1
|
Davydova S, Yu D, Meccariello A. Genetic engineering for SIT application: a fruit fly-focused review. INSECT SCIENCE 2025. [PMID: 40195546 DOI: 10.1111/1744-7917.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 04/09/2025]
Abstract
Sterile insect technique (SIT) has become a key component of efficient pest control. Fruit fly pests from the Drosophilidae and Tephritidae families pose a substantial and overwhelmingly increasing threat to the agricultural industry, aggravated by climate change and globalization among other contributors. In this review, we discuss the advances in genetic engineering aimed to improve the SIT-mediated fruit fly pest control. This includes SIT enhancement strategies such as novel genetic sexing strain and female lethality approaches. Self-pervasive X-shredding and X-poisoning sex distorters, alongside gene drive varieties are also reviewed. The self-limiting precision-guided SIT, which aims to tackle female removal and male fertility via CRISPR/Cas9, is additionally introduced. By using examples of existing genetic tools in the fruit fly pests of interest, as well as model species, we illustrate that the population control intensity may be modulated depending on strategy selection.
Collapse
Affiliation(s)
- Serafima Davydova
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Danheng Yu
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Angela Meccariello
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Tolosana I, Willis K, Gribble M, Phillimore L, Burt A, Nolan T, Crisanti A, Bernardini F. A Y chromosome-linked genome editor for efficient population suppression in the malaria vector Anopheles gambiae. Nat Commun 2025; 16:206. [PMID: 39747012 PMCID: PMC11696527 DOI: 10.1038/s41467-024-55391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Genetic control - the deliberate introduction of genetic traits to control a pest or vector population - offers a powerful tool to augment conventional mosquito control tools that have been successful in reducing malaria burden but that are compromised by a range of operational challenges. Self-sustaining genetic control strategies have shown great potential in laboratory settings, but hesitancy due to their invasive and persistent nature may delay their implementation. Here, instead, we describe a self-limiting strategy, designed to have geographically and temporally restricted effect, based on a Y chromosome-linked genome editor (YLE). The YLE comprises a CRISPR-Cas9 construct that is always inherited by males yet generates an autosomal dominant mutation that is transmitted to over 90% of the offspring and results in female-specific sterility. To our knowledge, our system represents a pioneering approach in the engineering of the Y chromosome to generate a genetic control strain for mosquitoes. Mathematical modelling shows that this YLE technology is up to seven times more efficient for population suppression than optimal versions of other self-limiting strategies, such as the widely used Sterile Insect Technique or the Release of Insects carrying a Dominant Lethal gene.
Collapse
Affiliation(s)
- Ignacio Tolosana
- Department of Life Sciences, Imperial College London, London, UK
| | - Katie Willis
- Department of Life Sciences, Imperial College London, London, UK
| | - Matthew Gribble
- Department of Life Sciences, Imperial College London, London, UK
| | - Lee Phillimore
- Department of Life Sciences, Imperial College London, London, UK
| | - Austin Burt
- Department of Life Sciences, Imperial College London, London, UK
| | - Tony Nolan
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Andrea Crisanti
- Department of Life Sciences, Imperial College London, London, UK
| | | |
Collapse
|
3
|
Haber DA, Arien Y, Lamdan LB, Alcalay Y, Zecharia C, Krsticevic F, Yonah ES, Avraham RD, Krzywinska E, Krzywinski J, Marois E, Windbichler N, Papathanos PA. Targeting mosquito X-chromosomes reveals complex transmission dynamics of sex ratio distorting gene drives. Nat Commun 2024; 15:4983. [PMID: 38862555 PMCID: PMC11166636 DOI: 10.1038/s41467-024-49387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Engineered sex ratio distorters (SRDs) have been proposed as a powerful component of genetic control strategies designed to suppress harmful insect pests. Two types of CRISPR-based SRD mechanisms have been proposed: X-shredding, which eliminates X-bearing sperm, and X-poisoning, which eliminates females inheriting disrupted X-chromosomes. These differences can have a profound impact on the population dynamics of SRDs when linked to the Y-chromosome: an X-shredder is invasive, constituting a classical meiotic Y-drive, whereas X-poisoning is self-limiting, unable to invade but also insulated from selection. Here, we establish X-poisoning strains in the malaria vector Anopheles gambiae targeting three X-linked genes during spermatogenesis, resulting in male bias. We find that sex distortion is primarily driven by a loss of X-bearing sperm, with limited evidence for postzygotic lethality of female progeny. By leveraging a Drosophila melanogaster model, we show unambiguously that engineered SRD traits can operate differently in these two insects. Unlike X-shredding, X-poisoning could theoretically operate at early stages of spermatogenesis. We therefore explore premeiotic Cas9 expression to target the mosquito X-chromosome. We find that, by pre-empting the onset of meiotic sex chromosome inactivation, this approach may enable the development of Y-linked SRDs if mutagenesis of spermatogenesis-essential genes is functionally balanced.
Collapse
Affiliation(s)
- Daniella An Haber
- Department of Entomology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Yael Arien
- Department of Entomology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Lee Benjamin Lamdan
- Department of Entomology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Yehonathan Alcalay
- Department of Entomology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Chen Zecharia
- Department of Entomology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Flavia Krsticevic
- Department of Entomology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Elad Shmuel Yonah
- Department of Entomology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Rotem Daniel Avraham
- Department of Entomology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Elzbieta Krzywinska
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
- Forest Research, Alice Holt Lodge, Farnham, Surrey, GU10 4LH, UK
| | - Jaroslaw Krzywinski
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
- Genetics and Ecology Research Centre, Polo d'Innovazione di Genomica Genetica e Biologia, Via Mazzieri, 05100, Terni, Italy
| | - Eric Marois
- Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, INSERM, CNRS, Strasbourg, France
| | | | - Philippos Aris Papathanos
- Department of Entomology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
| |
Collapse
|
4
|
Sanz Juste S, Okamoto EM, Nguyen C, Feng X, López Del Amo V. Next-generation CRISPR gene-drive systems using Cas12a nuclease. Nat Commun 2023; 14:6388. [PMID: 37821497 PMCID: PMC10567717 DOI: 10.1038/s41467-023-42183-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
One method for reducing the impact of vector-borne diseases is through the use of CRISPR-based gene drives, which manipulate insect populations due to their ability to rapidly propagate desired genetic traits into a target population. However, all current gene drives employ a Cas9 nuclease that is constitutively active, impeding our control over their propagation abilities and limiting the generation of alternative gene drive arrangements. Yet, other nucleases such as the temperature sensitive Cas12a have not been explored for gene drive designs in insects. To address this, we herein present a proof-of-concept gene-drive system driven by Cas12a that can be regulated via temperature modulation. Furthermore, we combined Cas9 and Cas12a to build double gene drives capable of simultaneously spreading two independent engineered alleles. The development of Cas12a-mediated gene drives provides an innovative option for designing next-generation vector control strategies to combat disease vectors and agricultural pests.
Collapse
Affiliation(s)
- Sara Sanz Juste
- Department of Epigenetics & Molecular Carcinogenesis at MD Anderson, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
- Center for Cancer Epigenetics, MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Emily M Okamoto
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Christina Nguyen
- University of Texas Health Science Center, School of Public Health, Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Diseases, Houston, TX, 77030, USA
| | - Xuechun Feng
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, 92093, USA.
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518106, China.
| | - Víctor López Del Amo
- University of Texas Health Science Center, School of Public Health, Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Diseases, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Kojin BB, Compton A, Adelman ZN, Tu Z. Selective targeting of biting females to control mosquito-borne infectious diseases. Trends Parasitol 2022; 38:791-804. [PMID: 35952630 PMCID: PMC9372635 DOI: 10.1016/j.pt.2022.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
Mosquitoes are vectors for a number of infectious diseases. Only females feed on blood to provision for their embryos and, in doing so, transmit pathogens to the associated vertebrate hosts. Therefore, sex is an important phenotype in the context of genetic control programs, both for sex separation in the rearing facilities to avoid releasing biting females and for ways to distort the sex ratio towards nonbiting males. We review recent progress in the fundamental knowledge of sex determination and sex chromosomes in mosquitoes and discuss new methods to achieve sex separation and sex ratio distortion to help control mosquito-borne infectious diseases. We conclude by suggesting a few critical areas for future research.
Collapse
Affiliation(s)
- Bianca B Kojin
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX, USA
| | - Austin Compton
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA; Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
| | - Zach N Adelman
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX, USA.
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA; Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
6
|
Abstract
Insects have evolved highly diverse genetic sex-determination mechanisms and a relatively balanced male to female sex ratio is generally expected. However, selection may shift the optimal sex ratio while meiotic drive and endosymbiont manipulation can result in sex ratio distortion (SRD). Recent advances in sex chromosome genomics and CRISPR/Cas9-mediated genome editing brought significant insights into the molecular regulators of sex determination in an increasing number of insects and provided new ways to engineer SRD. We review these advances and discuss both naturally occurring and engineered SRD in the context of the Anthropocene. We emphasize SRD-mediated biological control of insects to help improve One Health, sustain agriculture, and conserve endangered species.
Collapse
Affiliation(s)
- Austin Compton
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
7
|
Siddall A, Harvey-Samuel T, Chapman T, Leftwich PT. Manipulating Insect Sex Determination Pathways for Genetic Pest Management: Opportunities and Challenges. Front Bioeng Biotechnol 2022; 10:867851. [PMID: 35837548 PMCID: PMC9274970 DOI: 10.3389/fbioe.2022.867851] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022] Open
Abstract
Sex determination pathways in insects are generally characterised by an upstream primary signal, which is highly variable across species, and that regulates the splicing of a suite of downstream but highly-conserved genes (transformer, doublesex and fruitless). In turn, these downstream genes then regulate the expression of sex-specific characteristics in males and females. Identification of sex determination pathways has and continues to be, a critical component of insect population suppression technologies. For example, "first-generation" transgenic technologies such as fsRIDL (Female-Specific Release of Insects carrying Dominant Lethals) enabled efficient selective removal of females from a target population as a significant improvement on the sterile insect technique (SIT). Second-generation technologies such as CRISPR/Cas9 homing gene drives and precision-guided SIT (pgSIT) have used gene editing technologies to manipulate sex determination genes in vivo. The development of future, third-generation control technologies, such as Y-linked drives, (female to male) sex-reversal, or X-shredding, will require additional knowledge of aspects of sexual development, including a deeper understanding of the nature of primary signals and dosage compensation. This review shows how knowledge of sex determination in target pest species is fundamental to all phases of the development of control technologies.
Collapse
Affiliation(s)
- Alex Siddall
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Tim Harvey-Samuel
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|