dipartimento
di Biologia, Università di Napoli
Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Francisco Sautua
- Cátedra
de Fitopatología, Facultad de Agronomía, Universidad de Buenos Aires, C1417DSE Buenos Aires, Argentina
| | - Gennaro Pescitelli
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Via Moruzzi
13, 56124 Pisa, Italy
| | - Marcelo Anibal Carmona
- Cátedra
de Fitopatología, Facultad de Agronomía, Universidad de Buenos Aires, C1417DSE Buenos Aires, Argentina
| | - Antonio Evidente
- Dipartimento
di Scienze Chimiche, Università di
Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| |
Collapse
|
27
|
More-Adate P, Lokhande KB, Swamy KV, Nagar S, Baheti A. GC-MS profiling of Bauhinia variegata major phytoconstituents with computational identification of potential lead inhibitors of SARS-CoV-2 Mpro. Comput Biol Med 2022; 147:105679. [PMID: 35667152 PMCID: PMC9158327 DOI: 10.1016/j.compbiomed.2022.105679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 01/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 was originally identified in Wuhan city of China in December 2019 and it spread rapidly throughout the globe, causing a threat to human life. Since targeted therapies are deficient, scientists all over the world have an opportunity to develop novel drug therapies to combat COVID-19. After the declaration of a global medical emergency, it was established that the Food and Drug Administration (FDA) could permit the use of emergency testing, treatments, and vaccines to decrease suffering, and loss of life, and restore the nation's health and security. The FDA has approved the use of remdesivir and its analogs as an antiviral medication, to treat COVID-19. The primary protease of SARS-CoV-2, which has the potential to regulate coronavirus proliferation, has been a viable target for the discovery of medicines against SARS-CoV-2. The present research deals with the in silico technique to screen phytocompounds from a traditional medicinal plant, Bauhinia variegata for potential inhibitors of the SARS-CoV-2 main protease. Dried leaves of the plant B. variegata were used to prepare aqueous and methanol extract and the constituents were analyzed using the GC-MS technique. A total of 57 compounds were retrieved from the aqueous and methanol extract analysis. Among these, three lead compounds (2,5 dimethyl 1-H Pyrrole, 2,3 diphenyl cyclopropyl methyl phenyl sulphoxide, and Benzonitrile m phenethyl) were shown to have the highest binding affinity (−5.719 to −5.580 kcal/mol) towards SARS-CoV-2 Mpro. The post MD simulation results also revealed the favorable confirmation and stability of the selected lead compounds with Mpro as per trajectory analysis. The Prime MM/GBSA binding free energy supports this finding, the top lead compound 2,3 diphenyl cyclopropyl methyl phenyl sulphoxide showed high binding free energy (−64.377 ± 5.24 kcal/mol) towards Mpro which reflects the binding stability of the molecule with Mpro. The binding free energy of the complexes was strongly influenced by His, Gln, and Glu residues. All of the molecules chosen are found to have strong pharmacokinetic characteristics and show drug-likeness properties. The lead compounds present acute toxicity (LD50) values ranging from 670 mg/kg to 2500 mg/kg; with toxicity classifications of 4 and 5 classes. Thus, these compounds could behave as probable lead candidates for treatment against SARS-CoV-2. However further in vitro and in vivo studies are required for the development of medication against SARS-CoV-2.
Collapse
|
28
|
Wang L, Xu A, Zhou P, Zhao M, Xu C, Wang Y, Wang K, Wang F, Miao Y, Zhao W, Gao X. Rapid Detection of Candida tropicalis in Clinical Samples From Different Sources Using RPA-LFS. Front Cell Infect Microbiol 2022; 12:898186. [PMID: 35873165 PMCID: PMC9301490 DOI: 10.3389/fcimb.2022.898186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Candida tropicalis is one of the few Candida species besides Candida albicans that is able to produce true hyphae. At present, the commonly used clinical methods for the identification of this organism are traditional fungal culture, CTB staining, and color development. Polymerase chain reaction (PCR) and real-time quantitative PCR (qPCR) are also used to identify this fungus. Since the course of C. tropicalis infection progresses rapidly, there is an urgent need for rapid, sensitive, real-time field assays to meet the needs of clinical diagnosis. Recombinase polymerase amplification (RPA) combined with lateral flow strip (LFS) can rapidly amplify and visualize target genes within 20 min, and by pre-processing samples from different sources, the entire process can be controlled within 30 min. In this study, RPA-LFS was used to amplify the internal transcribed spacer-2 (ITS2) gene of C. tropicalis, and primer-probe design was optimized by introducing base mismatches to obtain a specific and sensitive primer-probe combination for clinical sample detection. LFS assay for 37 common clinical pathogens was performed, sensitivity and specificity of the detection system was determined, reaction temperature and time were optimized, and 191 actual clinical samples collected from different sources were tested to evaluate the detection performance of the established RPA-LFS system to provide a reliable molecular diagnostic method for the detection of C. tropicalis, the results show that the RPA-LFS system can specifically detect C. tropicalis without cross-reacting with other fungi or bacterial, with a sensitivity of 9.94 CFU/µL, without interference from genomic DNA of other species, at an optimal reaction temperature of 39°C, and the whole reaction process can be controlled within 20 min, and to meet the clinical need for rapid, sensitive, real-time, and portable field testing.
Collapse
Affiliation(s)
- Lei Wang
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University (Cancer Hospital of Lianyungang), Lianyungang, China
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Aiguo Xu
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Ping Zhou
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Mengdi Zhao
- Department of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Chenglai Xu
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Yan Wang
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Kun Wang
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Fang Wang
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Yongchang Miao
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University (Cancer Hospital of Lianyungang), Lianyungang, China
- *Correspondence: Weiguo Zhao, ; Yongchang Miao, ; Xuzhu Gao,
| | - Weiguo Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- *Correspondence: Weiguo Zhao, ; Yongchang Miao, ; Xuzhu Gao,
| | - Xuzhu Gao
- Department of Central Laboratory, Lianyungang Hospital Affiliated to Jiangsu University (Cancer Hospital of Lianyungang), Lianyungang, China
- *Correspondence: Weiguo Zhao, ; Yongchang Miao, ; Xuzhu Gao,
| |
Collapse
|
29
|
Munshi M, Zilani MNH, Islam MA, Biswas P, Das A, Afroz F, Hasan MN. Novel compounds from endophytic fungi of Ceriops decandra inhibit breast cancer cell growth through estrogen receptor alpha in in-silico study. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|