1
|
Li Z, Chen R, Hao Z, E Y, Guo Q, Li J, Zhu S. Hydrogel inspired by "adobe" with antibacterial and antioxidant properties for diabetic wound healing. Mater Today Bio 2025; 31:101477. [PMID: 39885943 PMCID: PMC11780960 DOI: 10.1016/j.mtbio.2025.101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025] Open
Abstract
With the aging population, the incidence of diabetes is increasing. Diabetes often leads to restricted neovascularization, antibiotic-resistant bacterial infections, reduced wound perfusion, and elevated reactive oxygen species, resulting in impaired microenvironments and prolonged wound healing. Hydrogels are important tissue engineering materials for wound healing, known for their high water content and good biocompatibility. However, most hydrogels suffer from poor mechanical properties and difficulty in achieving sustained drug release, hindering their clinical application. Inspired by the incorporation of fibers to enhance the mechanical properties of "adobe," core-shell fibers were introduced into the hydrogel. This not only improves the mechanical strength of the hydrogel but also enables the possibility of sustained drug release. In this study, we first prepared core-shell fibers with PLGA (poly(lactic-co-glycolic acid)) and PCL (polycaprolactone). PLGA was loaded with P2 (Parathyroid hormone-related peptides-2), developed by our group, which promotes angiogenesis and cell proliferation. We then designed a QTG (QCS/TA/Gel, quaternary ammonium chitosan/tannic acid/gelatin) hydrogel, incorporating the core-shell fibers and the anti-inflammatory drug celecoxib into the QTG hydrogel. This hydrogel exhibits excellent antibacterial properties and biocompatibility, along with good mechanical performance. This hydrogel demonstrates excellent water absorption and swelling capabilities. In the early stages of wound healing, the hydrogel can absorb the wound exudate, maintaining the stability of the wound microenvironment. This hydrogel promotes neovascularization and collagen deposition, accelerating the healing of diabetic wounds, with a healing rate exceeding 95 % by day 14. Overall, this study provides a promising strategy for developing tissue engineering scaffolds for diabetic wound healing.
Collapse
Affiliation(s)
| | | | | | | | - Qi Guo
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shaobo Zhu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
2
|
Liang W, Liu G, Zhou W, Chen W, Lu Y, Wu H, Qin Y, Zhu C. Astaxanthin mediated repair of tBHP-Induced cellular injury in chondrocytes. Redox Rep 2024; 29:2422271. [PMID: 39495906 PMCID: PMC11536701 DOI: 10.1080/13510002.2024.2422271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
OBJECTIVE This study investigates how astaxanthin (AST) counters tert-butyl hydroperoxide (tBHP)-induced cellular damage in C28/I2 chondrocytes, focusing on the circ-HP1BP3/miR-139-5p/SOD1 signaling pathway and its use in sustained-release microspheres for osteoarthritis treatment. METHODS We employed a variety of techniques including real-time quantitative PCR, Western blot, ELISA, and dual-luciferase reporter gene assays to explore AST's molecular effects. Additionally, the efficacy of AST-loaded sustained-release microspheres was evaluated in vitro and in a mouse model of osteoarthritis. RESULTS AST significantly enhanced SOD1 expression, reducing apoptosis and inflammation in damaged cells. The AST-loaded microspheres showed promising in vitro drug release, improved cell viability, and reduced oxidative stress. In the osteoarthritis mouse model, they effectively decreased joint inflammation and increased the expression of chondrocyte markers. CONCLUSION Astaxanthin effectively mitigates oxidative stress and inflammation in chondrocytes via the circ-HP1BP3/miR-139-5p/SOD1 pathway. The development of AST-loaded microspheres offers a novel and promising approach for osteoarthritis therapy, potentially extending to osteoarthritis treatment.
Collapse
Affiliation(s)
- Wenwei Liang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Gang Liu
- Department of Orthopedics, The People's Hospital of Puyang, Puyang, People’s Republic of China
| | - Weibo Zhou
- Trauma Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Wei Chen
- Trauma Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Yaojun Lu
- Trauma Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Hao Wu
- Trauma Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| | - Yao Qin
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Chunhui Zhu
- Trauma Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, People’s Republic of China
| |
Collapse
|
3
|
Li Y, Duan M, Liu G, Liang L, Liu X, Zhang J, Wen C, Xu X. Effect of Sinapine on Microstructure and Anti-Digestion Properties of Dual-Protein-Based Hydrogels. Foods 2024; 13:3237. [PMID: 39456299 PMCID: PMC11507368 DOI: 10.3390/foods13203237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Sinapine is a natural polyphenol from the cruciferous plant family that has anti-aging effects but is low in bioavailability. To improve the bioavailability and therapeutic effect of sinapine, sinapine-crosslinked dual-protein-based hydrogels were prepared using soy protein isolate as a cross-linking agent. The preparation conditions were optimized by single-factor experiments, and the optimal ratios were obtained as follows: the concentration of sinapine was 300 μg/mL; the water-oil ratio was 1:3. The encapsulation rate was greater than 95%, and the drug loading capacity was 3.5 mg/g. In vitro, digestion experiments showed that the dual-protein-based hydrogels as a drug carrier stabilized the release of sinapine and improved the bioavailability of sinapine by 19.3%. The IC50 of DPPH antioxidants was 25 μg/mL as determined by in vitro digestion, and the antioxidant capacity of ABTS was about 20% higher than that of glutaraldehyde control. This is due to the addition of sinapine to enhance the antioxidant properties of the system. It can be seen that the developed hydrogels have potential applications in related fields, such as food nutrition fortification and drug delivery.
Collapse
Affiliation(s)
- Youdong Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (M.D.); (G.L.); (L.L.); (J.Z.); (C.W.)
| | - Mengxin Duan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (M.D.); (G.L.); (L.L.); (J.Z.); (C.W.)
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (M.D.); (G.L.); (L.L.); (J.Z.); (C.W.)
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (M.D.); (G.L.); (L.L.); (J.Z.); (C.W.)
| | - Xiaofang Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China;
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (M.D.); (G.L.); (L.L.); (J.Z.); (C.W.)
| | - Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (M.D.); (G.L.); (L.L.); (J.Z.); (C.W.)
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (M.D.); (G.L.); (L.L.); (J.Z.); (C.W.)
| |
Collapse
|
4
|
Zhang X, Liang Y, Luo D, Li P, Chen Y, Fu X, Yue Y, Hou R, Liu J, Wang X. Advantages and disadvantages of various hydrogel scaffold types: A research to improve the clinical conversion rate of loaded MSCs-Exos hydrogel scaffolds. Biomed Pharmacother 2024; 179:117386. [PMID: 39241570 DOI: 10.1016/j.biopha.2024.117386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
Mesenchymal stem cell-derived exosomes(MSCs-Exos) offer promising therapeutic potential for a wide range of tissues and organs such as bone/cartilage, nerves, skin, fat, and endocrine organs. In comparison to the application of mesenchymal stem cells (MSCs), MSCs-Exos address critical challenges related to rejection reactions and ethical concerns, positioning themselves as a promising cell-free therapy. As exosomes are extracellular vesicles, their effective delivery necessitates the use of carriers. Consequently, the selection of hydrogel materials as scaffolds for exosome delivery has become a focal point of contemporary research. The diversity of hydrogel scaffolds, which can take various forms such as injectable types, dressings, microneedles, and capsules, leads to differing choices among researchers for treating diseases within the same domain. This variability in hydrogel materials poses challenges for the translation of findings into clinical practice. The review highlights the potential of hydrogel-loaded exosomes in different fields and introduces the advantages and disadvantages of different forms of hydrogel applications. It aims to provide a multifunctional and highly recognized hydrogel scaffold option for tissue regeneration at specific sites, improve clinical translation efficiency, and benefit the majority of patients.
Collapse
Affiliation(s)
- Xinyao Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Yi Liang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Dongmei Luo
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Peiwen Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Yurou Chen
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Xinyu Fu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Yingge Yue
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Ruxia Hou
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
| | - Junyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China.
| | - Xiangyu Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China.
| |
Collapse
|
5
|
Zheng F, Tian R, Lu H, Liang X, Shafiq M, Uchida S, Chen H, Ma M. Droplet Microfluidics Powered Hydrogel Microparticles for Stem Cell-Mediated Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401400. [PMID: 38881184 DOI: 10.1002/smll.202401400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Indexed: 06/18/2024]
Abstract
Stem cell-related therapeutic technologies have garnered significant attention of the research community for their multi-faceted applications. To promote the therapeutic effects of stem cells, the strategies for cell microencapsulation in hydrogel microparticles have been widely explored, as the hydrogel microparticles have the potential to facilitate oxygen diffusion and nutrient transport alongside their ability to promote crucial cell-cell and cell-matrix interactions. Despite their significant promise, there is an acute shortage of automated, standardized, and reproducible platforms to further stem cell-related research. Microfluidics offers an intriguing platform to produce stem cell-laden hydrogel microparticles (SCHMs) owing to its ability to manipulate the fluids at the micrometer scale as well as precisely control the structure and composition of microparticles. In this review, the typical biomaterials and crosslinking methods for microfluidic encapsulation of stem cells as well as the progress in droplet-based microfluidics for the fabrication of SCHMs are outlined. Moreover, the important biomedical applications of SCHMs are highlighted, including regenerative medicine, tissue engineering, scale-up production of stem cells, and microenvironmental simulation for fundamental cell studies. Overall, microfluidics holds tremendous potential for enabling the production of diverse hydrogel microparticles and is worthy for various stem cell-related biomedical applications.
Collapse
Affiliation(s)
- Fangqiao Zheng
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Ruizhi Tian
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongxu Lu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao Liang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Muhammad Shafiq
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Satoshi Uchida
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Hangrong Chen
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ming Ma
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
6
|
Annicchiarico A, Barile B, Buccoliero C, Nicchia GP, Brunetti G. Alternative therapeutic strategies in diabetes management. World J Diabetes 2024; 15:1142-1161. [PMID: 38983831 PMCID: PMC11229975 DOI: 10.4239/wjd.v15.i6.1142] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/17/2024] [Accepted: 04/12/2024] [Indexed: 06/11/2024] Open
Abstract
Diabetes is a heterogeneous metabolic disease characterized by elevated blood glucose levels resulting from the destruction or malfunction of pancreatic β cells, insulin resistance in peripheral tissues, or both, and results in a non-sufficient production of insulin. To adjust blood glucose levels, diabetic patients need exogenous insulin administration together with medical nutrition therapy and physical activity. With the aim of improving insulin availability in diabetic patients as well as ameliorating diabetes comorbidities, different strategies have been investigated. The first approaches included enhancing endogenous β cell activity or transplanting new islets. The protocol for this kind of intervention has recently been optimized, leading to standardized procedures. It is indicated for diabetic patients with severe hypoglycemia, complicated by impaired hypoglycemia awareness or exacerbated glycemic lability. Transplantation has been associated with improvement in all comorbidities associated with diabetes, quality of life, and survival. However, different trials are ongoing to further improve the beneficial effects of transplantation. Furthermore, to overcome some limitations associated with the availability of islets/pancreas, alternative therapeutic strategies are under evaluation, such as the use of mesenchymal stem cells (MSCs) or induced pluripotent stem cells for transplantation. The cotransplantation of MSCs with islets has been successful, thus providing protection against proinflammatory cytokines and hypoxia through different mechanisms, including exosome release. The use of induced pluripotent stem cells is recent and requires further investigation. The advantages of MSC implantation have also included the improvement of diabetes-related comorbidities, such as wound healing. Despite the number of advantages of the direct injection of MSCs, new strategies involving biomaterials and scaffolds have been developed to improve the efficacy of mesenchymal cell delivery with promising results. In conclusion, this paper offered an overview of new alternative strategies for diabetes management while highlighting some limitations that will need to be overcome by future approaches.
Collapse
Affiliation(s)
- Alessia Annicchiarico
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| | - Cinzia Buccoliero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari 70125, Italy
| |
Collapse
|
7
|
Gong C, Xia C, Liu L. Exosomes derived from epidermal growth factor-like domain protein 6-preconditioned mesenchymal stem cells for diabetic wound healing. Regen Ther 2024; 26:932-940. [PMID: 39508057 PMCID: PMC11539165 DOI: 10.1016/j.reth.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 09/23/2024] [Indexed: 11/08/2024] Open
Abstract
Diabetic wounds are difficult to repair effectively in the clinic. Tissue engineering based on mesenchymal stem cells (MSCs) showed great therapeutic potential in wound healing. MSCs-derived exosome could reproduce the effect of MSCs by transferring the bioactive substance to the recipient cells. The biological function of exosomes was determined by the state of the derived MSCs. In this study, we cultured hUC-MSCs with EGFL6 and isolated EGFL6-preconditioned exosomes (EGF-Exos), and then investigated the effect of EGF-Exos on wound healing. The results revealed that EGF-Exos promoted the proliferation and migration of HUVECs, had the anti-inflammtory function and improved angiogenesis. Moreover, we fabricated Gelama hydrogel to load EGF-Exos to repair diabetic wounds. In vivo results showed that EGF-Exos contributed to the repair of diabetic wound and provided valuable data for understanding the role of EGF-Exos in diabetic wound healing.
Collapse
Affiliation(s)
- Chen Gong
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chengde Xia
- Department of Burn Surgery, The First People's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Linbo Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Safoine M, Paquette C, Gingras GM, Fradette J. Improving Cutaneous Wound Healing in Diabetic Mice Using Naturally Derived Tissue-Engineered Biological Dressings Produced under Serum-Free Conditions. Stem Cells Int 2024; 2024:3601101. [PMID: 38737365 PMCID: PMC11087150 DOI: 10.1155/2024/3601101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 02/13/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024] Open
Abstract
Long-term diabetes often leads to chronic wounds refractory to treatment. Cell-based therapies are actively investigated to enhance cutaneous healing. Various cell types are available to produce biological dressings, such as adipose-derived stem/stromal cells (ASCs), an attractive cell source considering their abundancy, accessibility, and therapeutic secretome. In this study, we produced human ASC-based dressings under a serum-free culture system using the self-assembly approach of tissue engineering. The dressings were applied every 4 days to full-thickness 8-mm splinted skin wounds created on the back of polygenic diabetic NONcNZO10/LtJ mice and streptozotocin-induced diabetic K14-H2B-GFP mice. Global wound closure kinetics evaluated macroscopically showed accelerated wound closure in both murine models, especially for NONcNZO10/LtJ; the treated group reaching 98.7% ± 2.3% global closure compared to 76.4% ± 11.8% for the untreated group on day 20 (p=0.0002). Histological analyses revealed that treated wounds exhibited healed skin of better quality with a well-differentiated epidermis and a more organized, homogeneous, and 1.6-fold thicker granulation tissue. Neovascularization, assessed by CD31 labeling, was 2.5-fold higher for the NONcNZO10/LtJ treated wounds. We thus describe the beneficial impact on wound healing of biologically active ASC-based dressings produced under an entirely serum-free production system facilitating clinical translation.
Collapse
|
9
|
Nie R, Zhang QY, Feng ZY, Huang K, Zou CY, Fan MH, Zhang YQ, Zhang JY, Li-Ling J, Tan B, Xie HQ. Hydrogel-based immunoregulation of macrophages for tissue repair and regeneration. Int J Biol Macromol 2024; 268:131643. [PMID: 38643918 DOI: 10.1016/j.ijbiomac.2024.131643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
The rational design of hydrogel materials to modulate the immune microenvironment has emerged as a pivotal approach in expediting tissue repair and regeneration. Within the immune microenvironment, an array of immune cells exists, with macrophages gaining prominence in the field of tissue repair and regeneration due to their roles in cytokine regulation to promote regeneration, maintain tissue homeostasis, and facilitate repair. Macrophages can be categorized into two types: classically activated M1 (pro-inflammatory) and alternatively activated M2 (anti-inflammatory and pro-repair). By regulating the physical and chemical properties of hydrogels, the phenotypic transformation and cell behavior of macrophages can be effectively controlled, thereby promoting tissue regeneration and repair. A full understanding of the interaction between hydrogels and macrophages can provide new ideas and methods for future tissue engineering and clinical treatment. Therefore, this paper reviews the effects of hydrogel components, hardness, pore size, and surface morphology on cell behaviors such as macrophage proliferation, migration, and phenotypic polarization, and explores the application of hydrogels based on macrophage immune regulation in skin, bone, cartilage, and nerve tissue repair. Finally, the challenges and future prospects of macrophage-based immunomodulatory hydrogels are discussed.
Collapse
Affiliation(s)
- Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Qing-Yi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Zi-Yuan Feng
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Kai Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ming-Hui Fan
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yue-Qi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ji-Ye Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jesse Li-Ling
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Medical Genetics, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Bo Tan
- Department of Orthopedic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, PR China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, PR China.
| |
Collapse
|
10
|
Ozhava D, Bektas C, Lee K, Jackson A, Mao Y. Human Mesenchymal Stem Cells on Size-Sorted Gelatin Hydrogel Microparticles Show Enhanced In Vitro Wound Healing Activities. Gels 2024; 10:97. [PMID: 38391427 PMCID: PMC10887759 DOI: 10.3390/gels10020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
The demand for innovative therapeutic interventions to expedite wound healing, particularly in vulnerable populations such as aging and diabetic patients, has prompted the exploration of novel strategies. Mesenchymal stem cell (MSC)-based therapy emerges as a promising avenue for treating acute and chronic wounds. However, its clinical application faces persistent challenges, notably the low survivability and limited retention time of engraftment in wound environments. Addressing this, a strategy to sustain the viability and functionality of human MSCs (hMSCs) in a graft-able format has been identified as crucial for advanced wound care. Hydrogel microparticles (HMPs) emerge as promising entities in the field of wound healing, showcasing versatile capabilities in delivering both cells and bioactive molecules/drugs. In this study, gelatin HMPs (GelMPs) were synthesized via an optimized mild processing method. GelMPs with distinct diameter sizes were sorted and characterized. The growth of hMSCs on GelMPs with various sizes was evaluated. The release of wound healing promoting factors from hMSCs cultured on different GelMPs were assessed using scratch wound assays and gene expression analysis. GelMPs with a size smaller than 100 microns supported better cell growth and cell migration compared to larger sizes (100 microns or 200 microns). While encapsulation of hMSCs in hydrogels has been a common route for delivering viable hMSCs, we hypothesized that hMSCs cultured on GelMPs are more robust than those encapsulated in hydrogels. To test this hypothesis, hMSCs were cultured on GelMPs or in the cross-linked methacrylated gelatin hydrogel (GelMA). Comparative analysis of growth and wound healing effects revealed that hMSCs cultured on GelMPs exhibited higher viability and released more wound healing activities in vitro. This observation highlights the potential of GelMPs, especially those with a size smaller than 100 microns, as a promising carrier for delivering hMSCs in wound healing applications, providing valuable insights for the optimization of advanced therapeutic strategies.
Collapse
Affiliation(s)
- Derya Ozhava
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
- Department of Chemistry and Chemical Processing Technologies, Cumra Vocational School, Selcuk University, 42130 Konya, Turkey
| | - Cemile Bektas
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Kathleen Lee
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Anisha Jackson
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| | - Yong Mao
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA
| |
Collapse
|
11
|
Cheng HY, Anggelia MR, Liu SC, Lin CF, Lin CH. Enhancing Immunomodulatory Function of Mesenchymal Stromal Cells by Hydrogel Encapsulation. Cells 2024; 13:210. [PMID: 38334602 PMCID: PMC10854565 DOI: 10.3390/cells13030210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) showcase remarkable immunoregulatory capabilities in vitro, positioning them as promising candidates for cellular therapeutics. However, the process of administering MSCs and the dynamic in vivo environment may impact the cell-cell and cell-matrix interactions of MSCs, consequently influencing their survival, engraftment, and their immunomodulatory efficacy. Addressing these concerns, hydrogel encapsulation emerges as a promising solution to enhance the therapeutic effectiveness of MSCs in vivo. Hydrogel, a highly flexible crosslinked hydrophilic polymer with a substantial water content, serves as a versatile platform for MSC encapsulation. Demonstrating improved engraftment and heightened immunomodulatory functions in vivo, MSCs encapsulated by hydrogel are at the forefront of advancing therapeutic outcomes. This review delves into current advancements in the field, with a focus on tuning various hydrogel parameters to elucidate mechanistic insights and elevate functional outcomes. Explored parameters encompass hydrogel composition, involving monomer type, functional modification, and co-encapsulation, along with biomechanical and physical properties like stiffness, viscoelasticity, topology, and porosity. The impact of these parameters on MSC behaviors and immunomodulatory functions is examined. Additionally, we discuss potential future research directions, aiming to kindle sustained interest in the exploration of hydrogel-encapsulated MSCs in the realm of immunomodulation.
Collapse
Affiliation(s)
- Hui-Yun Cheng
- Center for Vascularized Composite Allotransplantation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.R.A.)
| | - Madonna Rica Anggelia
- Center for Vascularized Composite Allotransplantation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.R.A.)
- Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Shiao-Chin Liu
- Center for Vascularized Composite Allotransplantation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.R.A.)
- Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chih-Fan Lin
- Center for Vascularized Composite Allotransplantation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.R.A.)
| | - Cheng-Hung Lin
- Center for Vascularized Composite Allotransplantation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.R.A.)
- Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
12
|
Li J, Zhang J, Ye H, Wang Q, Ouyang Y, Luo Y, Gong Y. Pulmonary decellularized extracellular matrix (dECM) modified polyethylene terephthalate three-dimensional cell carriers regulate the proliferation and paracrine activity of mesenchymal stem cells. Front Bioeng Biotechnol 2024; 11:1324424. [PMID: 38260733 PMCID: PMC10800494 DOI: 10.3389/fbioe.2023.1324424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/07/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: Mesenchymal stem cells (MSCs) possess a high degree of self-renewal capacity and in vitro multi-lineage differentiation potential. Decellularized materials have garnered considerable attention due to their elevated biocompatibility, reduced immunogenicity, excellent biodegradability, and the ability to partially mimic the in vivo microenvironment conducive to cell growth. To address the issue of mesenchymal stem cells losing their stem cell characteristics during two-dimensional (2D) cultivation, this study established three-dimensional cell carriers modified with lung decellularized extracellular matrix and assessed its impact on the life activities of mesenchymal stem cells. Methods: This study employed PET as a substrate material, grafting with polydopamine (PDA), and constructing a decellularized extracellular matrix (dECM) coating on its surface, thus creating the PET/PDA/dECM three-dimensional (3D) composite carrier. Subsequently, material characterization of the cellular carriers was conducted, followed by co-culturing with human umbilical cord mesenchymal stem cells in vitro, aiming to investigate the material's impact on the proliferation and paracrine activity of mesenchymal stem cells. Results and Discussion: Material characterization demonstrated successful grafting of PDA and dECM materials, and it had complete hydrophilicity, high porosity, and excellent mechanical properties. The material was rich in various ECM proteins (collagen I, collagen IV , laminin, fibronectin, elastin), indicating good biocompatibility. In long-term in vitro cultivation (14 days) experiments, the PET/PDA/dECM three-dimensional composite carrier significantly enhanced adhesion and proliferation of human umbilical cord-derived mesenchymal stem cells (HUCMSCs), with a proliferation rate 1.9 times higher than that of cells cultured on tissue culture polystyrene (TCPS) at day 14. Furthermore, it effectively maintained the stem cell characteristics, expressing specific antigens for HUCMSCs. Through qPCR, Western blot, and ELISA experiments, the composite carrier markedly promoted the expression and secretion of key cell factors in HUCMSCs. These results demonstrate that the PET/PDA/dECM composite carrier holds great potential for scaling up MSCs' long-term in vitro cultivation and the production of paracrine factors.
Collapse
Affiliation(s)
- Jinze Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Jiali Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Hao Ye
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Qixuan Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Yanran Ouyang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Yuxi Luo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou, China
| | - Yihong Gong
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
13
|
Nooreen Z, Rai AK, Summayya F, Tandon S. An Insight of Naturally Occurring Phytoconstituents and Novel Approaches Towards the Treatment of Diabetes. Curr Diabetes Rev 2024; 20:e290823220456. [PMID: 37644751 DOI: 10.2174/1573399820666230829094724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/30/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND The rising in diabetes incidents has clearly become one main worldwide health problem. Individuals suffering from diabetes are still more susceptible to many long-term and short-term side effects, which most often cause fatalities. Even though chemically synthesized anti-diabetic entities are capable of helping manage and treat, there has been significant risks related with their prolong and repetitive use. Hence, there is a requirement for safer and novel approaches that might be formed and utilized. OBJECTIVE Aim of the present review is to explain the naturally occurring phytochemicals and novel approach as anti-diabetic agents in the treatment of diabetes and its related issues. METHOD A survey of Google scholar, Research Gate, Pubmed, Science Direct, NCBI database was carried out conducted to determine a most hopeful phytochemicals and novel drug delivery systems in the management of diabetes. RESULT The study stressed the significance of phytomolecules and some novel approaches researched or reported in the literature for the management and cure of diabetes. It is suggested that changes in lifestyle can help patients and like nutritional support, assessment and lifestyle guidance must be individualized based on physical and functional capacity. Further evaluations and improved preventative medicine were the result of improving patient outcomes. CONCLUSION Conventional or synthetic drugs provide relief for short time but nanoformulations of phytomolecules offer an improved therapeutic with fewer negative side effects. Herbal medicines are rich in phytoconstituents and possess variety of health benefits. This review is compilation of phytoconstituents and novel drug delivery system of phytomolecules i.e. nanoparticles, niosomes, microsphere, microparticle and others.
Collapse
Affiliation(s)
- Zulfa Nooreen
- PSIT - Pranveer Singh Institute of Technology (Pharmacy) Bhauti, Kanpur Uttar Pradesh 209305, India
| | - Awani Kumar Rai
- PSIT - Pranveer Singh Institute of Technology (Pharmacy) Bhauti, Kanpur Uttar Pradesh 209305, India
| | - Fariha Summayya
- Integral Informatic and Research Center-1 (IIRC-1) Intergral University Lucknow Uttar Pradesh 226026, India
| | - Sudeep Tandon
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow Uttar Pradesh 223021, India
| |
Collapse
|
14
|
Wen J, Hu D, Wang R, Liu K, Zheng Y, He J, Chen X, Zhang Y, Zhao X, Bu Y, Song B, Wang L, Wang K. Astragalus polysaccharides driven stretchable nanofibrous membrane wound dressing for joint wound healing. Int J Biol Macromol 2023; 248:125557. [PMID: 37364811 DOI: 10.1016/j.ijbiomac.2023.125557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Joint wound dressings are currently significantly limited in their clinical applications due to their inferior mechanical properties and single therapeutic effect. Therefore, it is imperative to develop a versatile joint wound dressing that integrates adequate stretchability, desirable biocompatibility, and multiple biological effects into one system. We implemented the electrospinning technique in this study to fabricate a novel nanofibrous membrane (NFM) composed of gelatin (GEL) and astragalus polysaccharides (APS), termed GEL/APS NFM. The selection of GEL and APS confers excellent biocompatibility to GEL/APS NFM. Furthermore, the optimally proportioned GEL/APS NFM exhibits satisfactory stretchability and desirable wound healing efficiency. Furthermore, released APS can exert anti-inflammatory, procollagen deposition, and proangiogenic effects to accelerate epithelial tissue, enhancing joint wound healing. In summary, GEL/APS NFM offers a convenient and effective approach to promoting rapid joint wound healing, providing a novel approach to joint wound care.
Collapse
Affiliation(s)
- Jinpeng Wen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Datao Hu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruisi Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi 110016, China
| | - Kailai Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yunhe Zheng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiangchuan He
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xi Chen
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Yuchen Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xinxin Zhao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yizhuo Bu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Botao Song
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, China.
| | - Lin Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Ke Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
15
|
Sousa P, Lopes B, Sousa AC, Moreira A, Coelho A, Alvites R, Alves N, Geuna S, Maurício AC. Advancements and Insights in Exosome-Based Therapies for Wound Healing: A Comprehensive Systematic Review (2018-June 2023). Biomedicines 2023; 11:2099. [PMID: 37626596 PMCID: PMC10452374 DOI: 10.3390/biomedicines11082099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
Exosomes have shown promising potential as a therapeutic approach for wound healing. Nevertheless, the translation from experimental studies to commercially available treatments is still lacking. To assess the current state of research in this field, a systematic review was performed involving studies conducted and published over the past five years. A PubMed search was performed for English-language, full-text available papers published from 2018 to June 2023, focusing on exosomes derived from mammalian sources and their application in wound healing, particularly those involving in vivo assays. Out of 531 results, 148 papers were selected for analysis. The findings revealed that exosome-based treatments improve wound healing by increasing angiogenesis, reepithelization, collagen deposition, and decreasing scar formation. Furthermore, there was significant variability in terms of cell sources and types, biomaterials, and administration routes under investigation, indicating the need for further research in this field. Additionally, a comparative examination encompassing diverse cellular origins, types, administration pathways, or biomaterials is imperative. Furthermore, the predominance of rodent-based animal models raises concerns, as there have been limited advancements towards more complex in vivo models and scale-up assays. These constraints underscore the substantial efforts that remain necessary before attaining commercially viable and extensively applicable therapeutic approaches using exosomes.
Collapse
Affiliation(s)
- Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.M.); (A.C.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.M.); (A.C.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.M.); (A.C.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Alícia Moreira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.M.); (A.C.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.M.); (A.C.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.M.); (A.C.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Instituto Universitário de Ciências da Saúde (CESPU), Avenida Central de Gandra 1317, 4585-116 Paredes, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal;
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Ospedale San Luigi, 10043 Turin, Italy;
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.M.); (A.C.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
16
|
Chen L, Zheng B, Xu Y, Sun C, Wu W, Xie X, Zhu Y, Cai W, Lin S, Luo Y, Shi C. Nano hydrogel-based oxygen-releasing stem cell transplantation system for treating diabetic foot. J Nanobiotechnology 2023; 21:202. [PMID: 37370102 DOI: 10.1186/s12951-023-01925-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/10/2023] [Indexed: 06/29/2023] Open
Abstract
The employment of stem cells and hydrogel is widespread in contemporary clinical approaches to treating diabetic foot ulcers. However, the hypoxic conditions in the surrounding lesion tissue lead to a low stem cell survival rate following transplantation. This research introduces a novel hydrogel with superior oxygen permeability and biocompatibility, serving as a vehicle for developing a stem cell transplantation system incorporating oxygen-releasing microspheres and cardiosphere-derived stem cells (CDCs). By optimizing the peroxidase fixation quantity on the microsphere surface and the oxygen-releasing microsphere content within the transplantation system, intracellular oxygen levels were assessed using electron paramagnetic resonance (EPR) under simulated low-oxygen conditions in vitro. The expression of vascularization and repair-related indexes were evaluated via RT-PCR and ELISA. The microspheres were found to continuously release oxygen for three weeks within the transplantation system, promoting growth factor expression to maintain intracellular oxygen levels and support the survival and proliferation of CDCs. Moreover, the effect of this stem cell transplantation system on wound healing in a diabetic foot mice model was examined through an in vivo animal experiment. The oxygen-releasing microspheres within the transplantation system preserved the intracellular oxygen levels of CDCs in the hypoxic environment of injured tissues. By inhibiting the expression of inflammatory factors and stimulating the upregulation of pertinent growth factors, it improved the vascularization of ulcer tissue on the mice's back and expedited the healing of the wound site. Overall, the stem cell transplantation system in this study, based on hydrogels containing CDCs and oxygen-releasing microspheres, offers a promising strategy for the clinical implementation of localized stem cell delivery to improve diabetic foot wound healing.
Collapse
Affiliation(s)
- Liangmiao Chen
- Department of Endocrinology, The Third Affiliated Hospital of Wenzhou Medical University, 325200, Wenzhou, Zhejiang, China
| | - Bingru Zheng
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, No.108 Wansong Road, 325200, Wenzhou, Zhejiang, China
| | - Yizhou Xu
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, No.108 Wansong Road, 325200, Wenzhou, Zhejiang, China
| | - Changzheng Sun
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, Zhejiang, China
| | - Wanrui Wu
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, No.108 Wansong Road, 325200, Wenzhou, Zhejiang, China
| | - Xiangpang Xie
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, No.108 Wansong Road, 325200, Wenzhou, Zhejiang, China
| | - Yu Zhu
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, No.108 Wansong Road, 325200, Wenzhou, Zhejiang, China
| | - Wei Cai
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, No.108 Wansong Road, 325200, Wenzhou, Zhejiang, China
| | - Suifang Lin
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, No.108 Wansong Road, 325200, Wenzhou, Zhejiang, China
| | - Ya Luo
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, No.108 Wansong Road, 325200, Wenzhou, Zhejiang, China.
| | - Changsheng Shi
- Department of Interventional Vascular Surgery, The Third Affiliated Hospital of Wenzhou Medical University, No.108 Wansong Road, 325200, Wenzhou, Zhejiang, China.
| |
Collapse
|
17
|
Da Silva J, Leal EC, Carvalho E, Silva EA. Innovative Functional Biomaterials as Therapeutic Wound Dressings for Chronic Diabetic Foot Ulcers. Int J Mol Sci 2023; 24:9900. [PMID: 37373045 DOI: 10.3390/ijms24129900] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The imbalance of local and systemic factors in individuals with diabetes mellitus (DM) delays, or even interrupts, the highly complex and dynamic process of wound healing, leading to diabetic foot ulceration (DFU) in 15 to 25% of cases. DFU is the leading cause of non-traumatic amputations worldwide, posing a huge threat to the well-being of individuals with DM and the healthcare system. Moreover, despite all the latest efforts, the efficient management of DFUs still remains a clinical challenge, with limited success rates in treating severe infections. Biomaterial-based wound dressings have emerged as a therapeutic strategy with rising potential to handle the tricky macro and micro wound environments of individuals with DM. Indeed, biomaterials have long been related to unique versatility, biocompatibility, biodegradability, hydrophilicity, and wound healing properties, features that make them ideal candidates for therapeutic applications. Furthermore, biomaterials may be used as a local depot of biomolecules with anti-inflammatory, pro-angiogenic, and antimicrobial properties, further promoting adequate wound healing. Accordingly, this review aims to unravel the multiple functional properties of biomaterials as promising wound dressings for chronic wound healing, and to examine how these are currently being evaluated in research and clinical settings as cutting-edge wound dressings for DFU management.
Collapse
Affiliation(s)
- Jessica Da Silva
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- PDBEB-Ph.D. Programme in Experimental Biology and Biomedicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
- Department of Biomedical Engineering, Genome and Biomedical Sciences Facilities, UC Davis, 451 Health Sciences Dr., Davis, CA 95616, USA
| | - Ermelindo C Leal
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - Eugénia Carvalho
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - Eduardo A Silva
- Department of Biomedical Engineering, Genome and Biomedical Sciences Facilities, UC Davis, 451 Health Sciences Dr., Davis, CA 95616, USA
- Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Kristine Bonnevies vei 22, 4021 Stavanger, Norway
| |
Collapse
|
18
|
Jing S, Li H, Xu H. Mesenchymal Stem Cell Derived Exosomes Therapy in Diabetic Wound Repair. Int J Nanomedicine 2023; 18:2707-2720. [PMID: 37250470 PMCID: PMC10216860 DOI: 10.2147/ijn.s411562] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Nowadays, refractory diabetic wounds cause a worldwide medical burden. Mesenchymal stem cells derived exosomes (MSC-Exos) show promise as a solid alternative to existing therapeutics in the latest researches, since MSC-Exos share similar biologic activity but less immunogenicity when compared with MSCs. To facilitate further understanding and application, it is essential to summarize the current progress and limitations of MSC-Exos in the treatment of diabetic wounds. In this review, we introduce the effects of different MSC-Exos on diabetic wounds according to their origins and contents and discuss the specific experimental conditions, target wound cells/pathways, and specific mechanisms. In addition, this paper focuses on the combination of MSC-Exos and biomaterials, which improves the efficacy and utilization of MSC-Exos therapy. Together, exosome therapy has high clinical value and application prospects, both in its role and in combination with biomaterials, while novel drugs or molecules loaded into exosomes as carriers targeting wound cells will be development trends.
Collapse
Affiliation(s)
- Shengyu Jing
- Department of Vascular Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
| | - Hongjie Li
- Department of Vascular Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
| | - Hongbo Xu
- Department of Vascular Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
19
|
Xu Y, Hu Q, Wei Z, Ou Y, Cao Y, Zhou H, Wang M, Yu K, Liang B. Advanced polymer hydrogels that promote diabetic ulcer healing: mechanisms, classifications, and medical applications. Biomater Res 2023; 27:36. [PMID: 37101201 PMCID: PMC10134570 DOI: 10.1186/s40824-023-00379-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
Diabetic ulcers (DUs) are one of the most serious complications of diabetes mellitus. The application of a functional dressing is a crucial step in DU treatment and is associated with the patient's recovery and prognosis. However, traditional dressings with a simple structure and a single function cannot meet clinical requirements. Therefore, researchers have turned their attention to advanced polymer dressings and hydrogels to solve the therapeutic bottleneck of DU treatment. Hydrogels are a class of gels with a three-dimensional network structure that have good moisturizing properties and permeability and promote autolytic debridement and material exchange. Moreover, hydrogels mimic the natural environment of the extracellular matrix, providing suitable surroundings for cell proliferation. Thus, hydrogels with different mechanical strengths and biological properties have been extensively explored as DU dressing platforms. In this review, we define different types of hydrogels and elaborate the mechanisms by which they repair DUs. Moreover, we summarize the pathological process of DUs and review various additives used for their treatment. Finally, we examine the limitations and obstacles that exist in the development of the clinically relevant applications of these appealing technologies. This review defines different types of hydrogels and carefully elaborate the mechanisms by which they repair diabetic ulcers (DUs), summarizes the pathological process of DUs, and reviews various bioactivators used for their treatment.
Collapse
Affiliation(s)
- Yamei Xu
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Qiyuan Hu
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Zongyun Wei
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Yi Ou
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Youde Cao
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong Distinct, Chongqing, 400042, P.R. China
| | - Hang Zhou
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Mengna Wang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Kexiao Yu
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, No. 6 Panxi Seventh Branch Road, Jiangbei District, Chongqing, 400021, P.R. China.
- Institute of Ultrasound Imaging of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China.
| | - Bing Liang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China.
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China.
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong Distinct, Chongqing, 400042, P.R. China.
| |
Collapse
|
20
|
Cui J, Zhang S, Cheng S, Shen H. Current and future outlook of loaded components in hydrogel composites for the treatment of chronic diabetic ulcers. Front Bioeng Biotechnol 2023; 11:1077490. [PMID: 36860881 PMCID: PMC9968980 DOI: 10.3389/fbioe.2023.1077490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023] Open
Abstract
Due to recalcitrant microangiopathy and chronic infection, traditional treatments do not easily produce satisfactory results for chronic diabetic ulcers. In recent years, due to the advantages of high biocompatibility and modifiability, an increasing number of hydrogel materials have been applied to the treatment of chronic wounds in diabetic patients. Research on composite hydrogels has received increasing attention since loading different components can greatly increase the ability of composite hydrogels to treat chronic diabetic wounds. This review summarizes and details a variety of newly loaded components currently used in hydrogel composites for the treatment of chronic diabetic ulcers, such as polymer/polysaccharides/organic chemicals, stem cells/exosomes/progenitor cells, chelating agents/metal ions, plant extracts, proteins (cytokines/peptides/enzymes) and nucleoside products, and medicines/drugs, to help researchers understand the characteristics of these components in the treatment of diabetic chronic wounds. This review also discusses a number of components that have not yet been applied but have the potential to be loaded into hydrogels, all of which play roles in the biomedical field and may become important loading components in the future. This review provides a "loading component shelf" for researchers of composite hydrogels and a theoretical basis for the future construction of "all-in-one" hydrogels.
Collapse
Affiliation(s)
- Jiaming Cui
- Sichuan Provincial Orthopaedic Hospital, Chengdu, Sichuan, China,*Correspondence: Jiaming Cui,
| | - Siqi Zhang
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Songmiao Cheng
- Sichuan Provincial Orthopaedic Hospital, Chengdu, Sichuan, China
| | - Hai Shen
- Sichuan Provincial Orthopaedic Hospital, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Huang JN, Cao H, Liang KY, Cui LP, Li Y. Combination therapy of hydrogel and stem cells for diabetic wound healing. World J Diabetes 2022; 13:949-961. [PMID: 36437861 PMCID: PMC9693739 DOI: 10.4239/wjd.v13.i11.949] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/25/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
Diabetic wounds (DWs) are a common complication of diabetes mellitus; DWs have a low cure rate and likely recurrence, thus affecting the quality of patients’ lives. As traditional therapy cannot effectively improve DW closure, DW has become a severe clinical medical problem worldwide. Unlike routine wound healing, DW is difficult to heal because of its chronically arrested inflammatory phase. Although mesenchymal stem cells and their secreted cytokines can alleviate oxidative stress and stimulate angiogenesis in wounds, thereby promoting wound healing, the biological activity of mesenchymal stem cells is compromised by direct injection, which hinders their therapeutic effect. Hydro-gels form a three-dimensional network that mimics the extracellular matrix, which can provide shelter for stem cells in the inflammatory microenvironment with reactive oxygen species in DW, and maintains the survival and viability of stem cells. This review summarizes the mechanisms and applications of stem cells and hydrogels in treating DW; additionally, it focuses on the different applications of therapy combining hydrogel and stem cells for DW treatment.
Collapse
Affiliation(s)
- Jia-Na Huang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, China
| | - Hao Cao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, China
| | - Kai-Ying Liang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, China
| | - Li-Ping Cui
- Endocrinology Department, Panyu Central Hospital, Guangzhou 511400, Guangdong Province, China
| | - Yan Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-sen University, Guangzhou 510006, Guangdong Province, China
| |
Collapse
|
22
|
Shirbaghaee Z, Hassani M, Heidari Keshel S, Soleimani M. Emerging roles of mesenchymal stem cell therapy in patients with critical limb ischemia. Stem Cell Res Ther 2022; 13:462. [PMID: 36068595 PMCID: PMC9449296 DOI: 10.1186/s13287-022-03148-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Critical limb ischemia (CLI), the terminal stage of peripheral arterial disease (PAD), is characterized by an extremely high risk of amputation and vascular issues, resulting in severe morbidity and mortality. In patients with severe limb ischemia with no alternative therapy options, such as endovascular angioplasty or bypass surgery, therapeutic angiogenesis utilizing cell-based therapies is vital for increasing blood flow to ischemic regions. Mesenchymal stem cells (MSCs) are currently considered one of the most encouraging cells as a regenerative alternative for the surgical treatment of CLI, including restoring tissue function and repairing ischemic tissue via immunomodulation and angiogenesis. The regenerative treatments for limb ischemia based on MSC therapy are still considered experimental. Despite recent advances in preclinical and clinical research studies, it is not recommended for regular clinical use. In this study, we review the immunomodulatory features of MSC besides the current understanding of different sources of MSC in the angiogenic treatment of CLI subjects and their potential applications as therapeutic agents. Specifically, this paper concentrates on the most current clinical application issues, and several recommendations are provided to improve the efficacy of cell therapy for CLI patients.
Collapse
Affiliation(s)
- Zeinab Shirbaghaee
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassani
- Department of Vascular and Endovascular Surgery, Ayatollah Taleghani Hospital Research Development Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Heidari Keshel
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Applied Cell Science and Hematology Department, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
23
|
Rai V, Moellmer R, Agrawal DK. Stem Cells and Angiogenesis: Implications and Limitations in Enhancing Chronic Diabetic Foot Ulcer Healing. Cells 2022; 11:2287. [PMID: 35892584 PMCID: PMC9330772 DOI: 10.3390/cells11152287] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 01/27/2023] Open
Abstract
Nonhealing diabetic foot ulcers (DFUs) are a continuing clinical issue despite the improved treatment with wound debridement, off-loading the ulcer, medication, wound dressings, and preventing infection by keeping the ulcer clean. Wound healing is associated with granulation tissue formation and angiogenesis favoring the wound to enter the resolution phase of healing followed by healing. However, chronic inflammation and reduced angiogenesis in a hyperglycemic environment impair the normal healing cascade and result in chronically non-healing diabetic foot ulcers. Promoting angiogenesis is associated with enhanced wound healing and using vascular endothelial growth factors has been proven beneficial to promote neo-angiogenesis. However, still, nonhealing DFUs persist with increased risks of amputation. Regenerative medicine is an evolving branch applicable in wound healing with the use of stem cells to promote angiogenesis. Various studies have reported promising results, but the associated limitations need in-depth research. This article focuses on summarizing and critically reviewing the published literature since 2021 on the use of stem cells to promote angiogenesis and enhance wound healing in chronic non-healing DFUs.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Rebecca Moellmer
- College of Podiatric Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Devendra K. Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|