1
|
Ayaz P, Liu X, Chen Z, Yu Y, Erum JKE, Sun T, Diao H, Liu X. Eco-friendly fabrication of durable antibacterial silk fabric via transglutaminase-catalyzed covalent immobilization of protamine. Int J Biol Macromol 2025; 314:144284. [PMID: 40393601 DOI: 10.1016/j.ijbiomac.2025.144284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/02/2025] [Accepted: 05/14/2025] [Indexed: 05/22/2025]
Abstract
The immobilization of antibacterial peptides (APs) onto silk material substrates remains challenging due to the scarcity of green, low-cost, and efficient methods for covalent bonding between these two proteins. The present work proposed a novel strategy for covalently grafting APs onto silk fiber surfaces for antibacterial purposes. Firstly, silk fiber surfaces were grafted with glutamine (Gln) through a cure-induced esterification reaction, the AP protamine (PM) was then covalently grafted via transglutaminase (TGase)-catalyzed cross-linking onto the fiber surfaces. FTIR, SEM, XPS investigations verified the successful attachment of PM and the covalent connection between the PM and the fiber surfaces. The modified silk fabric showed bacteria reduction rates higher than 99.99 % against S. aureus and E. coli, and maintained its antibacterial properties after 20 washing cycles, highlighting a desirable antibacterial activity and considerable durability. Moreover, the modifications did not sacrifice the appearances and wearing comfortabilities of silk fabric, but even led to significant enhancement in the moisture transfer properties. This strategy, based on naturally occurring amino acid, AP and enzyme, could not only be an attractive alternative for real-world application in the silk industry but also could be extended to the modification of other protein-based materials.
Collapse
Affiliation(s)
- Pirah Ayaz
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xi Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhi Chen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yuyun Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Javaria Khayaban E Erum
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Tingting Sun
- Zhejiang Institute of Quality Sciences, Hangzhou 310000, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiangdong Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Nam M, Lee JW, Cha GD. Biomedical Application of Enzymatically Crosslinked Injectable Hydrogels. Gels 2024; 10:640. [PMID: 39451293 PMCID: PMC11507637 DOI: 10.3390/gels10100640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Hydrogels have garnered significant interest in the biomedical field owing to their tissue-like properties and capability to incorporate various fillers. Among these, injectable hydrogels have been highlighted for their unique advantages, especially their minimally invasive administration mode for implantable use. These injectable hydrogels can be utilized in their pristine forms or as composites by integrating them with therapeutic filler materials. Given their primary application in implantable platforms, enzymatically crosslinked injectable hydrogels have been actively explored due to their excellent biocompatibility and easily controllable mechanical properties for the desired use. This review introduces the crosslinking mechanisms of such hydrogels, focusing on those mediated by horseradish peroxidase (HRP), transglutaminase (TG), and tyrosinase. Furthermore, several parameters and their relationships with the intrinsic properties of hydrogels are investigated. Subsequently, the representative biomedical applications of enzymatically crosslinked-injectable hydrogels are presented, including those for wound healing, preventing post-operative adhesion (POA), and hemostasis. Furthermore, hydrogel composites containing filler materials, such as therapeutic cells, proteins, and drugs, are analyzed. In conclusion, we examine the scientific challenges and directions for future developments in the field of enzymatically crosslinked-injectable hydrogels, focusing on material selection, intrinsic properties, and filler integration.
Collapse
Affiliation(s)
| | | | - Gi Doo Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea; (M.N.); (J.W.L.)
| |
Collapse
|
3
|
Zhang X, Shi W, Wang X, Zou Y, Xiang W, Lu N. Evaluation of the Composite Skin Patch Loaded with Bioactive Functional Factors Derived from Multicellular Spheres of EMSCs for Regeneration of Full-thickness Skin Defects in Rats. Curr Stem Cell Res Ther 2024; 19:1142-1152. [PMID: 37694794 DOI: 10.2174/1574888x19666230908142426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Transplantation of stem cells/scaffold is an efficient approach for treating tissue injury including full-thickness skin defects. However, the application of stem cells is limited by preservation issues, ethical restriction, low viability, and immune rejection in vivo. The mesenchymal stem cell conditioned medium is abundant in bioactive functional factors, making it a viable alternative to living cells in regeneration medicine. METHODS Nasal mucosa-derived ecto-mesenchymal stem cells (EMSCs) of rats were identified and grown in suspension sphere-forming 3D culture. The EMSCs-conditioned medium (EMSCs-CM) was collected, lyophilized, and analyzed for its bioactive components. Next, fibrinogen and chitosan were further mixed and cross-linked with the lyophilized powder to obtain functional skin patches. Their capacity to gradually release bioactive substances and biocompatibility with epidermal cells were assessed in vitro. Finally, a full-thickness skin defect model was established to evaluate the therapeutic efficacy of the skin patch. RESULTS The EMSCs-CM contains abundant bioactive proteins including VEGF, KGF, EGF, bFGF, SHH, IL-10, and fibronectin. The bioactive functional composite skin patch containing EMSCs-CM lyophilized powder showed the network-like microstructure could continuously release the bioactive proteins, and possessed ideal biocompatibility with rat epidermal cells in vitro. Transplantation of the composite skin patch could expedite the healing of the full-thickness skin defect by promoting endogenous epidermal stem cell proliferation and skin appendage regeneration in rats. CONCLUSION In summary, the bioactive functional composite skin patch containing EMSCs-CM lyophilized powder can effectively accelerate skin repair, which has promising application prospects in the treatment of skin defects.
Collapse
Affiliation(s)
- Xuan Zhang
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Wentao Shi
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Xun Wang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Central Hospital of Jiangnan University, Wuxi, China
| | - Yin Zou
- The Affiliated Children Hospital of Jiangnan University, Wuxi, China
| | - Wen Xiang
- School of Medicine, Nankai University, Tianjin, China
| | - Naiyan Lu
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Yan Z, Zhang T, Wang Y, Xiao S, Gao J. Extracellular vesicle biopotentiated hydrogels for diabetic wound healing: The art of living nanomaterials combined with soft scaffolds. Mater Today Bio 2023; 23:100810. [PMID: 37810755 PMCID: PMC10550777 DOI: 10.1016/j.mtbio.2023.100810] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
Diabetic wounds (DWs) pose a major challenge for the public health system owing to their high incidence, complex pathogenesis, and long recovery time; thus, there is an urgent need to develop innovative therapies to accelerate the healing process of diabetic wounds. As natural nanovesicles, extracellular vesicles (EVs) are rich in sources with low immunogenicity and abundant nutritive molecules and exert potent therapeutic effects on diabetic wound healing. To avoid the rapid removal of EVs, a suitable delivery system is required for their controlled release. Owing to the advantages of high porosity, good biocompatibility, and adjustable physical and chemical properties of hydrogels, EV biopotentiated hydrogels can aid in achieving precise and favorable therapy against diabetic wounds. This review highlights the different design strategies, therapeutic effects, and mechanisms of EV biopotentiated hydrogels. We also discussed the future challenges and opportunities of using EV biopotentiated hydrogels for diabetic wound healing.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Yuxiang Wang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Shichu Xiao
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People's Republic of China
| |
Collapse
|
5
|
Zhang X, Yang C, Guo X, Yang C, Li G. An antibacterial and healing-promoting collagen fibril constructed by the simultaneous strategy of fibril reconstitution and ε-polylysine anchoring for infected wound repair. Biomater Sci 2023; 11:7408-7422. [PMID: 37800173 DOI: 10.1039/d3bm01181j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The development of antibacterial dressings has attracted much attention to address the disordered wound healing caused by bacterial infection. Constructing dressings that have desirable antibacterial activity and could promote wound healing is important for infected wound repair. Inspired by the role of the key regulator collagen fibrils with D-periodic functional domains in the physiological wound healing process, we developed an antibacterial and wound healing-promoting collagen fibril with a structure highly similar to natural collagen in ECM and inherent antibacterial activity by the simultaneous strategy of fibril reconstitution and the antibacterial agent ε-polylysine (ε-PL) anchoring. Accompanied by the fibrillogenesis of collagen molecules, the anchorage of ε-PL into collagen fibrils was actualized through the formation of the covalent bond catalyzed by transglutaminase (TGase) between ε-PL and collagen. The collagen fibril possessed natural D-periodicity and achieved 20% ε-PL graft yield by co-assembling collagen/ε-PL mediated by 25 U g-1 TGase, which showed a satisfactory proliferation of L929 fibroblasts and sustained inhibition rates above 90% against E. coli and S. aureus. The rat S. aureus-infected dermal wound model further demonstrated that the reconstituted antibacterial collagen fibril visibly promoted re-epithelialization, new collagen deposition, and angiogenesis by down-regulating the inflammatory-relative gene IL-6 and up-regulating the relative activity factor expression of CD31, achieving accelerated infected wound healing with 61.89% ± 3.96% wound closure on postoperative day 7 and full closure on day 14.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China.
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Changkai Yang
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China.
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Xin Guo
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China.
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Chun Yang
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China.
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Guoying Li
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China.
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
6
|
Wachendörfer M, Buhl EM, Messaoud GB, Richtering W, Fischer H. pH and Thrombin Concentration Are Decisive in Synthesizing Stiff, Stable, and Open-Porous Fibrin-Collagen Hydrogel Blends without Chemical Cross-Linker. Adv Healthc Mater 2023; 12:e2203302. [PMID: 36546310 PMCID: PMC11468609 DOI: 10.1002/adhm.202203302] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Fibrin-collagen hydrogel blends exhibit high potential for tissue engineering applications. However, it is still unclear whether the underlying cross-linking mechanisms are of chemical or physical nature. It is here hypothesized that chemical cross-linkers play a negligible role and that instead pH and thrombin concentration are decisive for synthetizing blends with high stiffness and hydrolytic stability. Different fibrin-collagen formulations (pure and with additional transglutaminase) are used and the blends' compaction rate, hydrolytic stability, compressive strength, and hydrogel microstructure are investigated. The effect of thrombin concentration on gel compaction is examined and the importance of pH control during synthesis observed. It is revealed that transglutaminase impairs gel stability and it is deduced that fibrin-collagen blends mainly cross-link by mechanical interactions due to physical fibril entanglement as opposed to covalent bonds from chemical cross-linking. High thrombin concentrations and basic pH during synthesis reduce gel compaction and enhance stiffness and long-term stability. Scanning electron microscopy reveals a highly interpenetrating fibrous network with unique, interconnected open-porous microstructures. Endothelial cells proliferate on the blends and form a confluent monolayer. This study reveals the underlying cross-linking mechanisms and presents enhanced fibrin-collagen blends with high stiffness, hydrolytic stability, and large, interconnected pores; findings that offer high potential for advanced tissue engineering applications.
Collapse
Affiliation(s)
- Mattis Wachendörfer
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| | - Eva Miriam Buhl
- Electron Microscopy FacilityInstitute of PathologyRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| | - Ghazi Ben Messaoud
- Institute of Physical ChemistryRWTH Aachen UniversityLandoltweg 252074AachenGermany
- Physical ChemistryDWI–Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052074AachenGermany
| | - Walter Richtering
- Institute of Physical ChemistryRWTH Aachen UniversityLandoltweg 252074AachenGermany
- Physical ChemistryDWI–Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052074AachenGermany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| |
Collapse
|
7
|
Enzymatically-Crosslinked Gelatin Hydrogels with Nanostructured Architecture and Self-Healing Performance for Potential Use as Wound Dressings. Polymers (Basel) 2023; 15:polym15030780. [PMID: 36772082 PMCID: PMC9921451 DOI: 10.3390/polym15030780] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Development of natural protein-based hydrogels with self-healing performance and tunable physical properties has attracted increased attention owing to their wide potential not only in the pharmaceutical field, but also in wounds management. This work reports the development of a versatile hydrogel based on enzymatically-crosslinked gelatin and nanogels loaded with amoxicillin (Amox), an antibiotic used in wound infections. The transglutaminase (TGase)-crosslinked hydrogels and encapsulating nanogels were formed rapidly through enzymatic crosslinking and self-assembly interactions in mild conditions. The nanogels formed through the self-assemble of maleoyl-chitosan (MAC5) and polyaspartic acid (PAS) may have positive influence on the self-healing capacity and drug distribution within the hydrogel network through the interactions established between gelatin and gel-like nanocarriers. The physicochemical properties of the enzymatically-crosslinked hydrogels, such as internal structure, swelling and degradation behavior, were studied. In addition, the Amox release studies indicated a rapid release when the pH of the medium decreased, which represents a favorable characteristic for use in the healing of infected wounds. It was further observed through the in vitro and in vivo biocompatibility assays that the optimized scaffolds have great potential to be used as wound dressings.
Collapse
|
8
|
Enzymatic Crosslinked Hydrogels of Gelatin and Poly (Vinyl Alcohol) Loaded with Probiotic Bacteria as Oral Delivery System. Pharmaceutics 2022; 14:pharmaceutics14122759. [PMID: 36559253 PMCID: PMC9784308 DOI: 10.3390/pharmaceutics14122759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Probiotic bacteria are widely used to prepare pharmaceutical products and functional foods because they promote and sustain health. Nonetheless, probiotic viability is prone to decrease under gastrointestinal conditions. In this investigation, Lactiplantibacillus plantarum spp. CM-CNRG TB98 was entrapped in a gelatin−poly (vinyl alcohol) (Gel−PVA) hydrogel which was prepared by a “green” route using microbial transglutaminase (mTGase), which acts as a crosslinking agent. The hydrogel was fully characterized and its ability to entrap and protect L. plantarum from the lyophilization process and under simulated gastric and intestine conditions was explored. The Gel−PVA hydrogel showed a high probiotic loading efficiency (>90%) and survivability from the lyophilization process (91%) of the total bacteria entrapped. Under gastric conditions, no disintegration of the hydrogel was observed, keeping L. plantarum protected with a survival rate of >94%. While in the intestinal fluid the hydrogel is completely dissolved, helping to release probiotics. A Gel−PVA hydrogel is suitable for a probiotic oral administration system due to its physicochemical properties, lack of cytotoxicity, and the protection it offers L. plantarum under gastric conditions.
Collapse
|