1
|
Li M, Wei L, Liu W, Wang J, Lu Q, Chen X, Lim LY, Mo J. A ROS-responsive, aptamer-targeted graphene oxide nanocomposite for site-specific glutathione release in cerebral ischemia-reperfusion injury. Front Pharmacol 2025; 16:1543870. [PMID: 40438585 PMCID: PMC12116469 DOI: 10.3389/fphar.2025.1543870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/25/2025] [Indexed: 06/01/2025] Open
Abstract
Cerebral ischemia-reperfusion (I/R) injury is a major contributor to mortality and long-term disability worldwide, primarily due to excessive reactive oxygen species (ROS) generation after blood flow is restored. Although current treatments focus on reestablishing perfusion, they offer limited protection against the secondary ROS-mediated injury. Here, we report a multifunctional nanocomposite-graphene oxide loaded with glutathione (GSH) and functionalized with a fibrinogen-targeting aptamer (GO@GSH-FA)-capable of selectively releasing antioxidant cargo within the ischemic brain microenvironment. Characterization revealed a drug-loading capacity of 17.59% ± 3.74% and an entrapment efficiency of 78.78% ± 4.55%, highlighting the robust loading of GSH. The ROS-sensitive borate ester linker ensures that GSH is preferentially liberated in oxidative stress regions, while the fibrinogen aptamer actively targets fibrin-rich thrombotic sites. In vitro, GO@GSH-FA significantly restored viability in oxygen-glucose-deprived SH-SY5Y cells (from 31% up to near control levels), reduced inflammatory cytokines, and lowered intracellular ROS. In a Endothelin-1 (ET-1) induced cortical ischemia model, GO@GSH-FA led to a marked decrease in neurological deficit scores (from 7.20 ± 1.16 to 4.20 ± 0.98) and enhanced neuronal survival relative to untreated animals. Collectively, these findings underscore the promise of GO@GSH-FA as a targeted, ROS-responsive platform for mitigating cerebral I/R injury.
Collapse
Affiliation(s)
- Meiying Li
- Lab of Neurology, The Affiliated Hospital of Guilin Medical University, Guilin, China
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Lili Wei
- Pharmaceutical Clinical Trial Laboratory, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Wenxu Liu
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Jiawen Wang
- Lab of Neurology, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Qiujie Lu
- School of Clinical Medicine, Guilin Medical University, Guilin, China
| | - Xianjue Chen
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Lee Yong Lim
- School of Allied Health, University of Western Australia, Perth, WA, Australia
| | - Jingxin Mo
- Lab of Neurology, The Affiliated Hospital of Guilin Medical University, Guilin, China
- Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Big Data Intelligent Cloud Management for Neurological Diseases, Guilin Medical University, Guilin, China
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, Guilin Medical University, Guilin, China
| |
Collapse
|
2
|
Mainkar G, Ghiringhelli M, Zangi L. The Potential of RNA Therapeutics in Treating Cardiovascular Disease. Drugs 2025; 85:659-676. [PMID: 40175855 DOI: 10.1007/s40265-025-02173-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 04/04/2025]
Abstract
Despite significant advances in cardiology over the past few decades, cardiovascular diseases (CVDs) remain the leading cause of global mortality and morbidity. This underscores the need for novel therapeutic interventions that go beyond symptom management to address the underlying causal mechanisms of CVDs. RNA-based therapeutics represent a new class of drugs capable of regulating specific genetic and molecular pathways, positioning them as strong candidates for targeting the root causes of a wide range of diseases. Moreover, owing to the vast diversity in RNA form and function, these molecules can be utilized to induce changes at different levels of gene expression regulation, making them suitable for a broad array of medical applications, even within a single disease context. Several RNA-based therapies are currently being investigated for their potential to address various CVD pathologies. These include treatments aimed at promoting cardiac revascularization and regeneration, preventing cardiomyocyte apoptosis, reducing harmful circulating cholesterols and fats, lowering blood pressure, reversing cardiac fibrosis and remodeling, and correcting the genetic basis of inherited CVDs. In this review, we discuss the current landscape of RNA therapeutics for CVDs, with an emphasis on their classifications, modes of action, advancements in delivery strategies and considerations for their implementation, as well as CVD targets with proven therapeutic potential.
Collapse
Affiliation(s)
- Gayatri Mainkar
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Matteo Ghiringhelli
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lior Zangi
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, 10029, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
3
|
Park TI, Yang AH, Kanth BK, Pack SP. Aptamers as Diagnostic and Therapeutic Agents for Aging and Age-Related Diseases. BIOSENSORS 2025; 15:232. [PMID: 40277546 PMCID: PMC12024714 DOI: 10.3390/bios15040232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025]
Abstract
In the 21st century, the demographic shift toward an aging population has posed a significant challenge, particularly with respect to age-related diseases, which constitute a major threat to human health. Accordingly, the detection, prevention, and treatment of aging and age-related diseases have become critical issues, and the introduction of novel molecular recognition elements, called aptamers, has been considered. Aptamers, a class of oligonucleotides, can bind to target molecules with high specificity. In addition, aptamers exhibit superior stability, biocompatibility, and applicability, rendering them promising tools for the diagnosis and treatment of human diseases. In this paper, we present a comprehensive overview of aptamers, systematic evolution of ligands by exponential enrichment (SELEX), biomarkers associated with aging, as well as aptamer-based diagnostic and therapeutic platforms. Finally, the limitations associated with predicting and preventing age-related conditions are discussed, along with potential solutions based on advanced technologies and theoretical approaches.
Collapse
Affiliation(s)
- Tae-In Park
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (T.-I.P.); (A.H.Y.)
| | - Ah Hyun Yang
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (T.-I.P.); (A.H.Y.)
| | - Bashistha Kumar Kanth
- Department of Food Science and Nutrition, Dong-A University, Pusan 602760, Republic of Korea;
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (T.-I.P.); (A.H.Y.)
| |
Collapse
|
4
|
Yousif G, Murugesan S, Djekidel MN, Terranegra A, Gentilcore G, Grivel JC, Al Khodor S. Distinctive blood and salivary proteomics signatures in Qatari individuals at high risk for cardiovascular disease. Sci Rep 2025; 15:4056. [PMID: 39901062 PMCID: PMC11790934 DOI: 10.1038/s41598-025-87596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/20/2025] [Indexed: 02/05/2025] Open
Abstract
Cardiovascular disease (CVD) remains a leading cause of global morbidity and mortality. Timely diagnosis is important in reducing both short and long-term health complications. Saliva has emerged as a potential source for biomarker discovery, offering a non-invasive tool for early detection of individuals at elevated risk for CVD, yet large-scale extensive proteomic analysis using saliva for a comprehensive biomarker discovery remains limited. In an effort to develop a diagnostic tool using saliva samples, our study aims to assess the salivary and plasma proteomes in subjects with high risk of developing CVD using a large-scale proteomic approach. Leveraging on the SOMAscan platform, we analyzed 1,317 proteins in saliva and plasma collected from subjects at a high risk of CVD (HR-CVD) and compared the profiles to subjects with low risk of CVD (LR-CVD). Our analysis revealed significant differences in the plasma and salivary proteins between the two groups. Pathway enrichment analysis of the differentially detected proteins revealed that the immune system activation and extracellular matrix remodeling are the most enriched pathways in the CVD-HR group. Comparing proteomic signatures between plasma and saliva, we found approximately 42 and 17 differentially expressed proteins associated with CVD-HR uniquely expressed in plasma and saliva respectively. Additionally, we identified eight common CVD-risk biomarkers shared between both plasma and saliva, demonstrating promising diagnostic tools for identifying individuals at high risk of developing CVD. In conclusion, saliva proteomics holds a significant promise to identify subjects with a high risk to develop CVD. Further studies are needed to validate our findings.
Collapse
Affiliation(s)
- Ghada Yousif
- Research Department, Sidra Medicine, Doha, Qatar
| | | | | | | | | | | | | |
Collapse
|
5
|
Ismail E, Liu Y, Wang Y, Yazdanparast Tafti S, Zhang XF, Cheng X. Aptamer-based biotherapeutic conjugate for shear responsive release of Von Willebrand factor A1 domain. NANOSCALE 2025; 17:1246-1259. [PMID: 39412758 DOI: 10.1039/d4nr02715a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Smart polymers that mimic and even surpass the functionality of natural responsive materials have been actively researched. This study explores the design and characterization of a Single-MOlecule-based material REsponsive to Shear (SMORES) for the targeted release of A1, the platelet binding domain of the blood clotting protein von Willebrand factor (VWF). Each SMORES construct employs an aptamer molecule as the flow transducer and a microparticle to sense and amplify the hydrodynamic force. Within the construct, the aptamer, ARC1172, undergoes conformational changes beyond a shear stress threshold, mimicking the shear-responsive behavior of VWF. This conformational alteration modulates the bioavailability of its target, the VWF-A1 domain, ultimately releasing it at elevated shear. Through optical tweezer-based single-molecule force measurement, ARC1172s role as a force transducer was assessed by examining its unfolding under constant pulling force. We also investigated its refolding rate as a function of force under varied relaxation periods. These analyses revealed a narrow range of threshold forces (3-7 pN) governing the transition between folded and unfolded states. We subsequently constructed the SMORES material by conjugating ARC1172 and a microbead, and immobilizing the other end of the aptamer on a substrate. Single-molecule flow experiments on immobilized SMORES constructs revealed a peak A1 domain release within a flow rate range of (40-70 μL min-1). A COMSOL Multiphysics model translated these flow rates to total forces of 3.10 pN-5.63 pN experienced by the aptamers, aligning with single-molecule force microscopy predictions. Evaluation under variable flow conditions showed a peak binding of A1 to the platelet glycoprotein Ib (GPIB) within the same force range, confirming released payload functionality. Building on knowledge of aptamer biomechanics, this study presents a new strategy to create shear-stimulated biomaterials based on single biomolecules.
Collapse
Affiliation(s)
- Esraa Ismail
- Department of Bioengineering, P. C. Rossin College of Engineering and Applied Science, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Yi Liu
- Department of Bioengineering, P. C. Rossin College of Engineering and Applied Science, Lehigh University, Bethlehem, Pennsylvania, USA
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Yi Wang
- Department of Materials Science and Engineering, P. C. Rossin College of Engineering and Applied Science, Lehigh University, Bethlehem, Pennsylvania, USA.
- Current Address: Analytical Research and Development, Merck & Co., Inc. Greater Philadelphia, Pennsylvania, USA
| | - Sajedehalsadat Yazdanparast Tafti
- Department of Bioengineering, P. C. Rossin College of Engineering and Applied Science, Lehigh University, Bethlehem, Pennsylvania, USA
| | - X Frank Zhang
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Xuanhong Cheng
- Department of Bioengineering, P. C. Rossin College of Engineering and Applied Science, Lehigh University, Bethlehem, Pennsylvania, USA
- Department of Materials Science and Engineering, P. C. Rossin College of Engineering and Applied Science, Lehigh University, Bethlehem, Pennsylvania, USA.
| |
Collapse
|
6
|
Sujith S, Naresh R, Srivisanth BU, Sajeevan A, Rajaramon S, David H, Solomon AP. Aptamers: precision tools for diagnosing and treating infectious diseases. Front Cell Infect Microbiol 2024; 14:1402932. [PMID: 39386170 PMCID: PMC11461471 DOI: 10.3389/fcimb.2024.1402932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Infectious diseases represent a significant global health challenge, with bacteria, fungi, viruses, and parasitic protozoa being significant causative agents. The shared symptoms among diseases and the emergence of new pathogen variations make diagnosis and treatment complex. Conventional diagnostic methods are laborious and intricate, underscoring the need for rapid, accurate techniques. Aptamer-based technologies offer a promising solution, as they are cost-effective, sensitive, specific, and convenient for molecular disease diagnosis. Aptamers, which are single-stranded RNA or DNA sequences, serve as nucleotide equivalents of monoclonal antibodies, displaying high specificity and affinity for target molecules. They are structurally robust, allowing for long-term storage without substantial activity loss. Aptamers find applications in diverse fields such as drug screening, material science, and environmental monitoring. In biomedicine, they are extensively studied for biomarker detection, diagnostics, imaging, and targeted therapy. This comprehensive review focuses on the utility of aptamers in managing infectious diseases, particularly in the realms of diagnostics and therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
7
|
Balkrishna A, Singh S, Mishra S, Rana M, Mishra RK, Rajput SK, Arya V. Impact of Biosensors and Biomarkers in Diabetes Care: A Review. BIOMEDICAL MATERIALS & DEVICES 2024. [DOI: 10.1007/s44174-024-00230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/27/2024] [Indexed: 01/04/2025]
|
8
|
Ma Y, Liao X, Lu G, Chen X, Qin Y, Yuan A, Wang R, Xie Y, Pu J. Functionalizing Sgc8-Paclitaxel Conjugates with F-Base Modifications: Targeted Drug Delivery with Optimized Cardiac Safety. ChemMedChem 2024; 19:e202400112. [PMID: 38782722 DOI: 10.1002/cmdc.202400112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Recent advancements in cancer treatment have improved patient prognoses, but chemotherapy induced cardiotoxicity remains a prevalent concern. This study explores the potential of F-base-modified aptamers for targeted drug delivery, focusing on their impact on cardiotoxicity. From the phosphoramidite, F-base-functionalized Sgc8-F23 was prepared in an automated and programmable way, which was further reacted with paclitaxel (PTX) to give the F-base- modified aptamer Sgc8-paclitaxel conjugates (Sgc8-F23-PTX) efficiently. The conjugate exhibited prolonged circulation time and enhanced efficacy as a precision anticancer drug delivery system. Echocardiographic assessments revealed no exacerbation of cardiac dysfunction after myocardial infarction (MI) and no pathological changes or increased apoptosis in non-infarcted cardiac regions. Autophagy pathway analysis showed no discernible differences in Sgc8-F23-PTX-treated cardiomyocytes compared with controls, in contrast to the increased autophagy with nanoparticle albumin-bound-paclitaxel (Nab-PTX). Similarly, apoptosis analysis showed no significant differences. Moreover, Sgc8-F23-PTX exhibited no inhibitory effect on hERG, hNav1.5, or hCav1.2 channels. These findings suggest the safety and efficacy of F-base-modified Sgc8 aptamers for targeted drug delivery with potential clinical applications. Further research is warranted for clinical translation and exploration of other drug carriers.
Collapse
Affiliation(s)
- Yue Ma
- Department of Cardiology, Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xianying Liao
- Department of Cardiology, Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Guiping Lu
- Department of Cardiology, Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xinyuan Chen
- Department of Cardiology, Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yu Qin
- Institute of Molecular Medicine (IMM), Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ancai Yuan
- Department of Cardiology, Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ruowen Wang
- Institute of Molecular Medicine (IMM), Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuquan Xie
- Department of Cardiology, Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jun Pu
- Department of Cardiology, Ren ji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
9
|
Ali Agha AS, Alshaer W, Aburjai T. Advancements and Challenges in Aptamer-Based Therapeutics and Diagnostics Across Diverse Medical Domains: A Comprehensive Review. JORDAN JOURNAL OF PHARMACEUTICAL SCIENCES 2024; 17:344-361. [DOI: 10.35516/jjps.v17i2.1895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Aptamers, which are single-stranded DNA or RNA molecules, are increasingly recognized as important tools in diagnostics and therapeutics across various medical disciplines such as oncology, respiratory diseases, and neurological disorders. This review provides a comprehensive evaluation of the recent progress and obstacles encountered in the field of aptamer-based applications. Aptamers have shown promise in oncology for early cancer detection and targeted drug delivery, effectively reducing off-target effects. They also hold potential for significantly impacting the management of respiratory conditions such as asthma and Chronic Obstructive Pulmonary Disease (COPD) by selectively targeting cytokines and regulating the inflammatory response. In the realm of neurological disorders, aptamers offer novel methods by influencing the gut-brain axis and proposing potential approaches for early detection and specific therapy. Despite these notable benefits, persistent challenges remain in areas such as molecular stability, delivery mechanisms, and economic viability. This review offers a comprehensive overview of aptamer-based diagnostics and therapeutics while exploring potential avenues for future research.
Collapse
|
10
|
Chowdhury R, Eslami S, Pham CV, Rai A, Lin J, Hou Y, Greening DW, Duan W. Role of aptamer technology in extracellular vesicle biology and therapeutic applications. NANOSCALE 2024; 16:11457-11479. [PMID: 38856692 DOI: 10.1039/d4nr00207e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Extracellular vesicles (EVs) are cell-derived nanosized membrane-bound vesicles that are important intercellular signalling regulators in local cell-to-cell and distant cell-to-tissue communication. Their inherent capacity to transverse cell membranes and transfer complex bioactive cargo reflective of their cell source, as well as their ability to be modified through various engineering and modification strategies, have attracted significant therapeutic interest. Molecular bioengineering strategies are providing a new frontier for EV-based therapy, including novel mRNA vaccines, antigen cross-presentation and immunotherapy, organ delivery and repair, and cancer immune surveillance and targeted therapeutics. The revolution of EVs, their diversity as biocarriers and their potential to contribute to intercellular communication, is well understood and appreciated but is ultimately dependent on the development of methods and techniques for their isolation, characterization and enhanced targeting. As single-stranded oligonucleotides, aptamers, also known as chemical antibodies, offer significant biological, chemical, economic, and therapeutic advantages in terms of their size, selectivity, versatility, and multifunctional programming. Their integration into the field of EVs has been contributing to the development of isolation, detection, and analysis pipelines associated with bioengineering strategies for nano-meets-molecular biology, thus translating their use for therapeutic and diagnostic utility.
Collapse
Affiliation(s)
- Rocky Chowdhury
- School of Medicine, Deakin University, and IMPACT Strategic Research Centre, Waurn Ponds, VIC, 3216, Australia.
| | - Sadegh Eslami
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| | - Cuong Viet Pham
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Alin Rai
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Department of Cardiovascular Research, Translation and Implementation, and La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Jia Lin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yingchu Hou
- Laboratory of Tumor Molecular and Cellular Biology College of Life Sciences, Shaanxi Normal University 620 West Chang'an Avenue, Xi'an, Shaanxi, 710119, China
| | - David W Greening
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Department of Cardiovascular Research, Translation and Implementation, and La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Wei Duan
- School of Medicine, Deakin University, and IMPACT Strategic Research Centre, Waurn Ponds, VIC, 3216, Australia.
| |
Collapse
|
11
|
Miyoshi M, Shimosato T, Takaya T. Myogenic Anti-Nucleolin Aptamer iSN04 Inhibits Proliferation and Promotes Differentiation of Vascular Smooth Muscle Cells. Biomolecules 2024; 14:709. [PMID: 38927112 PMCID: PMC11201766 DOI: 10.3390/biom14060709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
De-differentiation and subsequent increased proliferation and inflammation of vascular smooth muscle cells (VSMCs) is one of the mechanisms of atherogenesis. Maintaining VSMCs in a contractile differentiated state is therefore a promising therapeutic strategy for atherosclerosis. We have reported the 18-base myogenetic oligodeoxynucleotide, iSN04, which serves as an anti-nucleolin aptamer and promotes skeletal and myocardial differentiation. The present study investigated the effect of iSN04 on VSMCs because nucleolin has been reported to contribute to VSMC de-differentiation under pathophysiological conditions. Nucleolin is localized in the nucleoplasm and nucleoli of both rat and human VSMCs. iSN04 without a carrier was spontaneously incorporated into VSMCs, indicating that iSN04 would serve as an anti-nucleolin aptamer. iSN04 treatment decreased the ratio of 5-ethynyl-2'-deoxyuridine (EdU)-positive proliferating VSMCs and increased the expression of α-smooth muscle actin, a contractile marker of VSMCs. iSN04 also suppressed angiogenesis of mouse aortic rings ex vivo, which is a model of pathological angiogenesis involved in plaque formation, growth, and rupture. These results demonstrate that antagonizing nucleolin with iSN04 preserves VSMC differentiation, providing a nucleic acid drug candidate for the treatment of vascular disease.
Collapse
MESH Headings
- Nucleolin
- Animals
- RNA-Binding Proteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Aptamers, Nucleotide/pharmacology
- Cell Proliferation/drug effects
- Phosphoproteins/metabolism
- Cell Differentiation/drug effects
- Humans
- Rats
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/cytology
- Mice
- Cells, Cultured
- Oligodeoxyribonucleotides/pharmacology
- Male
- Rats, Sprague-Dawley
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Mana Miyoshi
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Takeshi Shimosato
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| | - Tomohide Takaya
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan
| |
Collapse
|
12
|
Bonde S, Osmani RAM, Trivedi R, Patravale V, Angolkar M, Prasad AG, Ravikumar AA. Harnessing DNA origami's therapeutic potential for revolutionizing cardiovascular disease treatment: A comprehensive review. Int J Biol Macromol 2024; 270:132246. [PMID: 38735608 DOI: 10.1016/j.ijbiomac.2024.132246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/25/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
DNA origami is a cutting-edge nanotechnology approach that creates precise and detailed 2D and 3D nanostructures. The crucial feature of DNA origami is how it is created, which enables precise control over its size and shape. Biocompatibility, targetability, programmability, and stability are further advantages that make it a potentially beneficial technique for a variety of applications. The preclinical studies of sophisticated programmable nanomedicines and nanodevices that can precisely respond to particular disease-associated triggers and microenvironments have been made possible by recent developments in DNA origami. These stimuli, which are endogenous to the targeted disorders, include protein upregulation, pH, redox status, and small chemicals. Oncology has traditionally been the focus of the majority of past and current research on this subject. Therefore, in this comprehensive review, we delve into the intricate world of DNA origami, exploring its defining features and capabilities. This review covers the fundamental characteristics of DNA origami, targeting DNA origami to cells, cellular uptake, and subcellular localization. Throughout the review, we emphasised on elucidating the imperative for such a therapeutic platform, especially in addressing the complexities of cardiovascular disease (CVD). Moreover, we explore the vast potential inherent in DNA origami technology, envisioning its promising role in the realm of CVD treatment and beyond.
Collapse
Affiliation(s)
- Smita Bonde
- Department of Pharmaceutics, SSR College of Pharmacy, Silvassa 396230, UT of Dadra and Nagar Haveli, India.
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Rashmi Trivedi
- Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur 441002, Maharashtra, India.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India.
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| | - Aprameya Ganesh Prasad
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Akhila Akkihebbal Ravikumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, Karnataka, India.
| |
Collapse
|
13
|
Ardiana M, Fadila AN, Zuhra Z, Kusuma NM, Surya Erlangga Rurus ME, Oceandy D. Non-coding RNA therapeutics in cardiovascular diseases and risk factors: Systematic review. Noncoding RNA Res 2023; 8:487-506. [PMID: 37483458 PMCID: PMC10362275 DOI: 10.1016/j.ncrna.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
At present, RNA-based therapy which includes therapies using non-coding RNAs (ncRNAs), antisense oligonucleotides (ASOs), and aptamers are gaining widespread attention as possible ways to target genes in various cardiovascular diseases (CVDs), thereby serving as a promising therapeutic approach for CVDs and risk factors management. However, data are primarily in an early stage. A systematic review was carried out using literature from several databases (Pubmed, Cochrane, Scopus, and DOAJR) following the PRISMA guidelines. Of the 64 articles reviewed, 39 papers were included in this review with three main types of RNAs: aptamers, antisense oligonucleotides (ASOs), and small-interfering RNA (siRNA). All studies were human clinical trials. RNA-based therapies were demonstrated to be efficacious in treating various CVDs and controlling cardiovascular risk factors. They are generally safe and well-tolerated. However, data are still in the early stage and warrant further investigation.
Collapse
Affiliation(s)
- Meity Ardiana
- Department of Cardiology and Vascular Medicine, Dr.Soetomo General Hospital, Surabaya, Indonesia
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Asiyah Nurul Fadila
- Department of Cardiology and Vascular Medicine, Dr.Soetomo General Hospital, Surabaya, Indonesia
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Zakirah Zuhra
- Department of Cardiology and Vascular Medicine, Dr.Soetomo General Hospital, Surabaya, Indonesia
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | | | | | - Delvac Oceandy
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
14
|
Santostasi G, Denas G, Pengo V. New pharmacotherapeutic options for oral anticoagulant treatment in atrial fibrillation patients aged 65 and older: factor XIa inhibitors and beyond. Expert Opin Pharmacother 2023; 24:1335-1347. [PMID: 37243619 DOI: 10.1080/14656566.2023.2219391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023]
Abstract
INTRODUCTION Although much progress has been made using anticoagulation for stroke prevention in patients with non-valvular atrial fibrillation, bleeding is still a major concern. AREAS COVERED This article reviews current pharmacotherapeutic options in this setting. Particular emphasis is placed on the ability of the new molecules to minimize the bleeding risk in elderly patients. A systematic search of PubMed, Web of Science, and the Cochrane Library up to March 2023 was carried out. EXPERT OPINION Contact phase of coagulation is a possible new target for anticoagulant therapy. Indeed, congenital or acquired deficiency of contact phase factors is associated with reduced thrombotic burden and limited risk of spontaneous bleeding. These new drugs seem particularly suitable for stroke prevention in elderly patients with non-valvular atrial fibrillation in whom the hemorrhagic risk is high. Most of anti Factor XI (FXI) drugs are for parenteral use only. A group of small molecules are for oral use and therefore are candidates to substitute direct oral anticoagulants (DOACs) for stroke prevention in elderly patients with atrial fibrillation. Doubts remain on the possibility of impaired hemostasis. Indeed, a fine calibration of inhibition of contact phase factors is crucial for an effective and safe treatment.
Collapse
Affiliation(s)
| | - Gentian Denas
- Cardiology Clinic, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padua University Hospital, Padua, Italy
| | - Vittorio Pengo
- Cardiology Clinic, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padua University Hospital, Padua, Italy
- Arianna Foundation on Anticoagulation, Bologna, Italy
| |
Collapse
|
15
|
Sun X, Fang F, Na J, Yan R, Huang Y, Zhou Z, Zhao Y, Li G. Fluorescent "turn-on" aptamer sensor for sensitive and reliable detection of Golgi glycoprotein 73 based on nitrogen-doped graphene quantum dots and molybdenum disulfide nanosheets. J Pharm Biomed Anal 2023; 225:115215. [PMID: 36586381 DOI: 10.1016/j.jpba.2022.115215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
The sensitivity and specificity of Golgi glycoprotein 73 (GP73) are very important for early diagnosis of hepatocellular carcinoma. Herein, we constructed a new-fashioned fluorescent aptamer sensor for GP73 determination based on nitrogen-doped graphene quantum dots (N-GQDS) and molybdenum disulfide (MoS2) nanosheets. N-GQDs with high fluorescence intensity and good stability were screened out, and GP73 aptamer (GP73Apt) is labeled with N-GQDs to form the N-GQDs-GP73Apt fluorescence probe. MoS2 nanosheets can quench the fluorescence of N-GQDs-GP73Apt owing to fluorescence resonance energy transfer mechanisms. After introducing GP73 into the biosensing system, the N-GQDs-GP73Apt specifically bound with GP73 to form the deployable structures, making N-GQDs-GP73Apt far away from MoS2, blocking the fluorescence energy transfer process, and restoring the fluorescence of N-GQDs-GP73Apt. When the GP73 concentration was in the extent of 2.5 ng/mL∼100 ng/mL, the relative fluorescence recovery is linearly relevant to the concentration of GP73, and the limit of detection (LOD) was 1.29 ng/mL (S/N = 3). Moreover in the application of actual serum sample detection, the recovery was range 98.85∼100.55 %. The fluorescent aptamer sensor can rapidly detect and analyze the serum marker GP73 with the characteristics of low-cost, high sensitivity, good specificity and recovery.
Collapse
Affiliation(s)
- Xinjun Sun
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Fengyan Fang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Jintong Na
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Runjie Yan
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
| | - Yong Huang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhide Zhou
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China.
| | - Yongxiang Zhao
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Guiyin Li
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi 530021, China; College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong 525000, China.
| |
Collapse
|