1
|
Liu XH, Jin JL, Sun HT, Li S, Zhang FF, Yu XH, Cao QZ, Song YX, Li N, Lu ZH, Wang T, Liu F, Wang JM. Perspectives on the microorganisms with the potentials of PET-degradation. Front Microbiol 2025; 16:1541913. [PMID: 40143857 PMCID: PMC11938130 DOI: 10.3389/fmicb.2025.1541913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
Polyethylene terephthalate (PET), a widely used synthetic polymer in daily life, has become a major source of post-consumer waste due to its complex molecular structure and resistance to natural degradation, which has posed a significant threat to the global ecological environment and human health. Current PET-processing methods include physical, chemical, and biological approaches, however each have their limitations. Given that numerous microbial strains exhibit a remarkable capacity to degrade plastic materials, microbial degradation of PET has emerged as a highly promising alternative. This approach not only offers the possibility of converting waste into valuable resources but also contributes to the advancement of a circular economy. Therefore in this review, it is mainly focused on the cutting-edge microbial technologies and the key role of specific microbial strains such as Ideonella sakaiensis 201-F6, which can efficiently degrade and assimilate PET. Particularly noteworthy are the catalytic enzymes related to the metabolism of PET, which have been emphasized as a sustainable and eco-friendly strategy for plastic recycling within the framework of a circular economy. Furthermore, the study also elucidates the innovative utilization of degraded plastic materials as feedstock for the production of high-value chemicals, highlighting a sustainable path forward in the management of plastic waste.
Collapse
Affiliation(s)
- Xiao-huan Liu
- School of Biological Science, Jining Medical University, Jining, China
| | - Jun-li Jin
- School of Biological Science, Jining Medical University, Jining, China
| | - Hai-tong Sun
- School of Biological Science, Jining Medical University, Jining, China
| | - Shuo Li
- School of Biological Science, Jining Medical University, Jining, China
| | - Fei-fei Zhang
- School of Biological Science, Jining Medical University, Jining, China
| | - Xin-hong Yu
- School of Biological Science, Jining Medical University, Jining, China
| | - Qi-zhi Cao
- School of Biological Science, Jining Medical University, Jining, China
| | - Yu-xuan Song
- School of Biological Science, Jining Medical University, Jining, China
| | - Nan Li
- School of Biological Science, Jining Medical University, Jining, China
| | - Zhen-hua Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Tao Wang
- School of Biological Science, Jining Medical University, Jining, China
| | - Fei Liu
- School of Biological Science, Jining Medical University, Jining, China
| | - Jian-min Wang
- School of Pharmacy, Jining Medical University, Rizhao, China
| |
Collapse
|
2
|
Wu H, Li H, Li Z, Liu X, Li Q, Cheng M, Gong J. Interfacial engineering-based colonization of biofilms on polyethylene terephthalate (PET) surfaces: Implications for whole-cell biodegradation of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178002. [PMID: 39708756 DOI: 10.1016/j.scitotenv.2024.178002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024]
Abstract
Microplastic pollution has become a significant environmental issue. One of the most important sources and components of microplastics is polyester fabric - polyethylene terephthalate (PET). Because the catalytic depolymerization of PET typically requires specific conditions such as alkaline environments, specific solvents, or high temperatures, there is an urgent need for a simpler, eco-friendly solution with high degradation efficiency for managing the vast amounts of PET textile waste. In this study, Comamonas testosterone F4, which we screened and cultivated to grow using PET as the sole carbon source, was utilized as a whole-cell biocatalyst. The bioprocess was optimized through interfacial engineering, which leveraged dynamic supramolecular interactions and molecular recognition at the PET-enzyme interface. Biofilms were more effectively formed on the surfaces of PET@Span-80 and PET@TRE. Through supramolecular interactions, Span-80 and Trehalose lipids (TRE), which serve as host and guest chemicals, readily adhere to the PET surface. Compared to untreated PET fibers, PET surfaces treated with biodegradable surfactants showed increased hydrophilicity, which facilitated bacterial colonization and enhanced bacterial and enzymatic activity on PET. Furthermore, combining PET@Span-80 and a strategy for renewing bacterial cultures (RBC) resulted in a high-efficiency degradation effect over an extended degradation period. The weight loss of PET increased from 2.23 % to 5.67 % after four weeks of degradation. A more efficient method for the biodegradation of PET was proposed by our team. The developed interfacial enhancement system provides a practical approach to accelerate the degradation of PET fabric waste, thereby mitigating the substantial environmental impact of polyester textile waste.
Collapse
Affiliation(s)
- Haodong Wu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory for Advanced Textile Composites of the Education Ministry, Tiangong University, Tianjin 300387, China
| | - Huiqin Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory for Advanced Textile Composites of the Education Ministry, Tiangong University, Tianjin 300387, China
| | - Zheng Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory for Advanced Textile Composites of the Education Ministry, Tiangong University, Tianjin 300387, China
| | - Xiuming Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory for Advanced Textile Composites of the Education Ministry, Tiangong University, Tianjin 300387, China; Hebei Green Textile Technology Innovation Center, Xingtai, Hebei 055550, China
| | - Qiujin Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory for Advanced Textile Composites of the Education Ministry, Tiangong University, Tianjin 300387, China
| | - Meilin Cheng
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory for Advanced Textile Composites of the Education Ministry, Tiangong University, Tianjin 300387, China
| | - Jixian Gong
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory for Advanced Textile Composites of the Education Ministry, Tiangong University, Tianjin 300387, China; National Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong 271000, China.
| |
Collapse
|
3
|
Rezaei Z, Dinani AS, Moghimi H. Cutting-edge developments in plastic biodegradation and upcycling via engineering approaches. Metab Eng Commun 2024; 19:e00256. [PMID: 39687771 PMCID: PMC11647663 DOI: 10.1016/j.mec.2024.e00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
The increasing use of plastics has resulted in the production of high quantities of plastic waste that pose a serious risk to the environment. The upcycling of plastics into value-added products offers a potential solution for resolving the plastics environmental crisis. Recently, various microorganisms and their enzymes have been identified for their ability to degrade plastics effectively. Furthermore, many investigations have revealed the application of plastic monomers as carbon sources for bio-upcycling to generate valuable materials such as biosurfactants, bioplastics, and biochemicals. With the advancement in the fields of synthetic biology and metabolic engineering, the construction of high-performance microbes and enzymes for plastic removal and bio-upcycling can be achieved. Plastic valorization can be optimized by improving uptake and conversion efficiency, engineering transporters and enzymes, metabolic pathway reconstruction, and also using a chemo-biological hybrid approach. This review focuses on engineering approaches for enhancing plastic removal and the methods of depolymerization and upcycling processes of various microplastics. Additionally, the major challenges and future perspectives for facilitating the development of a sustainable circular plastic economy are highlighted.
Collapse
Affiliation(s)
- Zeinab Rezaei
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Amir Soleimani Dinani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hamid Moghimi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Lequan Q, Yanan F, Xianda Z, Mengyuan B, Chenyu L, Shijin W. Mechanisms and high-value applications of phthalate isomers degradation pathways in bacteria. World J Microbiol Biotechnol 2024; 40:247. [PMID: 38904858 DOI: 10.1007/s11274-024-04060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Phthalate isomers are key intermediates in the biodegradation of pollutants including waste polyethylene terephthalate (PET) plastics and plasticizers. So far, an increasing number of phthalate isomer-degrading strains have been isolated, and their degradation pathways show significant diversity. In this paper, we comprehensively review the current status of research on the degrading bacteria, degradation characteristics, aerobic and anaerobic degradation pathways, and degradation genes (clusters) of phthalate isomers, and discuss the current shortcomings and challenges. Moreover, the degradation process of phthalate isomers produces many important aromatic precursor molecules, which can be used to produce higher-value derivative chemicals, and the modification of their degradation pathways holds good prospects. Therefore, this review also highlights the current progress made in modifying the phthalate isomer degradation pathway and explores its potential for high-value applications.
Collapse
Affiliation(s)
- Qiu Lequan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.
| | - Fu Yanan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhou Xianda
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Bao Mengyuan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Li Chenyu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Wu Shijin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
5
|
Jayakody LN, Hamilton-Brehm SD, Anderson KB, McCarroll ME, Aruma Baduge GL, Sivakumar P, Majumder K, Jasiuk IM, Tannenbaum RR. Next-generation 3D-printed nutritious food derived from waste plastic and biomass. Trends Biotechnol 2024; 42:799-800. [PMID: 38755079 DOI: 10.1016/j.tibtech.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 05/18/2024]
Affiliation(s)
- Lahiru N Jayakody
- School of Biological Science, Southern Illinois University, Carbondale, IL, USA; Fermentation Science Institute, Southern Illinois University, Carbondale, IL, USA.
| | | | - Ken B Anderson
- Advanced Energy Institute, Southern Illinois University, Carbondale, IL, USA
| | - Matthew E McCarroll
- Fermentation Science Institute, Southern Illinois University, Carbondale, IL, USA
| | - Gayan L Aruma Baduge
- School of Electrical, Computer, Biomedical Engineering, Southern Illinois University, Carbondale, IL, USA
| | | | - Kaustav Majumder
- Department of Food Science and Technology, University of Nebraska-Lincoln, NE, USA
| | - Iwona M Jasiuk
- Department of Mechanical Science and Engineering, University of Illinois Urbana Champaign, IL, USA
| | - Rina R Tannenbaum
- Department of Materials Science and Chemical Engineering, Stony Brook University, NY, USA
| |
Collapse
|
6
|
Weiland F, Kohlstedt M, Wittmann C. Biobased de novo synthesis, upcycling, and recycling - the heartbeat toward a green and sustainable polyethylene terephthalate industry. Curr Opin Biotechnol 2024; 86:103079. [PMID: 38422776 DOI: 10.1016/j.copbio.2024.103079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Polyethylene terephthalate (PET) has revolutionized the industrial sector because of its versatility, with its predominant uses in the textiles and packaging materials industries. Despite the various advantages of this polymer, its synthesis is, unfavorably, tightly intertwined with nonrenewable fossil resources. Additionally, given its widespread use, accumulating PET waste poses a significant environmental challenge. As a result, current research in the areas of biological recycling, upcycling, and de novo synthesis is intensifying. Biological recycling involves the use of micro-organisms or enzymes to breakdown PET into monomers, offering a sustainable alternative to traditional recycling. Upcycling transforms PET waste into value-added products, expanding its potential application range and promoting a circular economy. Moreover, studies of cascading biological and chemical processes driven by microbial cell factories have explored generating PET using renewable, biobased feedstocks such as lignin. These avenues of research promise to mitigate the environmental footprint of PET, underlining the importance of sustainable innovations in the industry.
Collapse
Affiliation(s)
- Fabia Weiland
- Institute of Systems Biotechnology, Saarland University, Germany
| | | | | |
Collapse
|
7
|
Gopal MR, Kunjapur AM. Harnessing biocatalysis to achieve selective functional group interconversion of monomers. Curr Opin Biotechnol 2024; 86:103093. [PMID: 38417202 DOI: 10.1016/j.copbio.2024.103093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 03/01/2024]
Abstract
Polymeric materials are ubiquitous to modern life. However, reliance of petroleum for polymeric building blocks is not sustainable. The synthesis of macromolecules from recalcitrant polymer waste feedstocks, such as plastic waste and lignocellulosic biomass, presents an opportunity to bypass the use of petroleum-based feedstocks. However, the deconstruction and transformation of these alternative feedstocks remained limited until recently. Herein, we highlight examples of monomers liberated from the deconstruction of recalcitrant polymers, and more extensively, we showcase the state-of-the-art in biocatalytic technologies that are enabling synthesis of diverse upcycled monomeric starting materials for a wide variety of macromolecules. Overall, this review emphasizes the importance of functional group interconversion as a promising strategy by which biocatalysis can aid the diversification and upcycling of monomers.
Collapse
Affiliation(s)
- Madan R Gopal
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA; Center for Plastics Innovation, University of Delaware, Newark, DE, USA
| | - Aditya M Kunjapur
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA; Center for Plastics Innovation, University of Delaware, Newark, DE, USA.
| |
Collapse
|
8
|
Anusha JR, Citarasu T, Uma G, Vimal S, Kamaraj C, Kumar V, Muzammil K, Mani Sankar M. Recent advances in nanotechnology-based modifications of micro/nano PET plastics for green energy applications. CHEMOSPHERE 2024; 352:141417. [PMID: 38340992 DOI: 10.1016/j.chemosphere.2024.141417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/06/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Poly(ethylene terephthalate) (PET) plastic is an omnipresent synthetic polymer in our lives, which causes negative impacts on the ecosystem. It is crucial to take mandatory action to control the usage and sustainable disposal of PET plastics. Recycling plastics using nanotechnology offers potential solutions to the challenges associated with traditional plastic recycling methods. Nano-based degradation techniques improve the degradation process through the influence of catalysts. It also plays a crucial role in enhancing the efficiency and effectiveness of recycling processes and modifying them into value-added products. The modified PET waste plastics can be utilized to manufacture batteries, supercapacitors, sensors, and so on. The waste PET modification methods have massive potential for research, which can play major role in removing post-consumer plastic waste. The present review discusses the effects of micro/nano plastics in terrestrial and marine ecosystems and its impacts on plants and animals. Briefly, the degradation and bio-degradation methods in recent research were explored. The depolymerization methods used for the production of monomers from PET waste plastics were discussed in detail. Carbon nanotubes, fullerene, and graphene nanosheets synthesized from PET waste plastics were delineated. The reuse of nanotechnologically modified PET waste plastics for potential green energy storage products, such as batteries, supercapacitors, and sensors were presented in this review.
Collapse
Affiliation(s)
- J R Anusha
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, Tamilnadu, 629 502, India
| | - T Citarasu
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, Tamilnadu, 629 502, India
| | - G Uma
- Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari District, Tamilnadu, 629 502, India
| | - S Vimal
- Department of Biochemistry, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamilnadu, India.
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu - 603203, India
| | - Vinay Kumar
- Department of Community Medicine, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| | - M Mani Sankar
- Department of Biochemistry, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamilnadu, India
| |
Collapse
|
9
|
Kornberger D, Paatsch T, Schmidt M, Salat U. New combined absorption/ 1H NMR method for qualitative and quantitative analysis of PET degradation products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20689-20697. [PMID: 38393574 PMCID: PMC10927764 DOI: 10.1007/s11356-024-32481-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/10/2024] [Indexed: 02/25/2024]
Abstract
Poly(ethylene terephthalate) (PET) is a very valuable and beneficial material for industrial purposes, with various different applications. Due to the high annual production volume of over 50 million tons worldwide and the indiscriminate disposal by consumers, the polymers accumulate in the environment, causing negative effects on various ecosystems. Biodegradation via suitable enzymes represents a promising approach to combat the plastic waste issue so validated methods are required to measure the efficiency and efficacy of these enzymes. PETase and MHETase from Ideonella sakaiensis are suitable enzymes needed in combination to completely degrade PET into its environmentally friendly monomers. In this project, we compare and combine a previously described bulk absorbance measurement method with a newly established 1H NMR analysis method of the PET degradation products mono(2-hydroxyethyl) terephthalic acid, bis(2-hydroxyethyl) terephthalic acid and terephthalic acid. Both were optimized regarding different solvents, pH values and drying processes. The accuracy of the measurements can be confirmed with sensitivity limits of 2.5-5 µM for the absorption method and 5-10 µM for the 1H NMR analysis. The combination of the described methods therefore allows a quantitative analysis by using bulk absorption coupled with a qualitative analysis through 1H NMR. The methods established in our work can potentially contribute to the development of suitable recycling strategies of PET using recombinant enzymes.
Collapse
Affiliation(s)
- David Kornberger
- Faculty Medical and Life Sciences, Institute of Applied Biology, Molecular Biology Lab, Furtwangen University, Jakob-Kienzle-Str. 17, 78054, Villingen-Schwenningen, Germany
| | - Tanja Paatsch
- Faculty Medical and Life Sciences, Institute of Applied Biology, Molecular Biology Lab, Furtwangen University, Jakob-Kienzle-Str. 17, 78054, Villingen-Schwenningen, Germany
| | - Magnus Schmidt
- Faculty Medical and Life Sciences, Institute of Precision Medicine, Organic and Bioorganic Chemistry Labs, Furtwangen University, Jakob-Kienzle-Str. 17, 78054, Villingen-Schwenningen, Germany
| | - Ulrike Salat
- Faculty Medical and Life Sciences, Institute of Applied Biology, Molecular Biology Lab, Furtwangen University, Jakob-Kienzle-Str. 17, 78054, Villingen-Schwenningen, Germany.
| |
Collapse
|
10
|
Amalia L, Chang CY, Wang SSS, Yeh YC, Tsai SL. Recent advances in the biological depolymerization and upcycling of polyethylene terephthalate. Curr Opin Biotechnol 2024; 85:103053. [PMID: 38128200 DOI: 10.1016/j.copbio.2023.103053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Polyethylene terephthalate (PET) is favored for its exceptional properties and widespread daily use. This review highlights recent advancements that enable the development of biological tools for PET decomposition, transforming PET into valuable platform chemicals and materials in upcycling processes. Enhancing PET hydrolases' catalytic activity and efficiency through protein engineering strategies is a priority, facilitating more effective PET waste management. Efforts to create novel PET hydrolases for large-scale PET depolymerization continue, but cost-effectiveness remains challenging. Hydrolyzed monomers must add additional value to make PET recycling economically attractive. Valorization of hydrolysis products through the upcycling process is expected to produce new compounds with different values and qualities from the initial polymer, making the decomposed monomers more appealing. Advances in synthetic biology and enzyme engineering hold promise for PET upcycling. While biological depolymerization offers environmental benefits, further research is needed to make PET upcycling sustainable and economically feasible.
Collapse
Affiliation(s)
- Lita Amalia
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chia-Yu Chang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Steven S-S Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Chun Yeh
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Shen-Long Tsai
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| |
Collapse
|
11
|
Valenzuela-Ortega M, Suitor JT, White MFM, Hinchcliffe T, Wallace S. Microbial Upcycling of Waste PET to Adipic Acid. ACS CENTRAL SCIENCE 2023; 9:2057-2063. [PMID: 38033806 PMCID: PMC10683474 DOI: 10.1021/acscentsci.3c00414] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Indexed: 12/02/2023]
Abstract
Microorganisms can be genetically engineered to transform abundant waste feedstocks into value-added small molecules that would otherwise be manufactured from diminishing fossil resources. Herein, we report the first one-pot bio-upcycling of PET plastic waste into the prolific platform petrochemical and nylon precursor adipic acid in the bacterium Escherichia coli. Optimizing heterologous gene expression and enzyme activity enabled increased flux through the de novo pathway, and immobilization of whole cells in alginate hydrogels increased the stability of the rate-limiting enoate reductase BcER. The pathway enzymes were also interfaced with hydrogen gas generated by engineered E. coli DD-2 in combination with a biocompatible Pd catalyst to enable adipic acid synthesis from metabolic cis,cis-muconic acid. Together, these optimizations resulted in a one-pot conversion to adipic acid from terephthalic acid, including terephthalate samples isolated from industrial PET waste and a post-consumer plastic bottle.
Collapse
Affiliation(s)
- Marcos Valenzuela-Ortega
- Institute
of Quantitative Biology, Biochemistry and Biotechnology, School of
Biological Sciences, University of Edinburgh, Alexander Crum Brown Road, King’s
Buildings, Edinburgh, EH9
3FF, U.K.
| | - Jack T. Suitor
- Institute
of Quantitative Biology, Biochemistry and Biotechnology, School of
Biological Sciences, University of Edinburgh, Alexander Crum Brown Road, King’s
Buildings, Edinburgh, EH9
3FF, U.K.
| | - Mirren F. M. White
- Institute
of Quantitative Biology, Biochemistry and Biotechnology, School of
Biological Sciences, University of Edinburgh, Alexander Crum Brown Road, King’s
Buildings, Edinburgh, EH9
3FF, U.K.
| | - Trevor Hinchcliffe
- Impact
Solutions Ltd., Impact Technology Centre, Fraser Road, Kirkton Campus, Livingston, EH54 7BU, U.K.
| | - Stephen Wallace
- Institute
of Quantitative Biology, Biochemistry and Biotechnology, School of
Biological Sciences, University of Edinburgh, Alexander Crum Brown Road, King’s
Buildings, Edinburgh, EH9
3FF, U.K.
| |
Collapse
|
12
|
Lee GH, Kim DW, Jin YH, Kim SM, Lim ES, Cha MJ, Ko JK, Gong G, Lee SM, Um Y, Han SO, Ahn JH. Biotechnological Plastic Degradation and Valorization Using Systems Metabolic Engineering. Int J Mol Sci 2023; 24:15181. [PMID: 37894861 PMCID: PMC10607142 DOI: 10.3390/ijms242015181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Various kinds of plastics have been developed over the past century, vastly improving the quality of life. However, the indiscriminate production and irresponsible management of plastics have led to the accumulation of plastic waste, emerging as a pressing environmental concern. To establish a clean and sustainable plastic economy, plastic recycling becomes imperative to mitigate resource depletion and replace non-eco-friendly processes, such as incineration. Although chemical and mechanical recycling technologies exist, the prevalence of composite plastics in product manufacturing complicates recycling efforts. In recent years, the biodegradation of plastics using enzymes and microorganisms has been reported, opening a new possibility for biotechnological plastic degradation and bio-upcycling. This review provides an overview of microbial strains capable of degrading various plastics, highlighting key enzymes and their role. In addition, recent advances in plastic waste valorization technology based on systems metabolic engineering are explored in detail. Finally, future perspectives on systems metabolic engineering strategies to develop a circular plastic bioeconomy are discussed.
Collapse
Affiliation(s)
- Ga Hyun Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Do-Wook Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yun Hui Jin
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sang Min Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Eui Seok Lim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Min Ji Cha
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Ja Kyong Ko
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Gyeongtaek Gong
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jung Ho Ahn
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
13
|
Schaerer L, Putman L, Bigcraft I, Byrne E, Kulas D, Zolghadr A, Aloba S, Ong R, Shonnard D, Techtmann S. Coexistence of specialist and generalist species within mixed plastic derivative-utilizing microbial communities. MICROBIOME 2023; 11:224. [PMID: 37838714 PMCID: PMC10576394 DOI: 10.1186/s40168-023-01645-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/09/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Plastic-degrading microbial isolates offer great potential to degrade, transform, and upcycle plastic waste. Tandem chemical and biological processing of plastic wastes has been shown to substantially increase the rates of plastic degradation; however, the focus of this work has been almost entirely on microbial isolates (either bioengineered or naturally occurring). We propose that a microbial community has even greater potential for plastic upcycling. A microbial community has greater metabolic diversity to process mixed plastic waste streams and has built-in functional redundancy for optimal resilience. RESULTS Here, we used two plastic-derivative degrading communities as a model system to investigate the roles of specialist and generalist species within the microbial communities. These communities were grown on five plastic-derived substrates: pyrolysis treated high-density polyethylene, chemically deconstructed polyethylene terephthalate, disodium terephthalate, terephthalamide, and ethylene glycol. Short-read metagenomic and metatranscriptomic sequencing were performed to evaluate activity of microorganisms in each treatment. Long-read metagenomic sequencing was performed to obtain high-quality metagenome assembled genomes and evaluate division of labor. CONCLUSIONS Data presented here show that the communities are primarily dominated by Rhodococcus generalists and lower abundance specialists for each of the plastic-derived substrates investigated here, supporting previous research that generalist species dominate batch culture. Additionally, division of labor may be present between Hydrogenophaga terephthalate degrading specialists and lower abundance protocatechuate degrading specialists. Video Abstract.
Collapse
Affiliation(s)
- Laura Schaerer
- Department of Biological Sciences, Michigan Technological University, 740 Dow ESE Building, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Lindsay Putman
- Department of Biological Sciences, Michigan Technological University, 740 Dow ESE Building, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Isaac Bigcraft
- Department of Biological Sciences, Michigan Technological University, 740 Dow ESE Building, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Emma Byrne
- Department of Biological Sciences, Michigan Technological University, 740 Dow ESE Building, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Daniel Kulas
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Ali Zolghadr
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Sulihat Aloba
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Rebecca Ong
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - David Shonnard
- Department of Chemical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Stephen Techtmann
- Department of Biological Sciences, Michigan Technological University, 740 Dow ESE Building, 1400 Townsend Drive, Houghton, MI, 49931, USA.
| |
Collapse
|
14
|
Lee SH, Seo H, Hong H, Park J, Ki D, Kim M, Kim HJ, Kim KJ. Three-directional engineering of IsPETase with enhanced protein yield, activity, and durability. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132297. [PMID: 37595467 DOI: 10.1016/j.jhazmat.2023.132297] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/25/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023]
Abstract
The mesophilic PETase from Ideonella sakaiensis (IsPETase) has been shown to exhibit high PET hydrolysis activity, but its low stability limits its industrial applications. Here, we developed a variant, Z1-PETase, with enhanced soluble protein yield and durability while maintaining or improving activity at lower temperatures. The selected Z1-PETase not only exhibited a 20-fold improvement in soluble protein yield compared to the previously engineered IsPETaseS121E/D186H/S242T/N246D (4p) variant, but also demonstrated a 30% increase in low-temperature activity at 40 °C, along with an 11 °C increase in its TmD value. The PET depolymerization test across a temperature range low to high (30-70 °C) confirmed that Z1-PETase exhibits high accessibility of mesophilic PET hydrolase and rapid depolymerizing rate at higher temperature in accordance with the thermal behaviors of polymer and enzyme. Additionally, structural interpretation indicated that the stabilization of specific active site loops in Z1-PETase contributes to enhanced thermostability without adversely impacting enzymatic activity. In a pH-stat bioreactor, Z1-PETase depolymerized > 90% of both transparent and colored post-consumer PET powders within 24 and 8 h at 40 °C and 55 °C, respectively, demonstrating that the utility of this IsPETase variant in the bio-recycling of PET.
Collapse
Affiliation(s)
- Seul Hoo Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hogyun Seo
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hwaseok Hong
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jiyoung Park
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dongwoo Ki
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mijeong Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyung-Joon Kim
- Bioresearch Research Institute, CJ CheilJedang Co., Suwon 16495, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea; Zyen Co, Daegu 41566, Republic of Korea.
| |
Collapse
|
15
|
Bao T, Qian Y, Xin Y, Collins JJ, Lu T. Engineering microbial division of labor for plastic upcycling. Nat Commun 2023; 14:5712. [PMID: 37752119 PMCID: PMC10522701 DOI: 10.1038/s41467-023-40777-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/09/2023] [Indexed: 09/28/2023] Open
Abstract
Plastic pollution is rapidly increasing worldwide, causing adverse impacts on the environment, wildlife and human health. One tempting solution to this crisis is upcycling plastics into products with engineered microorganisms; however, this remains challenging due to complexity in conversion. Here we present a synthetic microbial consortium that efficiently degrades polyethylene terephthalate hydrolysate and subsequently produces desired chemicals through division of labor. The consortium involves two Pseudomonas putida strains, specializing in terephthalic acid and ethylene glycol utilization respectively, to achieve complete substrate assimilation. Compared with its monoculture counterpart, the consortium exhibits reduced catabolic crosstalk and faster deconstruction, particularly when substrate concentrations are high or crude hydrolysate is used. It also outperforms monoculture when polyhydroxyalkanoates serves as a target product and confers flexible tuning through population modulation for cis-cis muconate synthesis. This work demonstrates engineered consortia as a promising, effective platform that may facilitate polymer upcycling and environmental sustainability.
Collapse
Affiliation(s)
- Teng Bao
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yuanchao Qian
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yongping Xin
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - James J Collins
- Department of Biological Engineering and Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Longwood, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Ting Lu
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- National Center for Supercomputing Applications, Urbana, IL, 61801, USA.
| |
Collapse
|
16
|
Galarza–Verkovitch D, Turak O, Wiese J, Rahn T, Hentschel U, Borchert E. Bioprospecting for polyesterase activity relevant for PET degradation in marine Enterobacterales isolates. AIMS Microbiol 2023; 9:518-539. [PMID: 37649797 PMCID: PMC10462454 DOI: 10.3934/microbiol.2023027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 09/01/2023] Open
Abstract
Plastics have quickly become an integral part of modern life. Due to excessive production and improper waste disposal, they are recognized as contaminants present in practically all habitat types. Although there are several polymers, polyethylene terephthalate (PET) is of particular concern due to its abundance in the environment. There is a need for a solution that is both cost-effective and ecologically friendly to address this pollutant. The use of microbial depolymerizing enzymes could offer a biological avenue for plastic degradation, though the full potential of these enzymes is yet to be uncovered. The purpose of this study was to use (1) plate-based screening methods to investigate the plastic degradation potential of marine bacteria from the order Enterobacterales collected from various organismal and environmental sources, and (2) perform genome-based analysis to identify polyesterases potentially related to PET degradation. 126 bacterial isolates were obtained from the strain collection of RD3, Research Unit Marine Symbioses-GEOMAR-and sequentially tested for esterase and polyesterase activity, in combination here referred to as PETase-like activity. The results show that members of the microbial families Alteromonadaceae, Shewanellaceae, and Vibrionaceae, derived from marine sponges and bryozoans, are the most promising candidates within the order Enterobacterales. Furthermore, 389 putative hydrolases from the α/β superfamily were identified in 23 analyzed genomes, of which 22 were sequenced for this study. Several candidates showed similarities with known PETases, indicating underlying enzymatic potential within the order Enterobacterales for PET degradation.
Collapse
Affiliation(s)
| | - Onur Turak
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Schleswig-Holstein, Germany
| | - Jutta Wiese
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Schleswig-Holstein, Germany
| | - Tanja Rahn
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Schleswig-Holstein, Germany
| | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Schleswig-Holstein, Germany
- Christian-Albrechts University of Kiel, Kiel, Schleswig-Holstein, Germany
| | - Erik Borchert
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Schleswig-Holstein, Germany
| |
Collapse
|
17
|
Jayasekara SK, Joni HD, Jayantha B, Dissanayake L, Mandrell C, Sinharage MM, Molitor R, Jayasekara T, Sivakumar P, Jayakody LN. Trends in in-silico guided engineering of efficient polyethylene terephthalate (PET) hydrolyzing enzymes to enable bio-recycling and upcycling of PET. Comput Struct Biotechnol J 2023; 21:3513-3521. [PMID: 37484494 PMCID: PMC10362282 DOI: 10.1016/j.csbj.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 07/25/2023] Open
Abstract
Polyethylene terephthalate (PET) is the largest produced polyester globally, and less than 30% of all the PET produced globally (∼6 billion pounds annually) is currently recycled into lower-quality products. The major drawbacks in current recycling methods (mechanical and chemical), have inspired the exploration of potentially efficient and sustainable PET depolymerization using biological approaches. Researchers have discovered efficient PET hydrolyzing enzymes in the plastisphere and have demonstrated the selective degradation of PET to original monomers thus enabling biological recycling or upcycling. However, several significant hurdles such as the less efficiency of the hydrolytic reaction, low thermostability of the enzymes, and the inability of the enzyme to depolymerize crystalline PET must be addressed in order to establish techno-economically feasible commercial-scale biological PET recycling or upcycling processes. Researchers leverage a synthetic biology-based design; build, test, and learn (DBTL) methodology to develop commercially applicable efficient PET hydrolyzing enzymes through 1) high-throughput metagenomic and proteomic approaches to discover new PET hydrolyzing enzymes with superior properties: and, 2) enzyme engineering approaches to modify and optimize PET hydrolyzing properties. Recently, in-silico platforms including molecular mechanics and machine learning concepts are emerging as innovative tools for the development of more efficient and effective PET recycling through the exploration of novel mutations in PET hydrolyzing enzymes. In-silico-guided PET hydrolyzing enzyme engineering with DBTL cycles enables the rapid development of efficient variants of enzymes over tedious conventional enzyme engineering methods such as random or directed evolution. This review highlights the potential of in-silico-guided PET degrading enzyme engineering to create more efficient variants, including Ideonella sakaiensis PETase (IsPETase) and leaf-branch compost cutinases (LCC). Furthermore, future research prospects are discussed to enable a sustainable circular economy through the bioconversion of PET to original or high-value platform chemicals.
Collapse
Affiliation(s)
- Sandhya K. Jayasekara
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Hriday Dhar Joni
- School of Physics and Applied Physics, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Bhagya Jayantha
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Lakshika Dissanayake
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Christopher Mandrell
- School of Physics and Applied Physics, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Manuka M.S. Sinharage
- School of Physics and Applied Physics, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Ryan Molitor
- School of Physics and Applied Physics, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Thushari Jayasekara
- School of Physics and Applied Physics, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Poopalasingam Sivakumar
- School of Physics and Applied Physics, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Lahiru N. Jayakody
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA
- Fermentation Science Institute, Southern Illinois University Carbondale, Carbondale, IL, USA
| |
Collapse
|
18
|
Li X, Shi B, Huang JW, Zeng Z, Yang Y, Zhang L, Min J, Chen CC, Guo RT. Functional tailoring of a PET hydrolytic enzyme expressed in Pichia pastoris. BIORESOUR BIOPROCESS 2023; 10:26. [PMID: 38647782 PMCID: PMC10991172 DOI: 10.1186/s40643-023-00648-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2024] Open
Abstract
Using enzymes to hydrolyze and recycle poly(ethylene terephthalate) (PET) is an attractive eco-friendly approach to manage the ever-increasing PET wastes, while one major challenge to realize the commercial application of enzyme-based PET degradation is to establish large-scale production methods to produce PET hydrolytic enzyme. To achieve this goal, we exploited the industrial strain Pichia pastoris to express a PET hydrolytic enzyme from Caldimonas taiwanensis termed CtPL-DM. In contrast to the protein expressed in Escherichia coli, CtPL-DM expressed in P. pastoris is inactive in PET degradation. Structural analysis indicates that a putative N-glycosylation site N181 could restrain the conformational change of a substrate-binding Trp and hamper the enzyme action. We thus constructed N181A to remove the N-glycosylation and found that the PET hydrolytic activity of this variant was restored. The performance of N181A was further enhanced via molecular engineering. These results are of valuable in terms of PET hydrolytic enzyme production in industrial strains in the future.
Collapse
Affiliation(s)
- Xian Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Beilei Shi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Jian-Wen Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Ziyin Zeng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Yu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China.
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China.
| |
Collapse
|
19
|
Kulkarni A, Quintens G, Pitet LM. Trends in Polyester Upcycling for Diversifying a Problematic Waste Stream. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Amruta Kulkarni
- Advanced Functional Polymers (AFP) Laboratory, Institute for Materials Research (imo-imomec), Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| | - Greg Quintens
- Advanced Functional Polymers (AFP) Laboratory, Institute for Materials Research (imo-imomec), Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| | - Louis M. Pitet
- Advanced Functional Polymers (AFP) Laboratory, Institute for Materials Research (imo-imomec), Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| |
Collapse
|
20
|
Kolitha BS, Jayasekara SK, Tannenbaum R, Jasiuk IM, Jayakody LN. Repurposing of waste PET by microbial biotransformation to functionalized materials for additive manufacturing. J Ind Microbiol Biotechnol 2023; 50:kuad010. [PMID: 37248049 PMCID: PMC10549213 DOI: 10.1093/jimb/kuad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023]
Abstract
Plastic waste is an outstanding environmental thread. Poly(ethylene terephthalate) (PET) is one of the most abundantly produced single-use plastics worldwide, but its recycling rates are low. In parallel, additive manufacturing is a rapidly evolving technology with wide-ranging applications. Thus, there is a need for a broad spectrum of polymers to meet the demands of this growing industry and address post-use waste materials. This perspective article highlights the potential of designing microbial cell factories to upcycle PET into functionalized chemical building blocks for additive manufacturing. We present the leveraging of PET hydrolyzing enzymes and rewiring the bacterial C2 and aromatic catabolic pathways to obtain high-value chemicals and polymers. Since PET mechanical recycling back to original materials is cost-prohibitive, the biochemical technology is a viable alternative to upcycle PET into novel 3D printing materials, such as replacements for acrylonitrile butadiene styrene. The presented hybrid chemo-bio approaches potentially enable the manufacturing of environmentally friendly degradable or higher-value high-performance polymers and composites and their reuse for a circular economy. ONE-SENTENCE SUMMARY Biotransformation of waste PET to high-value platform chemicals for additive manufacturing.
Collapse
Affiliation(s)
- Bhagya S Kolitha
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Sandhya K Jayasekara
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Rina Tannenbaum
- Department of Materials Science and Chemical Engineering, the Stony Brook University Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Iwona M Jasiuk
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lahiru N Jayakody
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
- Fermentation Science Institute, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| |
Collapse
|
21
|
Mudondo J, Lee HS, Jeong Y, Kim TH, Kim S, Sung BH, Park SH, Park K, Cha HG, Yeon YJ, Kim HT. Recent Advances in the Chemobiological Upcycling of Polyethylene Terephthalate (PET) into Value-Added Chemicals. J Microbiol Biotechnol 2023; 33:1-14. [PMID: 36451300 PMCID: PMC9895998 DOI: 10.4014/jmb.2208.08048] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 12/02/2022]
Abstract
Polyethylene terephthalate (PET) is a plastic material commonly applied to beverage packaging used in everyday life. Owing to PET's versatility and ease of use, its consumption has continuously increased, resulting in considerable waste generation. Several physical and chemical recycling processes have been developed to address this problem. Recently, biological upcycling is being actively studied and has come to be regarded as a powerful technology for overcoming the economic issues associated with conventional recycling methods. For upcycling, PET should be degraded into small molecules, such as terephthalic acid and ethylene glycol, which are utilized as substrates for bioconversion, through various degradation processes, including gasification, pyrolysis, and chemical/biological depolymerization. Furthermore, biological upcycling methods have been applied to biosynthesize value-added chemicals, such as adipic acid, muconic acid, catechol, vanillin, and glycolic acid. In this review, we introduce and discuss various degradation methods that yield substrates for bioconversion and biological upcycling processes to produce value-added biochemicals. These technologies encourage a circular economy, which reduces the amount of waste released into the environment.
Collapse
Affiliation(s)
- Joyce Mudondo
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hoe-Suk Lee
- Department of Biochemical Engineering Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Yunhee Jeong
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tae Hee Kim
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seungmi Kim
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - See-Hyoung Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Kyungmoon Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Hyun Gil Cha
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea,Corresponding authors H.G. Cha Phone: +82-52-241-6317 Fax: +82-52-241-6349 E-mail:
| | - Young Joo Yeon
- Department of Biochemical Engineering Gangneung-Wonju National University, Gangneung 25457, Republic of Korea,Y.J. Yeon Phone: +82-33-640-2401 Fax: +82-33-640-2410 E-mail:
| | - Hee Taek Kim
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea,H.T. Kim Phone: +82-42-821-6722 Fax:+82-42-821-8785 E-mail:
| |
Collapse
|
22
|
Yuan H, Liu G, Chen Y, Yi Z, Jin W, Zhang G. A versatile tag for simple preparation of cutinase towards enhanced biodegradation of polyethylene terephthalate. Int J Biol Macromol 2023; 225:149-161. [PMID: 36403765 DOI: 10.1016/j.ijbiomac.2022.11.126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/26/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
Enzymatic degradation of polyethylene terephthalate (PET) suffered from challenges such as complex and costly enzyme preparation, difficult access to PET substrates, poor reusability of free enzymes and sometimes MHET inhibitions. Herein, we propose an "all-in-one" strategy to address these issues with a well-designed elastin-like polypeptides (ELPs) tag. The preparation of the ELPs-tagged cutinase (ET-C) was efficient and easy to scale up by centrifugation, with an activity recovery of 57.55 % and a yield of 160 mg/L. Besides, the activity of the ET-C was 1.3 and 1.66-fold higher in degrading PET micro- and macro-plastics compared to wild-type cutinase. The self-immobilized cutinase (ET-C@SiO2) obtained by the ELPs-mediated biosilicification exhibited high loading capacity, activity, and thermostability and maintained 77.65 % of the original activity after 10 reuses. Interestingly, the product of the ET-C was TPA, whereas the wild-type was TPA and MHET. This is a simple way to release the intermediates inhibition compared with the existing methods. Our results demonstrated the feasibility of the versatile ELPs tag, which will pave an alternative economic way for scalable PET biodegradation.
Collapse
Affiliation(s)
- Hang Yuan
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Guanzhang Liu
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Yaxin Chen
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Zhiwei Yi
- Third Institute of Oceanography, Ministry of Nature Resources, Xiamen 361005, Fujian Province, PR China
| | - Wenhui Jin
- Third Institute of Oceanography, Ministry of Nature Resources, Xiamen 361005, Fujian Province, PR China
| | - Guangya Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China.
| |
Collapse
|
23
|
Development of a yeast whole-cell biocatalyst for MHET conversion into terephthalic acid and ethylene glycol. Microb Cell Fact 2022; 21:280. [PMID: 36587193 PMCID: PMC9805092 DOI: 10.1186/s12934-022-02007-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/20/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Over the 70 years since the introduction of plastic into everyday items, plastic waste has become an increasing problem. With over 360 million tonnes of plastics produced every year, solutions for plastic recycling and plastic waste reduction are sorely needed. Recently, multiple enzymes capable of degrading PET (polyethylene terephthalate) plastic have been identified and engineered. In particular, the enzymes PETase and MHETase from Ideonella sakaiensis depolymerize PET into the two building blocks used for its synthesis, ethylene glycol (EG) and terephthalic acid (TPA). Importantly, EG and TPA can be re-used for PET synthesis allowing complete and sustainable PET recycling. RESULTS In this study we used Saccharomyces cerevisiae, a species utilized widely in bioindustrial fermentation processes, as a platform to develop a whole-cell catalyst expressing the MHETase enzyme, which converts monohydroxyethyl terephthalate (MHET) into TPA and EG. We assessed six expression architectures and identified those resulting in efficient MHETase expression on the yeast cell surface. We show that the MHETase whole-cell catalyst has activity comparable to recombinant MHETase purified from Escherichia coli. Finally, we demonstrate that surface displayed MHETase is active across a range of pHs, temperatures, and for at least 12 days at room temperature. CONCLUSIONS We demonstrate the feasibility of using S. cerevisiae as a platform for the expression and surface display of PET degrading enzymes and predict that the whole-cell catalyst will be a viable alternative to protein purification-based approaches for plastic degradation.
Collapse
|
24
|
Kim NK, Lee SH, Park HD. Current biotechnologies on depolymerization of polyethylene terephthalate (PET) and repolymerization of reclaimed monomers from PET for bio-upcycling: A critical review. BIORESOURCE TECHNOLOGY 2022; 363:127931. [PMID: 36100185 DOI: 10.1016/j.biortech.2022.127931] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The production of polyethylene terephthalate (PET) has drastically increased in the past half-century, reaching 30 million tons every year. The accumulation of this recalcitrant waste now threatens diverse ecosystems. Despite efforts to recycle PET wastes, its rate of recycling remains limited, as the current PET downcycling is mostly unremunerative. To address this problem, PET bio-upcycling, which integrates microbial depolymerization of PET followed by repolymerization of PET-derived monomers into value-added products, has been suggested. This article critically reviews current understanding of microbial PET hydrolysis, the metabolic mechanisms involved in PET degradation, PET hydrolases, and their genetic improvement. Furthermore, this review includes the use of meta-omics approaches to search PET-degrading microbiomes, microbes, and putative hydrolases. The current development of biosynthetic technologies to convert PET-derived materials into value-added products is also comprehensively discussed. The integration of various depolymerization and repolymerization biotechnologies enhances the prospects of a circular economy using waste PET.
Collapse
Affiliation(s)
- Na-Kyung Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Sang-Hoon Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea.
| |
Collapse
|
25
|
García-Depraect O, Lebrero R, Rodriguez-Vega S, Börner RA, Börner T, Muñoz R. Production of volatile fatty acids (VFAs) from five commercial bioplastics via acidogenic fermentation. BIORESOURCE TECHNOLOGY 2022; 360:127655. [PMID: 35870672 DOI: 10.1016/j.biortech.2022.127655] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The feasibility of producing volatile fatty acids (VFAs) from five commercial bioplastics via acidogenic fermentation by a non-pretreated anaerobic sludge was investigated. Mesophilic, anaerobic, acidogenic batch assays at 1, 10 and 20 g/L feed concentrations revealed the feasibility of producing VFAs from polyhydroxyalkanoates (PHA), i.e., PHB and PHBV, but not from PBS, PCL and PLA under the test conditions and time. However, only high PHA substrate concentrations (10-20 g/L) resulted in organic overloading and decreasing the pH of the culture broth down to 4-5, which in turn induced the accumulation of VFAs via kinetic imbalance between acidogenesis and methanogenesis. Gaseous carbon (C-CO2 and C-CH4) accounted for 8-35% of the total initial carbon, while C-VFAs represented 10-18%, mainly as acetate and butyrate. This study represents the first systematically assessed proof-of-concept to produce VFAs from PHA, which is key for the design of bioplastic-to-bioplastic recycling (bio)technologies.
Collapse
Affiliation(s)
- Octavio García-Depraect
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Raquel Lebrero
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Sara Rodriguez-Vega
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Rosa Aragão Börner
- Nestlé Research, Société des Produits Nestlé S.A, Route du Jorat 57, 1000 Lausanne, Switzerland
| | - Tim Börner
- Nestlé Research, Société des Produits Nestlé S.A, Route du Jorat 57, 1000 Lausanne, Switzerland
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain.
| |
Collapse
|
26
|
Li J, Xue C, Wang H, Dong S, Yang Z, Cao Y, Zhao B, Cheng B, Xie X, Mo X, Jiang W, Yuan H, Pan J. Hybrid Nanofibrous Composites with Anisotropic Mechanics and Architecture for Tendon/Ligament Repair and Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201147. [PMID: 35686342 DOI: 10.1002/smll.202201147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Rupture of tendons and ligaments (T/L) is a major clinical challenge due to T/L possess anisotropic mechanical properties and hierarchical structures. Here, to imitate these characteristics, an approach is presented by fabricating hybrid nanofibrous composites. First, hybrid fiber-reinforced yarns are fabricated via successively electrospinning poly(L-lactide-co-ε-caprolactone) (PLCL) and gelatin (Ge) nanofibers onto polyethylene terephthalate (PET) fibers to improve biodurability and biocompatibility. Then, by comparing different manufacturing methods, the knitted structure succeeds in simulating anisotropic mechanical properties, even being stronger than natural ligaments, and possessing comfort compliance superior to clinically used ligament advanced reinforcement system (LARS) ligament. Moreover, after inoculation with tendon-derived stem cells and transplantation in vivo, hybrid nanofibrous composites are integrated with native tendons to guide surrounding tissue ingrowth due to the highly interconnected and porous structure. The knitted hybrid nanofibrous composites are also ligamentized and remodeled in vivo to promote tendon regeneration. Specifically, after the use of optimized anisotropic hybrid nanofibrous composites to repair tendon, the deposition of tendon-associated extracellular matrix proteins is more significant. Thus, this study indicates a strategy of manufacturing anisotropic hybrid nanofibrous composites with superior mechanical properties and good histocompatibility for clinical reconstruction.
Collapse
Affiliation(s)
- Jun Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Chao Xue
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Hao Wang
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Shiyan Dong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, 77030, USA
| | - Zhaogang Yang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, 77030, USA
| | - Yuting Cao
- Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, 200233, P. R. China
| | - Binan Zhao
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Biao Cheng
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Xianrui Xie
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, P. R. China
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, 77030, USA
| | - Hengfeng Yuan
- Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, 200233, P. R. China
| | - Jianfeng Pan
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| |
Collapse
|
27
|
Jayasekara S, Dissanayake L, Jayakody LN. Opportunities in the microbial valorization of sugar industrial organic waste to biodegradable smart food packaging materials. Int J Food Microbiol 2022; 377:109785. [PMID: 35752069 DOI: 10.1016/j.ijfoodmicro.2022.109785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/12/2022] [Accepted: 06/07/2022] [Indexed: 12/20/2022]
Abstract
Many petroleum-derived plastics, including food packaging materials are non-biodegradable and designed for single-use applications. Annually, around 175 Mt. of plastic enters the land and ocean ecosystems due to mismanagement and lack of techno economically feasible plastic waste recycling technologies. Renewable sourced, biodegradable polymer-based food packaging materials can reduce this environmental pollution. Sugar production from sugarcane or sugar beet generates organic waste streams that contain fermentable substrates, including sugars, acids, and aromatics. Microbial metabolism can be leveraged to funnel those molecules to platform chemicals or biopolymers to generate biodegradable food packaging materials that have active or sensing molecules embedded in biopolymer matrices. The smart package can real-time monitor food quality, assure health safety, and provide economic and environmental benefits. Active packaging materials display functional properties such as antimicrobial, antioxidant, and light or gas barrier. This article provides an overview of potential biodegradable smart/active polymer packages for food applications by valorizing sugar industry-generated organic waste. We highlight the potential microbial pathways and metabolic engineering strategies to biofunnel the waste carbon efficiently into the targeted platform chemicals such as lactic, succinate, muconate, and biopolymers, including polyhydroxyalkanoates, and bacterial cellulose. The obtained platform chemicals can be used to produce biodegradable polymers such as poly (butylene adipate-co-terephthalate) (PBAT) that could replace incumbent polyethylene and polypropylene food packaging materials. When nanomaterials are added, these polymers can be active/smart. The process can remarkably lower the greenhouse gas emission and energy used to produce food-packaging material via sugar industrial waste carbon relative to the petroleum-based production. The proposed green routes enable the valorization of sugar processing organic waste into biodegradable materials and enable the circular economy.
Collapse
Affiliation(s)
- Sandhya Jayasekara
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Lakshika Dissanayake
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA
| | - Lahiru N Jayakody
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA; Fermentation Science Institute, Southern Illinois University Carbondale, Carbondale, IL, USA.
| |
Collapse
|
28
|
Oh YR, Jang YA, Song JK, Eom GT. Efficient enzymatic depolymerization of polycaprolactone into 6-hydroxyhexanoic acid by optimizing reaction conditions and microbial conversion of 6-hydroxyhexanoic acid into adipic acid for eco-friendly upcycling of polycaprolactone. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Lin L, Wang X, Niu M, Wu Q, Wang H, Zu Y, Wang W. Biomimetic epithelium/endothelium on chips. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
30
|
Wang Y, Huang J, Liang X, Wei M, Liang F, Feng D, Xu C, Xian M, Zou H. Production and waste treatment of polyesters: application of bioresources and biotechniques. Crit Rev Biotechnol 2022; 43:503-520. [PMID: 35430940 DOI: 10.1080/07388551.2022.2039590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemical resources and techniques have long been used in the history of bulk polyester production and still dominate today's chemical industry. The sustainable development of the polyester industry demands more renewable resources and environmentally benign polyester products. Accordingly, the rapid development of biotechnology has enabled the production of an extensive range of aliphatic and aromatic polyesters from renewable bio-feedstocks. This review addresses the production of representative commercial polyesters (polyhydroxyalkanoates, polylactic acid, poly ε-caprolactone, polybutylene succinate, polyethylene terephthalate, polybutylene terephthalate, polypropylene terephthalate, polyethylene furandicarboxylate, polypropylene furandicarboxylate, and polybutylene furandicarboxylate) or their monomers (lactic acid, succinic acid, 1,4-butanediol, ethylene glycol, terephthalic acid, 1,3-propanediol, and 2,5-furandicarboxylic acid) from renewable bioresources. In addition, this review summarizes advanced biotechniques in the treatment of polyester wastes, representing the near-term trends and future opportunities for waste-to-value recycling and the remediation of polyester wastes under sustainable models. For future prospects, it is essential to further expand: non-food bioresources, optimize bioprocesses and biotechniques in the preparation of bioderived or biodegradable polyesters with promising: material performance, biodegradability, and low production cost.
Collapse
Affiliation(s)
- Yaqun Wang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Jingling Huang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xiuhong Liang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Manman Wei
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Fengbing Liang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Dexin Feng
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Chao Xu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Mo Xian
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Huibin Zou
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
31
|
Gao R, Pan H, Kai L, Han K, Lian J. Microbial degradation and valorization of poly(ethylene terephthalate) (PET) monomers. World J Microbiol Biotechnol 2022; 38:89. [PMID: 35426614 DOI: 10.1007/s11274-022-03270-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/23/2022] [Indexed: 12/22/2022]
Abstract
The polyethylene terephthalate (PET) is one of the major plastics with a huge annual production. Alongside with its mass production and wide applications, PET pollution is threatening and damaging the environment and human health. Although mechanical or chemical methods can deal with PET, the process suffers from high cost and the hydrolyzed monomers will cause secondary pollution. Discovery of plastic-degrading microbes and the corresponding enzymes emerges new hope to cope with this issue. Combined with synthetic biology and metabolic engineering, microbial cell factories not only provide a promising approach to degrade PET, but also enable the conversion of its monomers, ethylene glycol (EG) and terephthalic acid (TPA), into value-added compounds. In this way, PET wastes can be handled in environment-friendly and more potentially cost-effective processes. While PET hydrolases have been extensively reviewed, this review focuses on the microbes and metabolic pathways for the degradation of PET monomers. In addition, recent advances in the biotransformation of TPA and EG into value-added compounds are discussed in detail.
Collapse
Affiliation(s)
- Rui Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 310027, Hangzhou, China
| | - Haojie Pan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Lei Kai
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, 22116, Xuzhou, China.,Jiangsu Keybio Co. LTD, 22116, Xuzhou, China
| | - Kun Han
- Jiangsu Keybio Co. LTD, 22116, Xuzhou, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China. .,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 310027, Hangzhou, China.
| |
Collapse
|
32
|
Carr CM, de Oliveira BFR, Jackson SA, Laport MS, Clarke DJ, Dobson ADW. Identification of BgP, a Cutinase-Like Polyesterase From a Deep-Sea Sponge-Derived Actinobacterium. Front Microbiol 2022; 13:888343. [PMID: 35495686 PMCID: PMC9039725 DOI: 10.3389/fmicb.2022.888343] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Many marine bacteria produce extracellular enzymes that degrade complex molecules to facilitate their growth in environmental conditions that are often harsh and low in nutrients. Marine bacteria, including those inhabiting sea sponges, have previously been reported to be a promising source of polyesterase enzymes, which have received recent attention due to their potential ability to degrade polyethylene terephthalate (PET) plastic. During the screening of 51 marine bacterial isolates for hydrolytic activities targeting ester and polyester substrates, a Brachybacterium ginsengisoli B129SM11 isolate from the deep-sea sponge Pheronema sp. was identified as a polyesterase producer. Sequence analysis of genomic DNA from strain B129SM11, coupled with a genome "mining" strategy, allowed the identification of potential polyesterases, using a custom database of enzymes that had previously been reported to hydrolyze PET or other synthetic polyesters. This resulted in the identification of a putative PET hydrolase gene, encoding a polyesterase-type enzyme which we named BgP that shared high overall similarity with three well-characterized PET hydrolases-LCC, TfCut2, and Cut190, all of which are key enzymes currently under investigation for the biological recycling of PET. In silico protein analyses and homology protein modeling offered structural and functional insights into BgP, and a detailed comparison with Cut190 revealed highly conserved features with implications for both catalysis and substrate binding. Polyesterase activity was confirmed using an agar-based polycaprolactone (PCL) clearing assay, following heterologous expression of BgP in Escherichia coli. This is the first report of a polyesterase being identified from a deep-sea sponge bacterium such as Brachybacterium ginsengisoli and provides further insights into marine-derived polyesterases, an important family of enzymes for PET plastic hydrolysis. Microorganisms living in association with sponges are likely to have increased exposure to plastics and microplastics given the wide-scale contamination of marine ecosystems with these plastics, and thus they may represent a worthwhile source of enzymes for use in new plastic waste management systems. This study adds to the growing knowledge of microbial polyesterases and endorses further exploration of marine host-associated microorganisms as a potentially valuable source of this family of enzymes for PET plastic hydrolysis.
Collapse
Affiliation(s)
- Clodagh M. Carr
- School of Microbiology, University College Cork, Cork, Ireland
- SSPC-SFI Research Centre for Pharmaceuticals, University College Cork, Cork, Ireland
| | - Bruno Francesco Rodrigues de Oliveira
- School of Microbiology, University College Cork, Cork, Ireland
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Stephen A. Jackson
- School of Microbiology, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David J. Clarke
- School of Microbiology, University College Cork, Cork, Ireland
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, Cork, Ireland
- SSPC-SFI Research Centre for Pharmaceuticals, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
33
|
Wei R, von Haugwitz G, Pfaff L, Mican J, Badenhorst CP, Liu W, Weber G, Austin HP, Bednar D, Damborsky J, Bornscheuer UT. Mechanism-Based Design of Efficient PET Hydrolases. ACS Catal 2022; 12:3382-3396. [PMID: 35368328 PMCID: PMC8939324 DOI: 10.1021/acscatal.1c05856] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/04/2022] [Indexed: 01/06/2023]
Abstract
Polyethylene terephthalate (PET) is the most widespread synthetic polyester, having been utilized in textile fibers and packaging materials for beverages and food, contributing considerably to the global solid waste stream and environmental plastic pollution. While enzymatic PET recycling and upcycling have recently emerged as viable disposal methods for a circular plastic economy, only a handful of benchmark enzymes have been thoroughly described and subjected to protein engineering for improved properties over the last 16 years. By analyzing the specific material properties of PET and the reaction mechanisms in the context of interfacial biocatalysis, this Perspective identifies several limitations in current enzymatic PET degradation approaches. Unbalanced enzyme-substrate interactions, limited thermostability, and low catalytic efficiency at elevated reaction temperatures, and inhibition caused by oligomeric degradation intermediates still hamper industrial applications that require high catalytic efficiency. To overcome these limitations, successful protein engineering studies using innovative experimental and computational approaches have been published extensively in recent years in this thriving research field and are summarized and discussed in detail here. The acquired knowledge and experience will be applied in the near future to address plastic waste contributed by other mass-produced polymer types (e.g., polyamides and polyurethanes) that should also be properly disposed by biotechnological approaches.
Collapse
Affiliation(s)
- Ren Wei
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Gerlis von Haugwitz
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Lara Pfaff
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Jan Mican
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital and
Faculty of Medicine, Masaryk University, 656 91 Brno, Czech Republic
| | - Christoffel P.
S. Badenhorst
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Weidong Liu
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport
Economic Area, Tianjin, 300308, China
| | - Gert Weber
- Macromolecular
Crystallography, Helmholtz-Zentrum Berlin
für Materialien und Energie, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| | - Harry P. Austin
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - David Bednar
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital and
Faculty of Medicine, Masaryk University, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital and
Faculty of Medicine, Masaryk University, 656 91 Brno, Czech Republic
| | - Uwe T. Bornscheuer
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| |
Collapse
|
34
|
He M, Sun Y, Han B. Green Carbon Science: Efficient Carbon Resource Processing, Utilization, and Recycling towards Carbon Neutrality. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mingyuan He
- Shanghai Key Laboratory of Green Chemistry & Chemical Processes Department of Chemistry East China Normal University Shanghai 200062 China
- Research Institute of Petrochem Processing, SINOPEC Beijing 100083 China
| | - Yuhan Sun
- Low Carbon Energy Conversion Center Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201203 China
- Shanghai Low Carbon Technology Innovation Platform Shanghai 210620 China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry & Chemical Processes Department of Chemistry East China Normal University Shanghai 200062 China
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
35
|
Qi X, Yan W, Cao Z, Ding M, Yuan Y. Current Advances in the Biodegradation and Bioconversion of Polyethylene Terephthalate. Microorganisms 2021; 10:39. [PMID: 35056486 PMCID: PMC8779501 DOI: 10.3390/microorganisms10010039] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 01/04/2023] Open
Abstract
Polyethylene terephthalate (PET) is a widely used plastic that is polymerized by terephthalic acid (TPA) and ethylene glycol (EG). In recent years, PET biodegradation and bioconversion have become important in solving environmental plastic pollution. More and more PET hydrolases have been discovered and modified, which mainly act on and degrade the ester bond of PET. The monomers, TPA and EG, can be further utilized by microorganisms, entering the tricarboxylic acid cycle (TCA cycle) or being converted into high value chemicals, and finally realizing the biodegradation and bioconversion of PET. Based on synthetic biology and metabolic engineering strategies, this review summarizes the current advances in the modified PET hydrolases, engineered microbial chassis in degrading PET, bioconversion pathways of PET monomers, and artificial microbial consortia in PET biodegradation and bioconversion. Artificial microbial consortium provides novel ideas for the biodegradation and bioconversion of PET or other complex polymers. It is helpful to realize the one-step bioconversion of PET into high value chemicals.
Collapse
Affiliation(s)
- Xinhua Qi
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (X.Q.); (W.Y.); (Z.C.); (Y.Y.)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Wenlong Yan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (X.Q.); (W.Y.); (Z.C.); (Y.Y.)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Zhibei Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (X.Q.); (W.Y.); (Z.C.); (Y.Y.)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Mingzhu Ding
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (X.Q.); (W.Y.); (Z.C.); (Y.Y.)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (X.Q.); (W.Y.); (Z.C.); (Y.Y.)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| |
Collapse
|
36
|
He M, Sun Y, Han B. Green Carbon Science: Efficient Carbon Resource Processing, Utilization, and Recycling Towards Carbon Neutrality. Angew Chem Int Ed Engl 2021; 61:e202112835. [PMID: 34919305 DOI: 10.1002/anie.202112835] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 11/10/2022]
Abstract
Green carbon science is defined as "Study and optimization of the transformation of carbon containing compounds and the relevant processes involved in the entire carbon cycle from carbon resource processing, carbon energy utilization, and carbon recycling to use carbon resources efficiently and minimize the net CO2 emission." [1] Green carbon science is related closely to carbon neutrality, and the relevant fields have developed quickly in the last decade. In this Minireview, we proposed the concept of carbon energy index, and the recent progresses in petroleum refining, production of liquid fuels, chemicals, and materials using coal, methane, CO2, biomass, and waste plastics are highlighted in combination with green carbon science, and an outlook for these important fields is provided in the final section.
Collapse
Affiliation(s)
- Mingyuan He
- East China Normal University, Department of Chemistry, 200062, Shanghai, CHINA
| | - Yuhan Sun
- Chinese Academy of Sciences, Shanghai Advanced Research Institute, 201203, Shanghai, CHINA
| | - Buxing Han
- Chinese Academy of Sciences, Institute of Chemistry, Beiyijie number 2, Zhongguancun, 100190, Beijing, CHINA
| |
Collapse
|
37
|
Kayastha S, Sagwan-Barkdoll L, Anterola A, Jayakody LN. Developing synthetic microbes to produce indirubin-derivatives. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|