1
|
Alagarsamy KN, Saleth LR, Diedkova K, Zahorodna V, Gogotsi O, Pogorielov M, Dhingra S. MXenes in healthcare: transformative applications and challenges in medical diagnostics and therapeutics. NANOSCALE 2025. [PMID: 40261131 DOI: 10.1039/d4nr04853a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
MXenes, a novel class of two-dimensional transition metal carbides, exhibit exceptional physicochemical properties that make them highly promising for biomedical applications. Their application has been explored in bioinstrumentation, tissue engineering, and infectious disease management. In bioinstrumentation, MXenes enhance the sensitivity and response time of wearable sensors, including piezoresistive, electrochemical, and electrophysiological sensors. They also function effectively as contrast agents in MRI and CT imaging for cancer diagnostics and therapy. In tissue engineering, MXenes contribute to both hard and soft tissue regeneration, playing a key role in neural, cardiac, skin and bone repair. Additionally, they offer innovative solutions in combating infectious and inflammatory diseases by facilitating antimicrobial surfaces and immune modulation. Despite their potential, several challenges hinder the clinical translation of MXene-based technologies. Issues related to synthesis, scalability, biocompatibility, and long-term safety must be addressed to ensure their practical implementation in medical applications. This review provides a comprehensive overview of MXenes in next-generation medical diagnostics, including the role they play in wearable sensors and imaging contrast agents. It further explores their applications in tissue engineering and infectious disease management, highlighting their antimicrobial and immunomodulatory properties. Finally, we discuss the key barriers to clinical translation and propose strategies for overcoming these limitations. This review aims to bridge current advancements with future opportunities for integration of MXenes in healthcare.
Collapse
Affiliation(s)
- Keshav Narayan Alagarsamy
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada.
| | - Leena Regi Saleth
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada.
| | - Kateryna Diedkova
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas iela 3, Riga, Latvia, LV-1004
- Biomedical Research Center, Sumy State University, Kharkivska street 116, Sumy, Ukraine, 40007
| | - Veronika Zahorodna
- Materials Research Center, 19/33A Yaroslaviv Val/O.Honchara str, Kyiv, 01034, Ukraine
| | - Oleksiy Gogotsi
- Biomedical Research Center, Sumy State University, Kharkivska street 116, Sumy, Ukraine, 40007
- Materials Research Center, 19/33A Yaroslaviv Val/O.Honchara str, Kyiv, 01034, Ukraine
| | - Maksym Pogorielov
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas iela 3, Riga, Latvia, LV-1004
- Biomedical Research Center, Sumy State University, Kharkivska street 116, Sumy, Ukraine, 40007
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba, R2H 2A6, Canada.
| |
Collapse
|
2
|
Wang J, Fang J, Weng Z, Nan L, Chen Y, Shan J, Chen F, Liu J. Advanced development of conductive biomaterials for enhanced peripheral nerve regeneration: a review. RSC Adv 2025; 15:12997-13009. [PMID: 40271417 PMCID: PMC12013703 DOI: 10.1039/d5ra01107h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
Peripheral nerve injury (PNI), as a major cause of disability worldwide, makes it difficult to achieve effective repair and regeneration. Including autologous nerve transplantation, traditional therapies are restricted by surgical intricacy, donor scarcity, and inconsistent recovery effects. As to nerve guidance conduits (NGCs), conductive materials have brought novel pathways for PNI repair. Such materials boost nerve regeneration via electrical stimulation and bring key mechanical stability and biophysical signaling. This review summarizes the progress in conductive materials for PNI therapy while emphasizing their functions in electrical stimulation (ES), bioelectric signal transmission, and cell behavior guidance, as well as revealing the design and function needs of nerve conduits. Additionally, our review highlights the demand for follow-up studies to accentuate material optimization and improve real-time electrical signal supervision. Accordingly, this research is insightful and contributes to developing PNI repair. This results in more efficacious therapies and enhanced outcomes.
Collapse
Affiliation(s)
- Jianguang Wang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China
| | - Jiaqi Fang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China
| | - Zhijie Weng
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China
| | - Liping Nan
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China
| | - Yunfeng Chen
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China
| | - Junkuan Shan
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China
| | - Feng Chen
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Stomatological Hospital, School of Stomatology, Fudan University Shanghai 201102 China
| | - Junjian Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China
| |
Collapse
|
3
|
Zhang S, Wang L, Feng Z, Wang Z, Wang Y, Wei B, Liu H, Zhao W, Li J. Engineered MXene Biomaterials for Regenerative Medicine. ACS NANO 2025; 19:9590-9635. [PMID: 40040439 DOI: 10.1021/acsnano.4c16136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
MXene-based materials have attracted significant interest due to their distinct physical and chemical properties, which are relevant to fields such as energy storage, environmental science, and biomedicine. MXene has shown potential in the area of tissue regenerative medicine. However, research on its applications in tissue regeneration is still in its early stages, with a notable absence of comprehensive reviews. This review begins with a detailed description of the intrinsic properties of MXene, followed by a discussion of the various nanostructures that MXene can form, spanning from 0 to 3 dimensions. The focus then shifts to the applications of MXene-based biomaterials in tissue engineering, particularly in immunomodulation, wound healing, bone regeneration, and nerve regeneration. MXene's physicochemical properties, including conductivity, photothermal characteristics, and antibacterial properties, facilitate interactions with different cell types, influencing biological processes. These interactions highlight its potential in modulating cellular functions essential for tissue regeneration. Although the research on MXene in tissue regeneration is still developing, its versatile structural and physicochemical attributes suggest its potential role in advancing regenerative medicine.
Collapse
Affiliation(s)
- Shengmin Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Liang Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Zhichao Feng
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Zhiqi Wang
- Department of Head and Neck Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yingxue Wang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Benjie Wei
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - Weiwei Zhao
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| |
Collapse
|
4
|
Li T, Qiang W, Lei B. Bioactive surface-functionalized MXenes for biomedicine. NANOSCALE 2025; 17:4854-4891. [PMID: 39873617 DOI: 10.1039/d4nr04260c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
MXenes, with their good biocompatibility, excellent photovoltaic properties, excellent physicochemical properties, and desirable bioactivity, have broad application prospects in the field of tissue regeneration. MXenes have been used in a wide range of applications including biosensing, bioimaging, tumour/infection therapy, bone regeneration and wound repair. By applying bioactive materials to modify the surface of MXenes, a series of multifunctional MXene-based nanomaterials can be designed for different biomedical applications to achieve better therapeutic effects or more desirable biological functions. This paper reviews the existing studies on MXene-based bioactivities, surface modification strategies and biomedical applications. Finally, the challenges, trends and prospects of MXene nanomaterials are discussed. We expect that more and more well-designed MXene-based biomaterials will have a wider range of biomedical applications, thus providing favourable information for the clinical translation of nanomedicine.
Collapse
Affiliation(s)
- Ting Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China.
| | - Weipeng Qiang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China.
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China.
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. 710061, China
| |
Collapse
|
5
|
Zoughaib M, Avdokushina S, Savina IN. MXene-Reinforced Composite Cryogel Scaffold for Neural Tissue Repair. Molecules 2025; 30:479. [PMID: 39942584 PMCID: PMC11820856 DOI: 10.3390/molecules30030479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
The development of effective materials for neural tissue repair remains a major challenge in regenerative medicine. In this study, we present a novel MXene-reinforced composite cryogel scaffold designed for neural tissue regeneration. MXenes, a class of two-dimensional materials with high conductivity and biocompatibility, were integrated into a polyvinyl alcohol (PVA) matrix via cryopolymerization to form a macroporous, mechanically stable scaffold. The morphology, mechanical properties, and swelling behavior of the cryogel with different MXene contents have been assessed. The effects of MXene on the viability/proliferation and differentiation of neural cells (PC-12) cultured in the composite cryogel were elucidated. The MXene/PVA cryogel demonstrated excellent cell-supporting potential, with MXene not only showing no toxicity but also promoting the proliferation of cultured PC-12. Additionally, MXene induced a neuritogenesis-like process in the cells as evidenced by morphological changes and the enhanced expression of the neural marker β-III-tubulin. The neuroprotective properties of the MXene component were revealed by the alleviation of oxidative stress and reduction of intracellular ROS levels. These findings highlight the potential of MXene-embedded PVA cryogel as a promising material that can be further used in conjunction with electrostimulation therapy for advancing strategies in neural tissue engineering.
Collapse
Affiliation(s)
- Mohamed Zoughaib
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; (M.Z.); (S.A.)
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Svetlana Avdokushina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; (M.Z.); (S.A.)
- Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
- School of Applied Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | - Irina N. Savina
- School of Applied Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| |
Collapse
|
6
|
Li X, Wang S, Zheng M, Ma Z, Chen Y, Deng L, Xu W, Fan G, Khademolqorani S, Banitaba SN, Osman AI. Synergistic integration of MXene nanostructures into electrospun fibers for advanced biomedical engineering applications. NANOSCALE HORIZONS 2024; 9:1703-1724. [PMID: 39087682 DOI: 10.1039/d4nh00209a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
MXene-based architectures have paved the way in various fields, particularly in healthcare area, owing to their remarkable physiochemical and electromagnetic characteristics. Moreover, the modification of MXene structures and their combination with polymeric networks have gained considerable prominence to further develop their features. The combination of electrospun fibers with MXenes would be promising in this regard since electrospinning is a well-established technique that is now being directed toward commercial biomedical applications. The introduction of MXenes into electrospun fibrous frameworks has highlighted outcomes in various biomedical applications, including cancer therapy, controlled drug delivery, antimicrobial targets, sensors, and tissue engineering. Correspondingly, this review describes the employed strategies for the preparation of electrospun configurations in tandem with MXene nanostructures with remarkable characteristics. Next, the advantages of MXene-decorated electrospun fibers for use in biomedical applications are comprehensively discussed. According to the investigations, rich surface functional groups, hydrophilicity, large surface area, photothermal features, and antimicrobial and antibacterial activities of MXenes could synergize the performance of electrospun layers to engineer versatile biomedical targets. Moreover, the future of this path is clarified to combat the challenges related to the electrospun fibers decorated with MXene nanosheets.
Collapse
Affiliation(s)
- Xiaobo Li
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Shan Wang
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Minyan Zheng
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Zhanying Ma
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Yan Chen
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Lingjuan Deng
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Weixia Xu
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Guang Fan
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xian Yang 712000, China.
| | - Sanaz Khademolqorani
- Emerald Experts laboratory, Isfahan Science and Technology Town, Isfahan 84156-83111, Iran
| | | | - Ahmed I Osman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, UK.
| |
Collapse
|
7
|
Wang H, Hsu YC, Wang C, Xiao X, Yuan Z, Zhu Y, Yang D. Conductive and Enhanced Mechanical Strength of Mo 2Ti 2C 3 MXene-Based Hydrogel Promotes Neurogenesis and Bone Regeneration in Bone Defect Repair. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17208-17218. [PMID: 38530974 DOI: 10.1021/acsami.3c19410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Bone defects are common with increasing high-energy fractures, tumor bone invasion, and implantation revision surgery. Bone is an electroactive tissue that has electromechanical interaction with collogen, osteoblasts, and osteoclasts. Hydrogel provides morphological plasticity and extracellular matrix (ECM) 3D structures for cell survival, and is widely used as a bone engineering material. However, the hydrogels have poor mechanical intensity and lack of cell adhesion, slow gelation time, and limited conductivity. MXenes are novel nanomaterials with hydrophilic groups that sense cell electrophysiology and improve hydrogel electric conductivity. Herein, gelatin had multiple active groups (NH2, OH, and COOH) and an accelerated gelation time. Acrylamide has Schiff base bonds to cross-link with gelatin and absorb metal ions. Deacetylated chitosan improved cell adhesion and active groups to connect MXene and acrylamide. We constructed Mo2Ti2C3 MXene hydrogel with improved elastic modulus and viscosity, chemical cross-linking structure, electric conductivity, and good compatibility. Mo2Ti2C3 MXene hydrogel exhibits outstanding osteogenesis in vitro. Mo2Ti2C3 MXene hydrogel promotes osteogenesis via alkaline phosphatase (ALP) and alizarin red S (ARS) staining, improving osteogenic marker genes and protein expressions in vitro. Mo2Ti2C3 MXene hydrogel aids new bone formation in the in vivo calvarial bone defect model via micro-CT and histology. Mo2Ti2C3 MXene hydrogel facilitates neurogenesis factors nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) expression, and aids newly born neuron marker Tuj-1 and sensory neuron marker serotonin (5-HT) and osteogenesis pathway proteins, runt-related transcription factor 2 (Runx2), osteocalcin (OCN), SMAD family member 4 (SMAD4), and bone morphogenetic protein-2 (BMP2) in the bone defect repair process. Mo2Ti2C3 MXene hydrogel promotes osteogenesis and neurogenesis, which extends its biomedical application in bone defect reconstruction.
Collapse
Affiliation(s)
- Hongyu Wang
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Reconstruction of Structure and Function in Sports System, Shenzhen 518000, Guangdong Province, China
- Department of Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu-Ching Hsu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong 999077, China
| | - Chune Wang
- Department of Ophthalmology, Jiyang People's Hospital of Jinan, Jinan 250000, China
| | - Xiao Xiao
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhengbin Yuan
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
| | - Yong Zhu
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
| | - Dazhi Yang
- The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Reconstruction of Structure and Function in Sports System, Shenzhen 518000, Guangdong Province, China
- Department of Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
8
|
Jo HJ, Kang MS, Heo HJ, Jang HJ, Park R, Hong SW, Kim YH, Han DW. Skeletal muscle regeneration with 3D bioprinted hyaluronate/gelatin hydrogels incorporating MXene nanoparticles. Int J Biol Macromol 2024; 265:130696. [PMID: 38458288 DOI: 10.1016/j.ijbiomac.2024.130696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/31/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
There has been significant progress in the field of three-dimensional (3D) bioprinting technology, leading to active research on creating bioinks capable of producing structurally and functionally tissue-mimetic constructs. Ti3C2Tx MXene nanoparticles (NPs), promising two-dimensional nanomaterials, are being investigated for their potential in muscle regeneration due to their unique physicochemical properties. In this study, we integrated MXene NPs into composite hydrogels made of gelatin methacryloyl (GelMA) and hyaluronic acid methacryloyl (HAMA) to develop bioinks (namely, GHM bioink) that promote myogenesis. The prepared GHM bioinks were found to offer excellent printability with structural integrity, cytocompatibility, and microporosity. Additionally, MXene NPs within the 3D bioprinted constructs encouraged the differentiation of C2C12 cells into skeletal muscle cells without additional support of myogenic agents. Genetic analysis indicated that representative myogenic markers both for early and late myogenesis were significantly up-regulated. Moreover, animal studies demonstrated that GHM bioinks contributed to enhanced regeneration of skeletal muscle while reducing immune responses in mice models with volumetric muscle loss (VML). Our results suggest that the GHM hydrogel can be exploited to craft a range of strategies for the development of a novel bioink to facilitate skeletal muscle regeneration because these MXene-incorporated composite materials have the potential to promote myogenesis.
Collapse
Affiliation(s)
- Hyo Jung Jo
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Hye Jin Heo
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hee Jeong Jang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Rowoon Park
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea; Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University, Busan 46241, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; Periodontal Disease Signaling Network Research Center & Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea.
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea; BIO-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
9
|
Jiang M, Chen M, Liu N. Interactions between Schwann cell and extracellular matrix in peripheral nerve regeneration. Front Neurol 2024; 15:1372168. [PMID: 38651098 PMCID: PMC11034552 DOI: 10.3389/fneur.2024.1372168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/27/2024] [Indexed: 04/25/2024] Open
Abstract
Peripheral nerve injuries, caused by various reasons, often lead to severe sensory, motor, and autonomic dysfunction or permanent disability, posing a challenging problem in regenerative medicine. Autologous nerve transplantation has been the gold standard in traditional treatments but faces numerous limitations and risk factors, such as donor area denervation, increased surgical complications, and diameter or nerve bundle mismatches. The extracellular matrix (ECM) is a complex molecular network synthesized and released into the extracellular space by cells residing in tissues or organs. Its main components include collagen, proteoglycans/glycosaminoglycans, elastin, laminin, fibronectin, etc., providing structural and biochemical support to surrounding cells, crucial for cell survival and growth. Schwann cells, as the primary glial cells in the peripheral nervous system, play various important roles. Schwann cell transplantation is considered the gold standard in cell therapy for peripheral nerve injuries, making ECM derived from Schwann cells one of the most suitable biomaterials for peripheral nerve repair. To better understand the mechanisms of Schwann cells and the ECM in peripheral nerve regeneration and their optimal application, this review provides an overview of their roles in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Maorong Jiang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Muyang Chen
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Nana Liu
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Beura SK, Panigrahi AR, Yadav P, Palacio I, Casero E, Quintana C, Singh J, Singh MK, Martín Gago JA, Singh SK. Harnessing two-dimensional nanomaterials for diagnosis and therapy in neurodegenerative diseases: Advances, challenges and prospects. Ageing Res Rev 2024; 94:102205. [PMID: 38272267 DOI: 10.1016/j.arr.2024.102205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Neurodegenerative diseases (NDDs) are specific brain disorders characterized by the progressive deterioration of different motor activities as well as several cognitive functions. Current conventional therapeutic options for NDDs are limited in addressing underlying causes, delivering drugs to specific neuronal targets, and promoting tissue repair following brain injury. Due to the paucity of plausible theranostic options for NDDs, nanobiotechnology has emerged as a promising field, offering an interdisciplinary approach to create nanomaterials with high diagnostic and therapeutic efficacy for these diseases. Recently, two-dimensional nanomaterials (2D-NMs) have gained significant attention in biomedical and pharmaceutical applications due to their precise drug-loading capabilities, controlled release mechanisms, enhanced stability, improved biodegradability, and reduced cell toxicity. Although various studies have explored the diagnostic and therapeutic potential of different nanomaterials in NDDs, there is a lack of comprehensive review addressing the theranostic applications of 2D-NMs in these neuronal disorders. Therefore, this concise review aims to provide a state-of-the-art understanding of the need for these ultrathin 2D-NMs and their potential applications in biosensing and bioimaging, targeted drug delivery, tissue engineering, and regenerative medicine for NDDs.
Collapse
Affiliation(s)
- Samir Kumar Beura
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | | | - Pooja Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Irene Palacio
- Instituto de Ciencia de Materiales de Madrid (CSIC). c/ Sor Juana Inés de la Cruz 3. Campus de Excelencia de la Universidad Autónoma de Madrid, 28049, Spain
| | - Elena Casero
- Departamento de Química Analítica y Análisis Instrumental. Facultad de Ciencias. Universidad Autónoma de Madrid. c/ Francisco Tomás y Valiente, Nº 7. Campus de Excelencia de la Universidad Autónoma de Madrid, 28049, Spain
| | - Carmen Quintana
- Departamento de Química Analítica y Análisis Instrumental. Facultad de Ciencias. Universidad Autónoma de Madrid. c/ Francisco Tomás y Valiente, Nº 7. Campus de Excelencia de la Universidad Autónoma de Madrid, 28049, Spain
| | - Jyoti Singh
- Department of Applied Agriculture, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India
| | - Manoj Kumar Singh
- Department of Physics, School of Engineering and Technology, Central University of Haryana, Jant-Pali, Mahendragarh, Haryana 123031, India
| | - Jose A Martín Gago
- Instituto de Ciencia de Materiales de Madrid (CSIC). c/ Sor Juana Inés de la Cruz 3. Campus de Excelencia de la Universidad Autónoma de Madrid, 28049, Spain.
| | - Sunil Kumar Singh
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab 151401, India.
| |
Collapse
|
11
|
Kang MS, Jang HJ, Jo HJ, Raja IS, Han DW. MXene and Xene: promising frontier beyond graphene in tissue engineering and regenerative medicine. NANOSCALE HORIZONS 2023; 9:93-117. [PMID: 38032647 DOI: 10.1039/d3nh00428g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The emergence of 2D nanomaterials (2D NMs), which was initiated by the isolation of graphene (G) in 2004, revolutionized various biomedical applications, including bioimaging and -sensing, drug delivery, and tissue engineering, owing to their unique physicochemical and biological properties. Building on the success of G, a novel class of monoelemental 2D NMs, known as Xenes, has recently emerged, offering distinct advantages in the fields of tissue engineering and regenerative medicine. In this review, we focus on the comparison of G and Xene materials for use in fabricating tissue engineering scaffolds. After a brief introduction to the basic physicochemical properties of these materials, recent representative studies are classified in terms of the engineered tissue, i.e., bone, cartilage, neural, muscle, and skin tissues. We analyze several methods of improving the clinical potential of Xene-laden scaffolds using state-of-the-art fabrication technologies and innovative biomaterials. Despite the considerable advantages of Xene materials, critical concerns, such as biocompatibility, biodistribution and regulatory challenges, should be considered. This review and collaborative efforts should advance the field of Xene-based tissue engineering and enable innovative, effective solutions for use in future tissue regeneration.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| | - Hee Jeong Jang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| | - Hyo Jung Jo
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| | | | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
12
|
Xu Y, Xu C, Yang K, Ma L, Li G, Shi Y, Feng X, Tan L, Duan D, Luo Z, Yang C. Copper Ion-Modified Germanium Phosphorus Nanosheets Integrated with an Electroactive and Biodegradable Hydrogel for Neuro-Vascularized Bone Regeneration. Adv Healthc Mater 2023; 12:e2301151. [PMID: 37421228 DOI: 10.1002/adhm.202301151] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/21/2023] [Indexed: 07/10/2023]
Abstract
Severe bone defects accompanied by vascular and peripheral nerve injuries represent a huge orthopedic challenge and are often accompanied by the risk of infection. Thus, biomaterials with antibacterial and neurovascular regeneration properties are highly desirable. Here, a newly designed biohybrid biodegradable hydrogel (GelMA) containing copper ion-modified germanium-phosphorus (GeP) nanosheets, which act as neuro-vascular regeneration and antibacterial agents, is designed. The copper ion modification process serves to improve the stability of the GeP nanosheets and offers a platform for the sustained release of bioactive ions. Study findings show that GelMA/GeP@Cu has effective antibacterial properties. The integrated hydrogel can significantly boost the osteogenic differentiation of bone marrow mesenchymal stem cells, facilitate angiogenesis in human umbilical vein endothelial cells, and up-regulate neural differentiation-related proteins in neural stem cells in vitro. In vivo, in the rat calvarial bone defect mode, the GelMA/GeP@Cu hydrogel is found to enhance angiogenesis and neurogenesis, eventually contributing to bone regeneration. These findings indicate that in the field of bone tissue engineering, GelMA/GeP@Cu can serve as a valuable biomaterial for neuro-vascularized bone regeneration and infection prevention.
Collapse
Affiliation(s)
- Yan Xu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Xu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kun Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yunsong Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lei Tan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Deyu Duan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhiqiang Luo
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
13
|
Sagadevan S, Oh WC. Comprehensive utilization and biomedical application of MXenes - A systematic review of cytotoxicity and biocompatibility. J Drug Deliv Sci Technol 2023; 85:104569. [DOI: 10.1016/j.jddst.2023.104569] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
14
|
Pant B, Park M, Kim AA. MXene-Embedded Electrospun Polymeric Nanofibers for Biomedical Applications: Recent Advances. MICROMACHINES 2023; 14:1477. [PMID: 37512788 PMCID: PMC10384458 DOI: 10.3390/mi14071477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Recently MXenes has gained immense attention as a new and exciting class of two-dimensional material. Due to their unique layered microstructure, the presence of various functional groups at the surface, earth abundance, and attractive electrical, optical, and thermal properties, MXenes are considered promising candidates for various applications such as energy, environmental, and biomedical. The ease of dispersibility and metallic conductivity of MXene render them promising candidates for use as fillers in polymer nanocomposites. MXene-polymer nanocomposites simultaneously benefit from the attractive properties of MXenes and the flexibility and facile processability of polymers. However, the potentiality of MXene to modify the electrospun nanofibers has been less studied. Understanding the interactions between polymeric nanofibers and MXenes is important to widen their role in biomedical applications. This review explores diverse methods of MXene synthesis, discusses our current knowledge of the various biological characteristics of MXene, and the synthesis of MXene incorporated polymeric nanofibers and their utilization in biomedical applications. The information discussed in this review serves to guide the future development and application of MXene-polymer nanofibers in biomedical fields.
Collapse
Affiliation(s)
- Bishweshwar Pant
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Republic of Korea
- Department of Automotive Engineering, Woosuk University, Wanju 55338, Republic of Korea
| | - Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Republic of Korea
- Department of Automotive Engineering, Woosuk University, Wanju 55338, Republic of Korea
| | - Allison A Kim
- Department of Healthcare Management, Woosong University, Daejon 34606, Republic of Korea
| |
Collapse
|
15
|
Zhang H, Lan D, Wu B, Chen X, Li X, Li Z, Dai F. Electrospun Piezoelectric Scaffold with External Mechanical Stimulation for Promoting Regeneration of Peripheral Nerve Injury. Biomacromolecules 2023. [PMID: 37329512 DOI: 10.1021/acs.biomac.3c00311] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Safe and efficient provision of electrical stimulation (ES) for nerve repair and regeneration is a problem that needs to be addressed. In this study, a silk fibroin/poly(vinylidene fluoride-co-hexafluoropropylene)/Ti3C2Tx (SF/PVDF-HFP/MXene) composite scaffold with piezoelectricity was developed by electrospinning technology. MXene was loaded to the scaffold to enhance the piezoelectric properties (Output voltage reaches up to 100 mV), mechanical properties, and antibacterial activity. Cell experiments demonstrated piezoelectric stimulation under external ultrasonication for promoting the growth and proliferation of Schwann cells (SCs) cultured on this electrospun scaffold. Further in vivo study with rat sciatic nerve injury model revealed that the SF/PVDF-HFP/MXene nerve conduit could induce the proliferation of SCs, enhance the elongation of axon, and promote axonal myelination. Under the piezoelectric effect of this nerve scaffold, the rats with regenerative nerve exhibited a favorable recovery effect of motor and sensory function, indicating a safe and feasible method of using this SF/PVDF-HFP/MXene piezoelectric scaffold for ES provision in vivo.
Collapse
Affiliation(s)
- Haiqiang Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Dongwei Lan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Baiqing Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xiang Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xia Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Zhi Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
| |
Collapse
|
16
|
Zhang H, Lan D, Li X, Li Z, Dai F. Conductive and antibacterial scaffold with rapid crimping property for application prospect in repair of peripheral nerve injury. J Appl Polym Sci 2022. [DOI: 10.1002/app.53426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Hai‐qiang Zhang
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences Southwest University Chongqing China
| | - Dong‐wei Lan
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences Southwest University Chongqing China
| | - Xia Li
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences Southwest University Chongqing China
| | - Zhi Li
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences Southwest University Chongqing China
| | - Fang‐Yin Dai
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of sericulture, Textile and Biomass Sciences Southwest University Chongqing China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs Southwest University Chongqing China
| |
Collapse
|
17
|
Maeng WY, Tseng WL, Li S, Koo J, Hsueh YY. Electroceuticals for peripheral nerve regeneration. Biofabrication 2022; 14. [PMID: 35995036 PMCID: PMC10109522 DOI: 10.1088/1758-5090/ac8baa] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/22/2022] [Indexed: 11/12/2022]
Abstract
Electroceuticals provide promising opportunities for peripheral nerve regeneration, in terms of modulating the extensive endogenous tissue repair mechanisms between neural cell body, axons and target muscles. However, great challenges remain to deliver effective and controllable electroceuticals via bioelectronic implantable device. In this review, the modern fabrication methods of bioelectronic conduit for bridging critical nerve gaps after nerve injury are summarized, with regard to conductive materials and core manufacturing process. In addition, to deliver versatile electrical stimulation, the integration of implantable bioelectronic device is discussed, including wireless energy harvesters, actuators and sensors. Moreover, a comprehensive insight of beneficial mechanisms is presented, including up-to-date in vitro, in vivo and clinical evidence. By integrating conductive biomaterials, 3D engineering manufacturing process and bioelectronic platform to deliver versatile electroceuticals, the modern biofabrication enables comprehensive biomimetic therapies for neural tissue engineering and regeneration in the new era.
Collapse
Affiliation(s)
- Woo-Youl Maeng
- Bio-Medical Engineering, Korea University, B156, B, Hana Science Hall, 145, Anam-ro, Seongbuk-gu, Seoul, Seongbuk-gu, Seoul, 02841, Korea (the Republic of)
| | - Wan Ling Tseng
- Department of Surgery, National Cheng Kung University College of Medicine, No.138, Sheng-Li road, Tainan, 701, TAIWAN
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, 5121 Eng V, Los Angeles, California, 90095, UNITED STATES
| | - Jahyun Koo
- Biomedical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, 02841, Korea (the Republic of)
| | - Yuan-Yu Hsueh
- Department of Surgery, National Cheng Kung University College of Medicine, No.138, Sheng-Li road, Tainan, 701, TAIWAN
| |
Collapse
|