1
|
Frusteri Chiacchiera A, Casanova M, Bellato M, Piazza A, Migliavacca R, Batt G, Magni P, Pasotti L. Harnessing CRISPR interference to resensitize laboratory strains and clinical isolates to last resort antibiotics. Sci Rep 2025; 15:261. [PMID: 39747289 PMCID: PMC11696610 DOI: 10.1038/s41598-024-81989-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
The global race against antimicrobial resistance requires novel antimicrobials that are not only effective in killing specific bacteria, but also minimize the emergence of new resistances. Recently, CRISPR/Cas-based antimicrobials were proposed to address killing specificity with encouraging results. However, the emergence of target sequence mutations triggered by Cas-cleavage was identified as an escape strategy, posing the risk of generating new antibiotic-resistance gene (ARG) variants. Here, we evaluated an antibiotic re-sensitization strategy based on CRISPR interference (CRISPRi), which inhibits gene expression without damaging target DNA. The resistance to four antibiotics, including last resort drugs, was significantly reduced by individual and multi-gene targeting of ARGs in low- to high-copy numbers in recombinant E. coli. Escaper analysis confirmed the absence of mutations in target sequence, corroborating the harmless role of CRISPRi in the selection of new resistances. E. coli clinical isolates carrying ARGs of severe clinical concern were then used to assess the robustness of CRISPRi under different growth conditions. Meropenem, colistin and cefotaxime susceptibility was successfully increased in terms of MIC (up to > 4-fold) and growth delay (up to 11 h) in a medium-dependent fashion. ARG repression also worked in a pathogenic strain grown in human urine, as a demonstration of CRISPRi-mediated re-sensitization in host-mimicking media. This study laid the foundations for further leveraging CRISPRi as antimicrobial agent or research tool to selectively repress ARGs and investigate resistance mechanisms.
Collapse
Affiliation(s)
- Angelica Frusteri Chiacchiera
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, Pavia, Italy
- Centre for Health Technologies, University of Pavia, Via Ferrata 5, Pavia, Italy
- Institut Pasteur, Inria, Université Paris Cité, 28 rue du Docteur Roux, Paris, France
| | - Michela Casanova
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, Pavia, Italy
- Centre for Health Technologies, University of Pavia, Via Ferrata 5, Pavia, Italy
| | - Massimo Bellato
- Department of Molecular Medicine, Department of Information Engineering, University of Padua, Via Gabelli 63, Padua, 35121, Italy
| | - Aurora Piazza
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Viale Brambilla 74, Pavia, Italy
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Roberta Migliavacca
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Viale Brambilla 74, Pavia, Italy
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gregory Batt
- Institut Pasteur, Inria, Université Paris Cité, 28 rue du Docteur Roux, Paris, France
| | - Paolo Magni
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, Pavia, Italy
- Centre for Health Technologies, University of Pavia, Via Ferrata 5, Pavia, Italy
| | - Lorenzo Pasotti
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, Pavia, Italy.
- Centre for Health Technologies, University of Pavia, Via Ferrata 5, Pavia, Italy.
- Institut Pasteur, Inria, Université Paris Cité, 28 rue du Docteur Roux, Paris, France.
| |
Collapse
|
2
|
Zhao M, Kim J, Jiao J, Lim Y, Shi X, Guo S, Kim J. Construction of multilayered gene circuits using de-novo-designed synthetic transcriptional regulators in cell-free systems. J Biol Eng 2024; 18:64. [PMID: 39501344 PMCID: PMC11539451 DOI: 10.1186/s13036-024-00459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND De-novo-designed synthetic transcriptional regulators have great potential as the genetic parts for constructing complex multilayered gene circuits. The design flexibility afforded by advanced nucleic acid sequence design tools vastly expands the repertoire of regulatory elements for circuit design. In principle, the design space of synthetic regulators should allow for the construction of regulatory circuits of arbitrary complexity; still, the orthogonality and robustness of such components have not been fully elucidated, thereby limiting the depth and width of synthetic circuits. RESULTS In this work, we systematically explored the design strategy of synthetic transcriptional regulators, termed switchable transcription terminators. Specifically, by redesigning key sequence domains, we created a high-performance switchable transcription terminator with a maximum fold change of 283.11 upon activation by its cognate input RNA. Further, an automated design algorithm was developed for these elements to improve orthogonality for a complex multi-layered circuit construction. The resulting orthogonal switchable transcription terminators could be used to construct a three-layer cascade circuit and a two-input three-layer OR gate. CONCLUSIONS We demonstrated a practical strategy for designing standardized regulatory elements and assembling modular gene circuits, ultimately laying the foundation for the streamlined construction of complex synthetic gene circuits.
Collapse
Affiliation(s)
- Mingming Zhao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Jeongwon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Jiayan Jiao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yelin Lim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, Fuzhou, Fujian, 350108, China
- International Joint Laboratory of Intelligent Health Care, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shaobin Guo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China.
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, Fuzhou, Fujian, 350108, China.
- International Joint Laboratory of Intelligent Health Care, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Jongmin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea.
| |
Collapse
|
3
|
Burbano DA, Kiattisewee C, Karanjia AV, Cardiff RAL, Faulkner ID, Sugianto W, Carothers JM. CRISPR Tools for Engineering Prokaryotic Systems: Recent Advances and New Applications. Annu Rev Chem Biomol Eng 2024; 15:389-430. [PMID: 38598861 DOI: 10.1146/annurev-chembioeng-100522-114706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
In the past decades, the broad selection of CRISPR-Cas systems has revolutionized biotechnology by enabling multimodal genetic manipulation in diverse organisms. Rooted in a molecular engineering perspective, we recapitulate the different CRISPR components and how they can be designed for specific genetic engineering applications. We first introduce the repertoire of Cas proteins and tethered effectors used to program new biological functions through gene editing and gene regulation. We review current guide RNA (gRNA) design strategies and computational tools and how CRISPR-based genetic circuits can be constructed through regulated gRNA expression. Then, we present recent advances in CRISPR-based biosensing, bioproduction, and biotherapeutics across in vitro and in vivo prokaryotic systems. Finally, we discuss forthcoming applications in prokaryotic CRISPR technology that will transform synthetic biology principles in the near future.
Collapse
Affiliation(s)
- Diego Alba Burbano
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Cholpisit Kiattisewee
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ava V Karanjia
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ryan A L Cardiff
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Ian D Faulkner
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - Widianti Sugianto
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| | - James M Carothers
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
4
|
De Marchi D, Shaposhnikov R, Gobaa S, Pastorelli D, Batt G, Magni P, Pasotti L. Design and Model-Driven Analysis of Synthetic Circuits with the Staphylococcus aureus Dead-Cas9 (sadCas9) as a Programmable Transcriptional Regulator in Bacteria. ACS Synth Biol 2024; 13:763-780. [PMID: 38374729 DOI: 10.1021/acssynbio.3c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Synthetic circuit design is crucial for engineering microbes that process environmental cues and provide biologically relevant outputs. To reliably scale-up circuit complexity, the availability of parts toolkits is central. Streptococcus pyogenes (sp)-derived CRISPR interference/dead-Cas9 (CRISPRi/spdCas9) is widely adopted for implementing programmable regulations in synthetic circuits, and alternative CRISPRi systems will further expand our toolkits of orthogonal components. Here, we showcase the potential of CRISPRi using the engineered dCas9 from Staphylococcus aureus (sadCas9), not previously used in bacterial circuits, that is attractive for its low size and high specificity. We designed a collection of ∼20 increasingly complex circuits and variants in Escherichia coli, including circuits with static function like one-/two-input logic gates (NOT, NAND), circuits with dynamic behavior like incoherent feedforward loops (iFFLs), and applied sadCas9 to fix a T7 polymerase-based cascade. Data demonstrated specific and efficient target repression (100-fold) and qualitatively successful functioning for all circuits. Other advantageous features included low sadCas9-borne cell load and orthogonality with spdCas9. However, different circuit variants showed quantitatively unexpected and previously unreported steady-state responses: the dynamic range, switch point, and slope of NOT/NAND gates changed for different output promoters, and a multiphasic behavior was observed in iFFLs, differing from the expected bell-shaped or sigmoidal curves. Model analysis explained the observed curves by complex interplays among components, due to reporter gene-borne cell load and regulator competition. Overall, CRISPRi/sadCas9 successfully expanded the available toolkit for bacterial engineering. Analysis of our circuit collection depicted the impact of generally neglected effects modulating the shape of component dose-response curves, to avoid drawing wrong conclusions on circuit functioning.
Collapse
Affiliation(s)
- Davide De Marchi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
| | - Roman Shaposhnikov
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
| | - Samy Gobaa
- Institut Pasteur, Université Paris Cité, Biomaterials and Microfluidics Core Facility, 28 Rue du Docteur Roux, 75015 Paris, France
| | - Daniele Pastorelli
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
| | - Gregory Batt
- Institut Pasteur, Inria, Université Paris Cité, 28 rue du Docteur Roux, 75015 Paris, France
| | - Paolo Magni
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
| | - Lorenzo Pasotti
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
- Institut Pasteur, Inria, Université Paris Cité, 28 rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
5
|
Rueff AS, van Raaphorst R, Aggarwal SD, Santos-Moreno J, Laloux G, Schaerli Y, Weiser JN, Veening JW. Synthetic genetic oscillators demonstrate the functional importance of phenotypic variation in pneumococcal-host interactions. Nat Commun 2023; 14:7454. [PMID: 37978173 PMCID: PMC10656556 DOI: 10.1038/s41467-023-43241-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
Phenotypic variation is the phenomenon in which clonal cells display different traits even under identical environmental conditions. This plasticity is thought to be important for processes including bacterial virulence, but direct evidence for its relevance is often lacking. For instance, variation in capsule production in the human pathogen Streptococcus pneumoniae has been linked to different clinical outcomes, but the exact relationship between variation and pathogenesis is not well understood due to complex natural regulation. In this study, we use synthetic oscillatory gene regulatory networks (GRNs) based on CRISPR interference (CRISPRi) together with live cell imaging and cell tracking within microfluidics devices to mimic and test the biological function of bacterial phenotypic variation. We provide a universally applicable approach for engineering intricate GRNs using only two components: dCas9 and extended sgRNAs (ext-sgRNAs). Our findings demonstrate that variation in capsule production is beneficial for pneumococcal fitness in traits associated with pathogenesis providing conclusive evidence for this longstanding question.
Collapse
Affiliation(s)
- Anne-Stéphanie Rueff
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Renske van Raaphorst
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200, Brussels, Belgium
| | - Surya D Aggarwal
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Javier Santos-Moreno
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
- Pompeu Fabra University, Barcelona, Spain
| | - Géraldine Laloux
- de Duve Institute, UCLouvain, 75 Avenue Hippocrate, 1200, Brussels, Belgium
| | - Yolanda Schaerli
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland
| | - Jeffrey N Weiser
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|