1
|
Tyara Simbara A, Faridatul Habibah F, Hertadi R. Rhamnolipid-Modified PHB-Ectoine Nanoparticles for Multifunctional Skin Protection Against UVB, Irritation, and Bacteria. ACS OMEGA 2025; 10:12200-12213. [PMID: 40191376 PMCID: PMC11966311 DOI: 10.1021/acsomega.4c10583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 04/09/2025]
Abstract
Rhamnolipid, poly(R)-3-hydroxybutyrate (PHB), and ectoine are sustainable compounds produced by specific bacteria known for their protective benefits, including promoting skin health in applications, such as facial wash, sunscreens, and moisturizers. These compounds have been extensively studied due to their unique physicochemical properties and biocompatibility. Leveraging these beneficial properties, this study aimed to create a multifunctional protective formulation by synthesizing nanoparticles from PHB and ectoine, which are acknowledged for their anti-ultraviolet B (UVB) and anti-irritation properties. The covalent bonding of PHB and ectoine was achieved using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), and the nanoparticles were produced through centrifugation. The synthesized nanoparticle (PHB-ectoine NPs) was physicochemically characterized and tested for anti-irritation and anti-UVB properties in vitro. The characterization revealed a homogeneous spherical shape with a distinct layered structure, primarily composed of carbon and oxygen. The PHB-ectoine NPs measured 527 ± 228 nm in size, had a zeta potential of -61.47 ± 0.64 mV, and exhibited notably higher anti-irritant and anti-UVB activities compared to PHB alone, by over 10 and 4 times, respectively. Furthermore, the addition of a rhamnolipid solution as a dispersant provided the nanofluid with antibacterial properties againstStaphylococcus aureus. These results indicate that the rhamnolipid-PHB-ectoine nanoformulation shows significant potential as a multifunctional skin protective agent with anti-irritation, anti-UVB, and antibacterial capabilities.
Collapse
Affiliation(s)
- Alma Tyara Simbara
- Biochemistry and Biomolecular
Engineering Research Division, Faculty of Mathematics and Natural
Sciences, Bandung Institute of Technology, Jl. Ganesa No.10, Bandung 40132, Indonesia
| | - Fera Faridatul Habibah
- Biochemistry and Biomolecular
Engineering Research Division, Faculty of Mathematics and Natural
Sciences, Bandung Institute of Technology, Jl. Ganesa No.10, Bandung 40132, Indonesia
| | - Rukman Hertadi
- Biochemistry and Biomolecular
Engineering Research Division, Faculty of Mathematics and Natural
Sciences, Bandung Institute of Technology, Jl. Ganesa No.10, Bandung 40132, Indonesia
| |
Collapse
|
2
|
Ramachandran H, Anis SNS, Ansari NF, Sevakumaran V, Arifshah N, Rufadzil NAMK, Annuar MSM, Al-Ashraf Abdullah A. Superlative short chain length and medium chain length polyhydroxyalkanoates microbial producers isolated from Malaysian environment. Arch Microbiol 2025; 207:72. [PMID: 40014079 DOI: 10.1007/s00203-025-04256-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/13/2025] [Accepted: 01/24/2025] [Indexed: 02/28/2025]
Abstract
Plastic waste pollution is escalating globally at an unprecedented pace, with a significant measure of this waste remaining unrecycled. Hence, polyhydroxyalkanoates (PHAs), a biogenic polyester, as a potential alternative to synthetic plastics has been intensively studied over the years. PHAs are biodegradable and biocompatible polyester produced by various microorganisms through the bioprocessing of sustainable sources. Bacterial PHAs show potential as an eco-friendly, biodegradable, and biocompatible alternative to conventional plastics. Malaysian environment, anthropogenic and natural, harbors an enormous diversity of microorganisms as well as various bacteria that produce PHAs. Hence, the current submission highlights on four indigenous PHA producers, isolated from the local environments, namely Cupriavidus malaysiensis USMAA2-4, Cupriavidus malaysiensis USMAA10-20, Cupriavidus malaysiensis USMAHM13, and Pseudomonas putida BET001. The four strains have contributed significantly as a workhorse in advancing PHA research and innovation in Malaysia and globally. Their uniqueness and significance in the PHA investigation, which include biosynthesis, recovery strategies, metabolic pathways involved, characteristics and properties of extracted PHA, biodegradation, and its potential applications are discussed.
Collapse
Affiliation(s)
- Hema Ramachandran
- School of Biological Sciences, Faculty of Integrated Life Sciences, Quest International University Perak, 30250, Ipoh, Perak, Malaysia
| | - Siti Nor Syairah Anis
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| | - Nor Faezah Ansari
- Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia.
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia.
| | - Vigneswari Sevakumaran
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Nurhanani Arifshah
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Nurul Afifah Mohd Kamal Rufadzil
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | | | - Amirul Al-Ashraf Abdullah
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| |
Collapse
|
3
|
Song YT, Sitthikitpanya N, Usmanbaha N, Reungsang A, Chu CY. Optimization of polyhydroxyalkanoate (PHA) production from biohythane pilot plant effluent by Cupriavidus necator TISTR 1335. Biodegradation 2025; 36:14. [PMID: 39832017 DOI: 10.1007/s10532-025-10110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Bioplastics, particularly polyhydroxyalkanoates (PHAs), are emerging as promising alternatives to traditional materials due to their biodegradability. This study focuses on the production of PHAs as bioplastics using effluent from hydrogen production in a two-stage Biohythane Pilot Plant, which provides a low-cost substrate. The aim is to optimize production conditions, with Cupriavidus necator TISTR 1335 being used as the PHA producer. Utilizing Response Surface Methodology-Central Composite Design, we explored optimal conditions, revealing peak PHA production at a substrate concentration of 33.51 g COD/L and a pH of 6.87. The predicted optimal PHA concentration was at 3.05 g/L within the established model, closely matching the experimentally validated value of 3.02 g/L, with the overall usage rate of reducing sugars approximately 50-60%. This study underscores the importance of optimizing PHA production conditions and paving the way toward large-scale PHA production.
Collapse
Affiliation(s)
- Yu-Ting Song
- Master's Program of Green Energy Science and Technology, Feng Chia University, Taichung City, 407102, Taiwan
| | - Napapat Sitthikitpanya
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chen-Yeon Chu
- Master's Program of Green Energy Science and Technology, Feng Chia University, Taichung City, 407102, Taiwan.
- Institute of Green Products, Feng Chia University, Taichung, 407102, Taiwan.
| |
Collapse
|
4
|
Schwardmann LS, Benninghaus L, Lindner SN, Wendisch VF. Prospects of formamide as nitrogen source in biotechnological production processes. Appl Microbiol Biotechnol 2024; 108:105. [PMID: 38204134 PMCID: PMC10781810 DOI: 10.1007/s00253-023-12962-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 01/12/2024]
Abstract
This review presents an analysis of formamide, focussing on its occurrence in nature, its functional roles, and its promising applications in the context of the bioeconomy. We discuss the utilization of formamide as an innovative nitrogen source achieved through metabolic engineering. These approaches underscore formamide's potential in supporting growth and production in biotechnological processes. Furthermore, our review illuminates formamide's role as a nitrogen source capable of safeguarding cultivation systems against contamination in non-sterile conditions. This attribute adds an extra layer of practicality to its application, rendering it an attractive candidate for sustainable and resilient industrial practices. Additionally, the article unveils the versatility of formamide as a potential carbon source that could be combined with formate or CO2 assimilation pathways. However, its attributes, i.e., enriched nitrogen content and comparatively limited energy content, led to conclude that formamide is more suitable as a co-substrate and that its use as a sole source of carbon for biomass and bio-production is limited. Through our exploration of formamide's properties and its applications, this review underscores the significance of formamide as valuable resource for a large spectrum of industrial applications. KEY POINTS: • Formidases enable access to formamide as source of nitrogen, carbon, and energy • The formamide/formamidase system supports non-sterile fermentation • The nitrogen source formamide supports production of nitrogenous compounds.
Collapse
Affiliation(s)
- Lynn S Schwardmann
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
- , Aminoverse B.V., Daelderweg 9, 6361 HK, Nuth, Beekdaelen, The Netherlands
| | - Leonie Benninghaus
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Steffen N Lindner
- Department of Biochemistry, Charite Universitatsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| |
Collapse
|
5
|
Hädrich M, Schulze C, Hoff J, Blombach B. Vibrio natriegens: Application of a Fast-Growing Halophilic Bacterium. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024. [PMID: 39527262 DOI: 10.1007/10_2024_271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The fast growth accompanied with high substrate consumption rates and a versatile metabolism paved the way to exploit Vibrio natriegens as unconventional host for biotechnological applications. Meanwhile, a wealth of knowledge on the physiology, the metabolism, and the regulation in this halophilic marine bacterium has been gathered. Sophisticated genetic engineering tools and metabolic models are available and have been applied to engineer production strains and first chassis variants of V. natriegens. In this review, we update the current knowledge on the physiology and the progress in the development of synthetic biology tools and provide an overview of recent advances in metabolic engineering of this promising host. We further discuss future challenges to enhance the application range of V. natriegens.
Collapse
Affiliation(s)
- Maurice Hädrich
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
| | - Clarissa Schulze
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Josef Hoff
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
- Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Garching, Germany
| | - Bastian Blombach
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany.
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany.
- Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Garching, Germany.
| |
Collapse
|
6
|
Oliver-Cuenca V, Salaris V, Muñoz-Gimena PF, Agüero Á, Peltzer MA, Montero VA, Arrieta MP, Sempere-Torregrosa J, Pavon C, Samper MD, Crespo GR, Kenny JM, López D, Peponi L. Bio-Based and Biodegradable Polymeric Materials for a Circular Economy. Polymers (Basel) 2024; 16:3015. [PMID: 39518225 PMCID: PMC11548373 DOI: 10.3390/polym16213015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Nowadays, plastic contamination worldwide is a concerning reality that can be addressed with appropriate society education as well as looking for innovative polymeric alternatives based on the reuse of waste and recycling with a circular economy point of view, thus taking into consideration that a future world without plastic is quite impossible to conceive. In this regard, in this review, we focus on sustainable polymeric materials, biodegradable and bio-based polymers, additives, and micro/nanoparticles to be used to obtain new environmentally friendly polymeric-based materials. Although biodegradable polymers possess poorer overall properties than traditional ones, they have gained a huge interest in many industrial sectors due to their inherent biodegradability in natural environments. Therefore, several strategies have been proposed to improve their properties and extend their industrial applications. Blending strategies, as well as the development of composites and nanocomposites, have shown promising perspectives for improving their performances, emphasizing biopolymeric blend formulations and bio-based micro and nanoparticles to produce fully sustainable polymeric-based materials. The Review also summarizes recent developments in polymeric blends, composites, and nanocomposite plasticization, with a particular focus on naturally derived plasticizers and their chemical modifications to increase their compatibility with the polymeric matrices. The current state of the art of the most important bio-based and biodegradable polymers is also reviewed, mainly focusing on their synthesis and processing methods scalable to the industrial sector, such as melt and solution blending approaches like melt-extrusion, injection molding, film forming as well as solution electrospinning, among others, without neglecting their degradation processes.
Collapse
Affiliation(s)
- Víctor Oliver-Cuenca
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Valentina Salaris
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Pedro Francisco Muñoz-Gimena
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Ángel Agüero
- Instituto Universitario de Tecnología de Materiales (IUTM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain;
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
| | - Mercedes A. Peltzer
- Laboratory of Obtention, Modification, Characterization, and Evaluation of Materials (LOMCEM), Department of Science and Technology, University of Quilmes, Bernal B1876BXD, Argentina;
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| | - Victoria Alcázar Montero
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
- Grupo de Investigación en Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Marina P. Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
- Grupo de Investigación en Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Jaume Sempere-Torregrosa
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Cristina Pavon
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Maria Dolores Samper
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Gema Rodríguez Crespo
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Jose M. Kenny
- STM Group, University of Perugia, Strada Pentima 4, 05100 Terni, Italy;
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| |
Collapse
|
7
|
Wongsirichot P. Pilot scale polyhydroxyalkanoates biopolymer production using pure cultures: current status and future opportunities. Crit Rev Biotechnol 2024:1-17. [PMID: 39428339 DOI: 10.1080/07388551.2024.2409112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/08/2024] [Accepted: 08/08/2024] [Indexed: 10/22/2024]
Abstract
The development and commercialization of bio-based and biodegradable polyhydroxyalkanoates (PHAs) biopolymers could be crucial for the transition toward a sustainable circular economy. However, despite potential traditional and novel applications in the packaging, textiles, agriculture, automotive, electronics, and biomedical industries, the commercialization of PHAs is limited by their current market competitiveness. This review provides the first critical assessment of the current pure culture pilot-scale PHA literature, which could be crucial in translating promising laboratory-scale developments into industrial-scale commercial PHA production. It will also complement reviews of mixed microbial cultures currently dominating pilot-scale PHA literature. Pure culture fermentations could provide advantages, such as ease of characterizing microbial producers' behavior, higher PHA productivities, and better alignment with existing PHA commercialization and industrial biotechnology approaches. Key aspects, including producer organisms, fermentation volumes and schemes, control schemes, optimization, and properties of the polymers produced, are discussed in-depth, to elucidate important trends, achievements, and knowledge gaps. Furthermore, specific ways for future pilot-scale studies to help address current PHA commercialization challenges are also identified. The insights, and recommendations provided will be extremely beneficial for the future development of PHA production, at both pilot and commercial scales, whilst also being beneficial to the production of other microbial polymers and industrial biotechnology as a whole.
Collapse
Affiliation(s)
- Phavit Wongsirichot
- Department of Chemical Engineering, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
8
|
Woo SG, Averesch NJH, Berliner AJ, Deutzmann JS, Pane VE, Chatterjee S, Criddle CS. Isolation and characterization of a Halomonas species for non-axenic growth-associated production of bio-polyesters from sustainable feedstocks. Appl Environ Microbiol 2024; 90:e0060324. [PMID: 39058034 PMCID: PMC11338360 DOI: 10.1128/aem.00603-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Biodegradable plastics are urgently needed to replace petroleum-derived polymeric materials and prevent their accumulation in the environment. To this end, we isolated and characterized a halophilic and alkaliphilic bacterium from the Great Salt Lake in Utah. The isolate was identified as a Halomonas species and designated "CUBES01." Full-genome sequencing and genomic reconstruction revealed the unique genetic traits and metabolic capabilities of the strain, including the common polyhydroxyalkanoate (PHA) biosynthesis pathway. Fluorescence staining identified intracellular polyester granules that accumulated predominantly during the strain's exponential growth, a feature rarely found among natural PHA producers. CUBES01 was found to metabolize a range of renewable carbon feedstocks, including glucosamine and acetyl-glucosamine, as well as sucrose, glucose, fructose, and further glycerol, propionate, and acetate. Depending on the substrate, the strain accumulated up to ~60% of its biomass (dry wt/wt) in poly(3-hydroxybutyrate), while reaching a doubling time of 1.7 h at 30°C and an optimum osmolarity of 1 M sodium chloride and a pH of 8.8. The physiological preferences of the strain may not only enable long-term aseptic cultivation but also facilitate the release of intracellular products through osmolysis. The development of a minimal medium also allowed the estimation of maximum polyhydroxybutyrate production rates, which were projected to exceed 5 g/h. Finally, also, the genetic tractability of the strain was assessed in conjugation experiments: two orthogonal plasmid vectors were stable in the heterologous host, thereby opening the possibility of genetic engineering through the introduction of foreign genes. IMPORTANCE The urgent need for renewable replacements for synthetic materials may be addressed through microbial biotechnology. To simplify the large-scale implementation of such bio-processes, robust cell factories that can utilize sustainable and widely available feedstocks are pivotal. To this end, non-axenic growth-associated production could reduce operational costs and enhance biomass productivity, thereby improving commercial competitiveness. Another major cost factor is downstream processing, especially in the case of intracellular products, such as bio-polyesters. Simplified cell-lysis strategies could also further improve economic viability.
Collapse
Affiliation(s)
- Sung-Geun Woo
- Center for the
Utilization of Biological Engineering in Space
(CUBES), Berkeley,
California, USA
- Department of Civil
and Environmental Engineering, Stanford
University, Stanford,
California, USA
| | - Nils J. H. Averesch
- Center for the
Utilization of Biological Engineering in Space
(CUBES), Berkeley,
California, USA
- Department of Civil
and Environmental Engineering, Stanford
University, Stanford,
California, USA
| | - Aaron J. Berliner
- Center for the
Utilization of Biological Engineering in Space
(CUBES), Berkeley,
California, USA
- Department of
Bioengineering, University of
California, Berkeley,
California, USA
| | - Joerg S. Deutzmann
- Department of Civil
and Environmental Engineering, Stanford
University, Stanford,
California, USA
| | - Vince E. Pane
- Center for the
Utilization of Biological Engineering in Space
(CUBES), Berkeley,
California, USA
- Department of
Chemistry, Stanford University,
Stanford, California,
USA
| | - Sulogna Chatterjee
- Center for the
Utilization of Biological Engineering in Space
(CUBES), Berkeley,
California, USA
- Department of Civil
and Environmental Engineering, Stanford
University, Stanford,
California, USA
| | - Craig S. Criddle
- Center for the
Utilization of Biological Engineering in Space
(CUBES), Berkeley,
California, USA
- Department of Civil
and Environmental Engineering, Stanford
University, Stanford,
California, USA
| |
Collapse
|
9
|
Santin A, Collura F, Singh G, Morlino MS, Bizzotto E, Bellan A, Gupte AP, Favaro L, Campanaro S, Treu L, Morosinotto T. Deciphering the genetic landscape of enhanced poly-3-hydroxybutyrate production in Synechocystis sp. B12. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:101. [PMID: 39014484 PMCID: PMC11253406 DOI: 10.1186/s13068-024-02548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Microbial biopolymers such as poly-3-hydroxybutyrate (PHB) are emerging as promising alternatives for sustainable production of biodegradable bioplastics. Their promise is heightened by the potential utilisation of photosynthetic organisms, thus exploiting sunlight and carbon dioxide as source of energy and carbon, respectively. The cyanobacterium Synechocystis sp. B12 is an attractive candidate for its superior ability to accumulate high amounts of PHB as well as for its high-light tolerance, which makes it extremely suitable for large-scale cultivation. Beyond its practical applications, B12 serves as an intriguing model for unravelling the molecular mechanisms behind PHB accumulation. RESULTS Through a multifaceted approach, integrating physiological, genomic and transcriptomic analyses, this work identified genes involved in the upregulation of chlorophyll biosynthesis and phycobilisome degradation as the possible candidates providing Synechocystis sp. B12 an advantage in growth under high-light conditions. Gene expression differences in pentose phosphate pathway and acetyl-CoA metabolism were instead recognised as mainly responsible for the increased Synechocystis sp. B12 PHB production during nitrogen starvation. In both response to strong illumination and PHB accumulation, Synechocystis sp. B12 showed a metabolic modulation similar but more pronounced than the reference strain, yielding in better performances. CONCLUSIONS Our findings shed light on the molecular mechanisms of PHB biosynthesis, providing valuable insights for optimising the use of Synechocystis in economically viable and sustainable PHB production. In addition, this work supplies crucial knowledge about the metabolic processes involved in production and accumulation of these molecules, which can be seminal for the application to other microorganisms as well.
Collapse
Grants
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 691712 Horizon 2020 Framework Programme
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- 327331 Ministero dell'Istruzione, dell'Università e della Ricerca
- Ministero dell’Istruzione, dell’Università e della Ricerca
- Università degli Studi di Padova
Collapse
Affiliation(s)
- Anna Santin
- Department of Biology, University of Padova, 35131, Padua, Italy.
| | - Flavio Collura
- Department of Biology, University of Padova, 35131, Padua, Italy
| | - Garima Singh
- Department of Biology, University of Padova, 35131, Padua, Italy
| | | | - Edoardo Bizzotto
- Department of Biology, University of Padova, 35131, Padua, Italy
| | | | - Ameya Pankaj Gupte
- Waste to Bioproducts Lab, Department of Agronomy Food Natural Resources Animals and Environment, University of Padova - Agripolis, 35020, Legnaro, PD, Italy
| | - Lorenzo Favaro
- Waste to Bioproducts Lab, Department of Agronomy Food Natural Resources Animals and Environment, University of Padova - Agripolis, 35020, Legnaro, PD, Italy
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | | | - Laura Treu
- Department of Biology, University of Padova, 35131, Padua, Italy
| | | |
Collapse
|
10
|
Xue M, Huang R, Liu W, Cheng J, Liu Y, Zhang J, Wang L, Liu D, Jiang H. Identification and characterization of a potential strain for the production of polyhydroxyalkanoate from glycerol. Front Microbiol 2024; 15:1413120. [PMID: 38966388 PMCID: PMC11223650 DOI: 10.3389/fmicb.2024.1413120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
While poly (3-hydroxybutyrate) (PHB) holds promise as a bioplastic, its commercial utilization has been hampered by the high cost of raw materials. However, glycerol emerges as a viable feedstock for PHB production, offering a sustainable production approach and substantial cost reduction potential. Glycerol stands out as a promising feedstock for PHB production, offering a pathway toward sustainable manufacturing and considerable cost savings. The identification and characterization of strains capable of converting glycerol into PHB represent a pivotal strategy in advancing PHB production research. In this study, we isolated a strain, Ralstonia sp. RRA (RRA). The strain exhibits remarkable proficiency in synthesizing PHB from glycerol. With glycerol as the carbon source, RRA achieved a specific growth rate of 0.19 h-1, attaining a PHB content of approximately 50% within 30 h. Through third-generation genome and transcriptome sequencing, we elucidated the genome composition and identified a total of eight genes (glpR, glpD, glpS, glpT, glpP, glpQ, glpV, and glpK) involved in the glycerol metabolism pathway. Leveraging these findings, the strain RRA demonstrates significant promise in producing PHB from low-cost renewable carbon sources.
Collapse
Affiliation(s)
- Mengheng Xue
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Rong Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Wei Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Jian Cheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Yuwan Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Jie Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Limei Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Dingyu Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Huifeng Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| |
Collapse
|
11
|
Matsumoto K. Toward the production of block copolymers in microbial cells: achievements and perspectives. Appl Microbiol Biotechnol 2024; 108:164. [PMID: 38252290 PMCID: PMC10803391 DOI: 10.1007/s00253-023-12973-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024]
Abstract
The microbial production of polyhydroxyalkanoate (PHA) block copolymers has attracted research interests because they can be expected to exhibit excellent physical properties. Although post-polymerization conjugation and/or extension have been used for PHA block copolymer synthesis, the discovery of the first sequence-regulating PHA synthase, PhaCAR, enabled the direct synthesis of PHA-PHA type block copolymers in microbial cells. PhaCAR spontaneously synthesizes block copolymers from a mixture of substrates. To date, Escherichia coli and Ralstonia eutropha have been used as host strains, and therefore, sequence regulation is not a host-specific phenomenon. The monomer sequence greatly influences the physical properties of the polymer. For example, a random copolymer of 3-hydroxybutyrate and 2-hydroxybutyrate deforms plastically, while a block copolymer of approximately the same composition exhibits elastic deformation. The structure of the PHA block copolymer can be expanded by in vitro evolution of the sequence-regulating PHA synthase. An engineered variant of PhaCAR can synthesize poly(D-lactate) as a block copolymer component, which allows for greater flexibility in the molecular design of block copolymers. Therefore, creating sequence-regulating PHA synthases with a further broadened substrate range will expand the variety of properties of PHA materials. This review summarizes and discusses the sequence-regulating PHA synthase, analytical methods for verifying block sequence, properties of block copolymers, and mechanisms of sequence regulation. KEY POINTS: • Spontaneous monomer sequence regulation generates block copolymers • Poly(D-lactate) segment can be synthesized using a block copolymerization system • Block copolymers exhibit characteristic properties.
Collapse
Affiliation(s)
- Ken'ichiro Matsumoto
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kitaku, Sapporo, N13W8060-8628, Japan.
| |
Collapse
|
12
|
Li HH, Wu J, Liu JQ, Wu QZ, He RL, Cheng ZH, Lv JL, Lin WQ, Wu J, Liu DF, Li WW. Nonsterilized Fermentation of Crude Glycerol for Polyhydroxybutyrate Production by Metabolically Engineered Vibrio natriegens. ACS Synth Biol 2023; 12:3454-3462. [PMID: 37856147 DOI: 10.1021/acssynbio.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Polyhydroxybutyrate (PHB) is an attractive biodegradable polymer that can be produced through the microbial fermentation of organic wastes or wastewater. However, its mass production has been restricted by the poor utilization of organic wastes due to the presence of inhibitory substances, slow microbial growth, and high energy input required for feedstock sterilization. Here, Vibrio natriegens, a fast-growing bacterium with a broad substrate spectrum and high tolerance to salt and toxic substances, was genetically engineered to enable efficient PHB production from nonsterilized fermentation of organic wastes. The key genes encoding the PHB biosynthesis pathway of V. natriegens were identified through base editing and overexpressed. The metabolically engineered strain showed 166-fold higher PHB content (34.95 wt %) than the wide type when using glycerol as a substrate. Enhanced PHB production was also achieved when other sugars were used as feedstock. Importantly, it outperformed the engineered Escherichia coli MG1655 in PHB productivity (0.053 g/L/h) and tolerance to toxic substances in crude glycerol, without obvious activity decline under nonsterilized fermentation conditions. Our work demonstrates the great potential of engineered V. natriegens for low-cost PHB bioproduction and lays a foundation for exploiting this strain as a next-generation model chassis microorganism in synthetic biology.
Collapse
Affiliation(s)
- Hui-Hui Li
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Jie Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Jia-Qi Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Qi-Zhong Wu
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Ru Li He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Zhou-Hua Cheng
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jun-Lu Lv
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Wei-Qiang Lin
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jing Wu
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230088, China
| | - Wen-Wei Li
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| |
Collapse
|
13
|
Grzesiak J, Gawor J, Rogala MM, Kouřilová X, Obruča S. Genetic engineering of low-temperature polyhydroxyalkanoate production by Acidovorax sp. A1169, a psychrophile isolated from a subglacial outflow. Extremophiles 2023; 27:25. [PMID: 37709928 PMCID: PMC10501959 DOI: 10.1007/s00792-023-01311-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
In recent years, extremophilic microorganisms have been employed as producers of the microbial bioplastics polyhydroxyalkanoates (PHA), which are of great biotechnological value. Nevertheless, cold-loving or psychrophilic (cryophilic) bacteria have been neglected in this regard. Here, we present an investigation of the Arctic glacier-derived PHA producer Acidovorax sp. A1169. Biolog GEN III Microplates were used as a screening tool to identify the most suitable carbon substrate concerning PHA synthesis. The strain produced homopolymer poly(3-hydroxybutyrate) (PHB) most efficiently (2 g/L) at a temperature of 15 °C when supplied with fructose or mannitol as carbon sources with a substantial decrease of PHB biosynthesis at 17.5 °C. The PHB yield did not increase considerably or even decreased when carbon source concentration exceeded 10 g/L hinting that the strain is oligotrophic in nature. The strain was also capable of introducing 3-hydroxyvalerate (3HV) into the polymer structure, which is known to improve PHA thermoplastic properties. This is the first investigation providing insight into a PHA biosynthesis process by means of a true psychrophile, offering guidelines on polar-region bacteria cultivation, production of PHA and also on the methodology for genetic engineering of psychrophiles.
Collapse
Affiliation(s)
- Jakub Grzesiak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland.
| | - Jan Gawor
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Małgorzata Marta Rogala
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Xenie Kouřilová
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| | - Stanislav Obruča
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| |
Collapse
|
14
|
Vicente D, Proença DN, Morais PV. The Role of Bacterial Polyhydroalkanoate (PHA) in a Sustainable Future: A Review on the Biological Diversity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2959. [PMID: 36833658 PMCID: PMC9957297 DOI: 10.3390/ijerph20042959] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Environmental challenges related to the mismanagement of plastic waste became even more evident during the COVID-19 pandemic. The need for new solutions regarding the use of plastics came to the forefront again. Polyhydroxyalkanoates (PHA) have demonstrated their ability to replace conventional plastics, especially in packaging. Its biodegradability and biocompatibility makes this material a sustainable solution. The cost of PHA production and some weak physical properties compared to synthetic polymers remain as the main barriers to its implementation in the industry. The scientific community has been trying to solve these disadvantages associated with PHA. This review seeks to frame the role of PHA and bioplastics as substitutes for conventional plastics for a more sustainable future. It is focused on the bacterial production of PHA, highlighting the current limitations of the production process and, consequently, its implementation in the industry, as well as reviewing the alternatives to turn the production of bioplastics into a sustainable and circular economy.
Collapse
Affiliation(s)
| | - Diogo Neves Proença
- Department of Life Sciences, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, 3000-456 Coimbra, Portugal
| | | |
Collapse
|