1
|
Zhou S, Zhang M, Wang J, Chen X, Xu Z, Yan Y, Li Y. Nanofibers in Glioma Therapy: Advances, Applications, and Overcoming Challenges. Int J Nanomedicine 2025; 20:4677-4703. [PMID: 40255668 PMCID: PMC12008729 DOI: 10.2147/ijn.s510363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/31/2025] [Indexed: 04/22/2025] Open
Abstract
Despite relentless effort to study glioma treatment, the prognosis for glioma patients remains poor. The main obstacles include the high rate of recurrence and the difficulty of passing the blood-brain barrier (BBB) for therapeutic drugs. Nanomaterials owing to their special physicochemical properties have been used in a wide range of fields thus far. The nanodrug delivery system (NDDS) with the ability of crossing the BBB, targeting glioma site, maintaining drug stability and controlling drug release, has significantly enhanced the anti-tumor therapeutic effect, improving the prognosis of glioma patients. Aligned nanofibers (NFs) are ideal materials to establish in vitro models of glioma microenvironment (GME), enabling the exploration of the mechanism of glioma cell migration and invasion to discover novel therapeutic targets. Moreover, NFs are now widely used in glioma applications such as radiotherapy, phototherapy, thermotherapy and immunotherapy. Despite the absolute dominance of NFs in anti-glioma applications, there are still some problems such as the further optimization of NDDS, and the impact of interactions between nanofibers and the protein corona (PC) on glioma therapy. This paper will shed light on the latest glioma applications of NFs in drug delivery systems and mimicking the tumor microenvironment (TME), and discuss how to further optimize the NDDS and eliminate or utilize the nanomedicine-PC interactions.
Collapse
Affiliation(s)
- Shangjun Zhou
- Department of Pediatric Surgery, Hunan Children’s Hospital, Changsha, Hunan, People’s Republic of China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Mingcheng Zhang
- Center of Endoscopy, The Second Affiliated Hospital of Shandong First Medical University Tai’an, Shandong, People’s Republic of China
| | - Jiayu Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yong Li
- Department of Pediatric Surgery, Hunan Children’s Hospital, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
2
|
Silva-López MS, Escobar-Barrios VA, Alcántara-Quintana LE. Electrospun Coaxial Polycaprolactone/Polyvinylpyrrolidone Fibers Containing Cisplatin: A Potential Local Chemotherapy Delivery System for Cervical Cancer Treatment. Polymers (Basel) 2025; 17:637. [PMID: 40076128 PMCID: PMC11902410 DOI: 10.3390/polym17050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Cisplatin, a frequently used chemotherapeutic for the treatment of cervical cancer, causes adverse effects that limit its use. Treatment with local therapy that limits toxicity remains a challenge. The aim of this study was to develop a local intravaginal cisplatin delivery system of polycaprolactone/polyvinylpyrrolidone sheath/core fibers by coaxial electrospinning. Physicochemical properties, degradation rate, mucoadhesion, release profile, and in vitro biosafety assays were characterized. Microscopy images confirmed the coaxial nature of the fibers and showed continuous morphology and diameters of 3-9 µm. The combination of polymers improved their mechanical properties. The contact angle < 85° indicated a hydrophilic surface, which would allow its dissolution in the vaginal environment. The release profile showed a rapid initial release followed by a slow and sustained release over eight days. The degradation test showed ~50% dissolution of the fibers on day 10. The adhesion of the fibrous device to the vaginal wall lasted for more than 15 days, which was sufficient time to allow the release of cisplatin. The biosafety tests showed great cytocompatibility and no hemolysis. The characteristics of the developed system open the possibility of its application as a localized therapy against cervical cancer, reducing adverse effects and improving the quality of life of patients.
Collapse
Affiliation(s)
- Mariana Sarai Silva-López
- Coordination for the Innovation and Application of Science and Technology (CIACYT), Autonomous University of San Luis Potosi, 550-2a Sierra Leona Ave, San Luis Potosí 78210, Mexico;
| | - Vladimir Alonso Escobar-Barrios
- Advanced Materials Department, Institute for Scientific and Technological Research of San Luis Potosi A.C. Road to San Jose Dam, Lomas 4a Section, San Luis Potosí 78216, Mexico;
| | - Luz Eugenia Alcántara-Quintana
- Coordination for the Innovation and Application of Science and Technology (CIACYT), Autonomous University of San Luis Potosi, 550-2a Sierra Leona Ave, San Luis Potosí 78210, Mexico;
| |
Collapse
|
3
|
Lasak M, Łysek-Gładysińska M, Lach K, Nirwan VP, Kuc-Ciepluch D, Sanchez-Nieves J, de la Mata FJ, Fahmi A, Ciepluch K. Electrospun Nanofibers for the Delivery of Endolysin/Dendronized Ag-NPs Complex Against Pseudomonas aeruginosa. Nanotechnol Sci Appl 2025; 18:57-70. [PMID: 39989599 PMCID: PMC11846615 DOI: 10.2147/nsa.s498942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/23/2025] [Indexed: 02/25/2025] Open
Abstract
Purpose As bacterial resistance to antibiotics increases, there is an urgent need to identify alternative antibacterial agents and improve antibacterial materials. One is the controlled transport of antibacterial agents that prevents infection with drug-resistant bacteria, especially in the treatment of difficult-to-heal wounds. Methods This work presents the use of electrospun PLCL/PVP (poly(L-lactide-co-ε-caprolactone/polyvinylpyrrolidone) nanofibers modified with two agents with antibacterial properties but with different mechanisms of action, that is, dendritic silver nanoparticles (Dend-AgNPs) and endolysin. Results The nanomat prepared in this manner showed significant antibacterial activity against antibiotic-resistant Pseudomonas aeruginosa strains, inhibiting their growth and production of key pigments and virulence factors. Moreover, the use of nanofibers as carriers of the selected factors significantly reduced their cytotoxicity towards human fibroblasts. Conclusion The results confirmed the possibility of using the presented product as an innovative dressing material, opening new perspectives for the treatment of wounds and combating bacterial infections with drug-resistant bacteria.
Collapse
Affiliation(s)
- Magdalena Lasak
- Division of Medical Biology, Jan Kochanowski University in Kielce, Kielce, Poland
| | | | - Karolina Lach
- Division of Medical Biology, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Viraj P Nirwan
- Faculty of Technology and Bionics, Rhine-Waal University of Applied Science, Kleve, Germany
| | - Dorota Kuc-Ciepluch
- Department of Basic Medical Sciences, Faculty of Medical Sciences and Health Sciences, Casimir Pulaski University of Radom, Radom, Poland
| | - Javier Sanchez-Nieves
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá (UAH), Alcalá de Henares, Spain
- Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Ramón y Cajal Institute of Health Research, (IRYCIS), Madrid, Spain
| | - Francisco Javier de la Mata
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá (UAH), Alcalá de Henares, Spain
- Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Ramón y Cajal Institute of Health Research, (IRYCIS), Madrid, Spain
| | - Amir Fahmi
- Faculty of Technology and Bionics, Rhine-Waal University of Applied Science, Kleve, Germany
| | - Karol Ciepluch
- Division of Medical Biology, Jan Kochanowski University in Kielce, Kielce, Poland
| |
Collapse
|
4
|
Mohite P, Puri A, Munde S, Dave R, Khan S, Patil R, Singh AK, Tipduangta P, Singh S, Chittasupho C. Potential of Chitosan/Gelatin-Based Nanofibers in Delivering Drugs for the Management of Varied Complications: A Review. Polymers (Basel) 2025; 17:435. [PMID: 40006097 PMCID: PMC11859051 DOI: 10.3390/polym17040435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Drug delivery systems have revolutionized traditional drug administration methods by addressing various challenges, such as enhancing drug solubility, prolonging effectiveness, minimizing adverse effects, and preserving potency. Nanotechnology-based drug delivery systems, particularly nanoparticles (NPs) and nanofibers (NFs), have emerged as promising solutions for biomedicine delivery. NFs, with their ability to mimic the porous and fibrous structures of biological tissues, have garnered significant interest in drug-delivering applications. Biopolymers such as gelatin (Ge) and chitosan (CH) have gained much more attention due to their biocompatibility, biodegradability, and versatility in biomedical applications. CH exhibits exceptional biocompatibility, anti-bacterial activity, and wound healing capabilities, whereas Ge provides good biocompatibility and cell adhesion properties. Ge/CH-based NFs stimulate cellular connections and facilitate tissue regeneration owing to their structural resemblance to the extracellular matrix. This review explores the additive methods of preparation, including electrospinning, force pinning, and template synthesis, focusing on electrospinning and the factors influencing the fiber structure. The properties of Ge and CH, their role in drug release, formulation strategies, and characterization techniques for electrospun fibers are discussed. Furthermore, this review addresses applications in delivering active moieties in the management of orthopedics and wound healing with regulatory considerations, along with challenges related to them. Thus, the review aims to provide a comprehensive overview of the potential of Ge/CH-based NFs for drug delivery and biomedical applications.
Collapse
Affiliation(s)
- Popat Mohite
- AETs St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India; (P.M.); (A.P.); (S.M.); (R.D.); (S.K.); (R.P.)
| | - Abhijeet Puri
- AETs St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India; (P.M.); (A.P.); (S.M.); (R.D.); (S.K.); (R.P.)
| | - Shubham Munde
- AETs St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India; (P.M.); (A.P.); (S.M.); (R.D.); (S.K.); (R.P.)
| | - Roshan Dave
- AETs St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India; (P.M.); (A.P.); (S.M.); (R.D.); (S.K.); (R.P.)
| | - Showkhiya Khan
- AETs St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India; (P.M.); (A.P.); (S.M.); (R.D.); (S.K.); (R.P.)
| | - Riteshkumar Patil
- AETs St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India; (P.M.); (A.P.); (S.M.); (R.D.); (S.K.); (R.P.)
| | - Anil Kumar Singh
- United Institute of Pharmacy, Prayagraj 211010, Uttar Pradesh, India;
| | - Pratchaya Tipduangta
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
5
|
Chaka KT, Cao K, Tesfaye T, Qin X. Nanomaterial-functionalized electrospun scaffolds for tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:371-413. [PMID: 39259663 DOI: 10.1080/09205063.2024.2399909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Tissue engineering has emerged as a biological alternative aimed at sustaining, rehabilitating, or enhancing the functionality of tissues that have experienced partial or complete loss of their operational capabilities. The distinctive characteristics of electrospun nanofibrous structures, such as their elevated surface-area-to-volume ratio, specific pore sizes, and fine fiber diameters, make them suitable as effective scaffolds in tissue engineering, capable of mimicking the functions of the targeted tissue. However, electrospun nanofibers, whether derived from natural or synthetic polymers or their combinations, often fall short of replicating the multifunctional attributes of the extracellular matrix (ECM). To address this, nanomaterials (NMs) are integrated into the electrospun polymeric matrix through various functionalization techniques to enhance their multifunctional properties. Incorporation of NMs into electrospun nanofibrous scaffolds imparts unique features, including a high surface area, superior mechanical properties, compositional variety, structural adaptability, exceptional porosity, and enhanced capabilities for promoting cell migration and proliferation. This review provides a comprehensive overview of the various types of NMs, the methodologies used for their integration into electrospun nanofibrous scaffolds, and the recent advancements in NM-functionalized electrospun nanofibrous scaffolds aimed at regenerating bone, cardiac, cartilage, nerve, and vascular tissues. Moreover, the main challenges, limitations, and prospects in electrospun nanofibrous scaffolds are elaborated.
Collapse
Affiliation(s)
- Kilole Tesfaye Chaka
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Kai Cao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Tamrat Tesfaye
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Xiaohong Qin
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| |
Collapse
|
6
|
Darie-Niță RN, Frąckowiak S. An Overview of Potential Applications of Environmentally Friendly Hybrid Polymeric Materials. Polymers (Basel) 2025; 17:252. [PMID: 39861324 PMCID: PMC11768154 DOI: 10.3390/polym17020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
The applications of polymeric materials are being constantly reviewed and improved. In the present world, the word hybrid, and the general idea of combining two or more inherently different approaches, designs, and materials is gaining significant attention. The area of sustainable materials with a low environmental impact is also rapidly evolving with many new discoveries, including the use of materials of a natural origin and countless combinations thereof. This review tries to summarize the current state of knowledge about hybrid polymeric materials and their applications with special attention to the materials that can be considered "environmentally friendly". As the current application field is quite broad, the review was limited to the following topics: packaging, medical applications, sensors, water purification, and electromagnetic shielding. Furthermore, this review points out the new prospects and challenges for the use of the mentioned materials in terms of creating novel solutions with different nano and micro-materials of mostly natural and renewable origin.
Collapse
Affiliation(s)
- Raluca Nicoleta Darie-Niță
- Physical Chemistry of Polymers Department, Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Stanisław Frąckowiak
- Faculty of Environmental Engineering, University of Science and Technology, 50-013 Wrocław, Poland;
| |
Collapse
|
7
|
Zhang Y, Ding F, Han J, Wang Z, Tian W. Recent advances in innovative biomaterials for promoting bladder regeneration: processing and functionalization. Front Bioeng Biotechnol 2025; 12:1528658. [PMID: 39834643 PMCID: PMC11743525 DOI: 10.3389/fbioe.2024.1528658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
The bladder is a dynamic organ located in the lower urinary tract, responsible for complex and important physiological activities in the human body, including collecting and storing urine. Severe diseases or bladder injuries often lead to tissue destruction and loss of normal function, requiring surgical intervention and reconstruction. The rapid development of innovative biomaterials has brought revolutionary opportunities for modern urology to overcome the limitations of tissue transplantation. This article first summarized the latest research progress in the processing approaches and functionalization of acellular matrix, hydrogels, nanomaterials, and porous scaffolds in repairing and reconstructing the physiological structure and dynamic function of damaged bladder. Then, we discussed emerging strategies for bladder regeneration and functional recovery, such as cell therapy, organoids, etc. Finally, we outlined the important issues and future development prospects of biomaterials in bladder regeneration to inspire future research directions. By reviewing these innovative biomaterials and technologies, we hope to provide appropriate insights to achieve the ultimate goal of designing and manufacturing artificial bladder substitutes with ideal performance in all aspects.
Collapse
Affiliation(s)
- Yi Zhang
- The Second Hospital of Jilin University, Changchun, China
| | - Fu’an Ding
- The Second Hospital of Jilin University, Changchun, China
| | - Junjie Han
- The Second Hospital of Jilin University, Changchun, China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Wenjie Tian
- The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Nur MG, Rahman M, Dip TM, Hossain MH, Hossain NB, Baratchi S, Padhye R, Houshyar S. Recent advances in bioactive wound dressings. Wound Repair Regen 2025; 33:e13233. [PMID: 39543919 DOI: 10.1111/wrr.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/17/2024]
Abstract
Traditional wound dressings, despite their widespread use, face limitations, such as poor infection control and insufficient healing promotion. To address these challenges, bioactive materials have emerged as a promising solution in wound care. This comprehensive review explores the latest developments in wound healing technologies, starting with an overview of the importance of effective wound management, emphasising the need for advanced bioactive wound dressings. The review further explores various bioactive materials, defining their characteristics. It covers a wide range of natural and synthetic biopolymers used to develop bioactive wound dressings. Next, the paper discusses the incorporation of bioactive agents into wound dressings, including antimicrobial and anti-inflammatory agents, alongside regenerative components like growth factors, platelet-rich plasma, platelet-rich fibrin and stem cells. The review also covers fabrication techniques for bioactive wound dressings, highlighting techniques like electrospinning, which facilitated the production of nanofibre-based dressings with controlled porosity, the sol-gel method for developing bioactive glass-based dressings, and 3D bioprinting for customised, patient-specific dressings. The review concludes by addressing the challenges and future perspectives in bioactive wound dressing development. It includes regulatory considerations, clinical efficacy, patient care protocol integration and wound healing progress monitoring. Furthermore, the review considers emerging trends such as smart materials, sensors and personalised medicine approaches, offering insights into the future direction of bioactive wound dressing research.
Collapse
Affiliation(s)
- Md Golam Nur
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Victoria, Australia
- Department of Textiles, Ministry of Textiles and Jute, Government of the People's Republic of Bangladesh, Dhaka, Bangladesh
| | - Mustafijur Rahman
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Victoria, Australia
- Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Tanvir Mahady Dip
- Department of Materials, University of Manchester, Manchester, UK
- Department of Yarn Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Md Hasibul Hossain
- Department of Textile Engineering, International Standard University, Dhaka, Bangladesh
| | - Nusrat Binta Hossain
- TJX Australia Pty Limited, Preston, Victoria, Australia
- Department of Environmental Science & Management, North South University, Dhaka, Bangladesh
| | - Sara Baratchi
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Rajiv Padhye
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Victoria, Australia
| | - Shadi Houshyar
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Kassie BB, Getahun MJ, Azanaw A, Ferede BT, Tassew DF. Surface modification of cellulose nanocrystals for biomedical and personal hygiene applications. Int J Biol Macromol 2024; 282:136949. [PMID: 39490486 DOI: 10.1016/j.ijbiomac.2024.136949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The increasing demand for sustainable and effective materials in biomedical and personal hygiene applications has driven the exploration of cellulose nanocrystals (CNCs) derived from biomass. These nanomaterials are highly valued for their exceptional mechanical properties, biocompatibility, and renewable nature. Researchers are exploring CNCs for advancing medical and hygiene products, but surface modification is often needed to maximize their benefits. Techniques such as chemical functionalization, physical coating, and hybridization can significantly enhance CNCs dispersibility, stability, and interaction with biological systems. This versatility makes CNCs suitable for a variety of applications, including drug delivery systems, wound dressings, and personal hygiene products. Despite their advantages, maintaining the inherent properties of CNCs while integrating new functionalities through modification poses a challenge. Understanding the impact of various modification techniques on CNC performance is crucial for optimizing their effectiveness. This review aimed to consolidate current knowledge on the surface modification of biomass-derived CNCs, offering insights into different methods and their implications for biomedical and personal hygiene applications. By highlighting advancements, challenges, and prospects, it served as a crucial resource for advancing the development and application of CNCs in these critical fields.
Collapse
Affiliation(s)
- Bantamlak Birlie Kassie
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia; Medical Textile Research Center, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia.
| | | | - Aklilu Azanaw
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| | - Bayu Teshome Ferede
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| | - Dehenenet Flatie Tassew
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| |
Collapse
|
10
|
Ming Y, He X, Zhao Z, Meng X, Zhu Y, Tan H, Yang G, Hu Y, Zheng L. Nanocarrier-Assisted Delivery of Berberine Promotes Diabetic Alveolar Bone Regeneration by Scavenging ROS and Improving Mitochondrial Dysfunction. Int J Nanomedicine 2024; 19:10263-10282. [PMID: 39399826 PMCID: PMC11471107 DOI: 10.2147/ijn.s475320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/15/2024] [Indexed: 10/15/2024] Open
Abstract
Purpose Oxidative stress and mitochondrial dysfunction are potential contributors to the compromised tissue regeneration capacity of alveolar bone in diabetic patients. Berberine, an active plant alkaloid, exhibits multiple pharmacological effects including antioxidation, blood glucose- and blood lipid-lowering properties. However, it remains uncertain whether berberine can improve impaired osteogenesis in type 2 diabetes mellitus (T2DM), and its poor solubility and oral bioavailability also constrain its applications in bone regeneration. Thus, our study aimed to probe the effects of berberine on bone marrow stem cells (BMSCs) in a diabetic microenvironment, with a greater emphasis on developing a suitable nano-delivery system for berberine and assessing its capability to repair diabetic alveolar bone defects. Methods Firstly, BMSCs were exposed to berberine within a high glucose and palmitate (HG+PA) environment. Reactive oxygen species levels, mitochondrial membrane potential, ATP generation, cell apoptosis, and osteogenic potential were subsequently assessed. Next, we explored the regulatory mechanism of autophagy flux in the positive effects of berberine. Furthermore, a nanocarrier based on emulsion electrospinning for sustained local delivery of berberine (Ber@SF/PCL) was established. We assessed its capacity to enhance bone healing in the alveolar bone defect of T2DM rats through micro-computed tomography and histology analysis. Results Berberine treatment could inhibit reactive oxygen species overproduction, mitochondrial dysfunction, apoptosis, and improve osteogenesis differentiation by restoring autophagy flux under HG+PA conditions. Notably, Ber@SF/PCL electrospun nanofibrous membrane with excellent physicochemical properties and good biological safety had the potential to promote alveolar bone remodeling in T2DM rats. Conclusion Our study shed new lights into the protective role of berberine on BMSCs under T2DM microenvironment. Furthermore, berberine-loaded composite electrospun membrane may serve as a promising approach for regenerating alveolar bone in diabetic patients.
Collapse
Affiliation(s)
- Ye Ming
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Xinyi He
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Zhenxing Zhao
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Xuehuan Meng
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Ye Zhu
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Hao Tan
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Guoyin Yang
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Yun Hu
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Leilei Zheng
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| |
Collapse
|
11
|
Aldahish A, Shanmugasundaram N, Vasudevan R, Alqahtani T, Alqahtani S, Mohammad Asiri A, Devanandan P, Thamaraikani T, Vellapandian C, Jayasankar N. Silk Fibroin Nanofibers: Advancements in Bioactive Dressings through Electrospinning Technology for Diabetic Wound Healing. Pharmaceuticals (Basel) 2024; 17:1305. [PMID: 39458946 PMCID: PMC11510676 DOI: 10.3390/ph17101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Non-healing diabetic wounds represent a significant clinical challenge globally, necessitating innovative approaches in drug delivery to enhance wound healing. Understanding the pathogenesis of these wounds is crucial for developing effective treatments. Bioactive dressings and polymeric nanofibers have emerged as promising modalities, with silk biomaterials gaining attention for their unique properties in diabetic wound healing. PURPOSE OF REVIEW The purpose of this review is to examine the challenges and innovations in treating non-healing diabetic wounds, emphasizing the global burden and the need for effective solutions. This review explores the complex mechanisms of wound healing in diabetes and evaluates the therapeutic potential of bioactive dressings and polymeric nanofibers. Special focus is given to the application of silk biomaterials, particularly silk fibroin, for wound healing, detailing their properties, mechanisms, and clinical translation. This review also describes various nanofiber fabrication methods, especially electrospinning technology, and presents existing evidence on the effectiveness of electrospun silk fibroin formulations. RECENT FINDINGS Recent advancements highlight the potential of silk biomaterials in diabetic wound healing, owing to their biocompatibility, mechanical strength, and controlled drug release properties. Electrospun silk fibroin-based formulations have shown promising results in preclinical and clinical studies, demonstrating accelerated wound closure and tissue regeneration. SUMMARY Non-healing diabetic wounds present a significant healthcare burden globally, necessitating innovative therapeutic strategies. Bioactive dressings and polymeric nanofibers, particularly silk-based formulations fabricated through electrospinning, offer promising avenues for enhancing diabetic wound healing. Further research is warranted to optimize formulation parameters and validate efficacy in larger clinical trials.
Collapse
Affiliation(s)
- Afaf Aldahish
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Nirenjen Shanmugasundaram
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, India
| | - Rajalakshimi Vasudevan
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Saud Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ahmad Mohammad Asiri
- Khamis Mushayt General Hospital, Aseer Health Cluster, Ministry of Health, Khamis Mushait 62433, Saudi Arabia
| | - Praveen Devanandan
- Department of Pharmacy Practice, St. Peter’s Institute of Pharmaceutical Sciences, Vidya Nagar, Hanamkonda 506001, India
| | - Tamilanban Thamaraikani
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, India
| | - Narayanan Jayasankar
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, India
| |
Collapse
|
12
|
Liu Y, Jia D, Li L, Wang M. Advances in Nanomedicine and Biomaterials for Endometrial Regeneration: A Comprehensive Review. Int J Nanomedicine 2024; 19:8285-8308. [PMID: 39161362 PMCID: PMC11330863 DOI: 10.2147/ijn.s473259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
The endometrium is an extremely important component of the uterus and is crucial for individual health and human reproduction. However, traditional methods still struggle to ideally repair the structure and function of damaged endometrium and restore fertility. Therefore, seeking and developing innovative technologies and materials has the potential to repair and regenerate damaged or diseased endometrium. The emergence and functionalization of various nanomedicine and biomaterials, as well as the proposal and development of regenerative medicine and tissue engineering techniques, have brought great hope for solving these problems. In this review, we will summarize various nanomedicine, biomaterials, and innovative technologies that contribute to endometrial regeneration, including nanoscale exosomes, nanomaterials, stem cell-based materials, naturally sourced biomaterials, chemically synthesized biomaterials, approaches and methods for functionalizing biomaterials, as well as the application of revolutionary new technologies such as organoids, organ-on-chips, artificial intelligence, etc. The diverse design and modification of new biomaterials endow them with new functionalities, such as microstructure or nanostructure, mechanical properties, biological functions, and cellular microenvironment regulation. It will provide new options for the regeneration of endometrium, bring new hope for the reconstruction and recovery of patients' reproductive abilities.
Collapse
Affiliation(s)
- Yanhong Liu
- Center for Prenatal Diagnosis, Center for Reproductive Medicine, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Dongyun Jia
- Center for Prenatal Diagnosis, Center for Reproductive Medicine, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Lin Li
- Center for Prenatal Diagnosis, Center for Reproductive Medicine, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Meiyan Wang
- Center for Prenatal Diagnosis, Center for Reproductive Medicine, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
13
|
S V A, Subash A, Gholap V, Kandasubramanian B. Electrospinning of cellulose acetate for methylene blue dye removal. HYBRID ADVANCES 2024; 6:100205. [DOI: 10.1016/j.hybadv.2024.100205] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Agiba AM, Elsayyad N, ElShagea HN, Metwalli MA, Mahmoudsalehi AO, Beigi-Boroujeni S, Lozano O, Aguirre-Soto A, Arreola-Ramirez JL, Segura-Medina P, Hamed RR. Advances in Light-Responsive Smart Multifunctional Nanofibers: Implications for Targeted Drug Delivery and Cancer Therapy. Pharmaceutics 2024; 16:1017. [PMID: 39204362 PMCID: PMC11359459 DOI: 10.3390/pharmaceutics16081017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Over the last decade, scientists have shifted their focus to the development of smart carriers for the delivery of chemotherapeutics in order to overcome the problems associated with traditional chemotherapy, such as poor aqueous solubility and bioavailability, low selectivity and targeting specificity, off-target drug side effects, and damage to surrounding healthy tissues. Nanofiber-based drug delivery systems have recently emerged as a promising drug delivery system in cancer therapy owing to their unique structural and functional properties, including tunable interconnected porosity, a high surface-to-volume ratio associated with high entrapment efficiency and drug loading capacity, and high mass transport properties, which allow for controlled and targeted drug delivery. In addition, they are biocompatible, biodegradable, and capable of surface functionalization, allowing for target-specific delivery and drug release. One of the most common fiber production methods is electrospinning, even though the relatively two-dimensional (2D) tightly packed fiber structures and low production rates have limited its performance. Forcespinning is an alternative spinning technology that generates high-throughput, continuous polymeric nanofibers with 3D structures. Unlike electrospinning, forcespinning generates fibers by centrifugal forces rather than electrostatic forces, resulting in significantly higher fiber production. The functionalization of nanocarriers on nanofibers can result in smart nanofibers with anticancer capabilities that can be activated by external stimuli, such as light. This review addresses current trends and potential applications of light-responsive and dual-stimuli-responsive electro- and forcespun smart nanofibers in cancer therapy, with a particular emphasis on functionalizing nanofiber surfaces and developing nano-in-nanofiber emerging delivery systems for dual-controlled drug release and high-precision tumor targeting. In addition, the progress and prospective diagnostic and therapeutic applications of light-responsive and dual-stimuli-responsive smart nanofibers are discussed in the context of combination cancer therapy.
Collapse
Affiliation(s)
- Ahmed M. Agiba
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.M.A.); (A.O.M.); (A.A.-S.)
| | - Nihal Elsayyad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October for Modern Sciences and Arts University, Cairo 12451, Egypt;
| | - Hala N. ElShagea
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, Cairo 12451, Egypt;
| | - Mahmoud A. Metwalli
- El Demerdash Hospital, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt;
| | - Amin Orash Mahmoudsalehi
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.M.A.); (A.O.M.); (A.A.-S.)
| | - Saeed Beigi-Boroujeni
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.M.A.); (A.O.M.); (A.A.-S.)
| | - Omar Lozano
- School of Medicine and Health Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico;
- Institute for Obesity Research, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Alan Aguirre-Soto
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (A.M.A.); (A.O.M.); (A.A.-S.)
| | - Jose Luis Arreola-Ramirez
- Department of Bronchial Hyperresponsiveness, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City 14080, Mexico;
| | - Patricia Segura-Medina
- Department of Bronchial Hyperresponsiveness, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City 14080, Mexico;
- School of Medicine and Health Sciences, Tecnológico de Monterrey, Mexico City 14380, Mexico
| | - Raghda Rabe Hamed
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Cairo 12566, Egypt;
| |
Collapse
|
15
|
Yessuf AM, Bahri M, Kassa TS, Sharma BP, Salama AM, Xing C, Zhang Q, Liu Y. Electrospun Polymeric Nanofibers: Current Trends in Synthesis, Surface Modification, and Biomedical Applications. ACS APPLIED BIO MATERIALS 2024; 7:4231-4253. [PMID: 38857339 DOI: 10.1021/acsabm.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Electrospun polymeric nanofibers are essential in various fields for various applications because of their unique properties. Their features are similar to extracellular matrices, which suggests them for applications in healthcare fields, such as antimicrobials, tissue engineering, drug delivery, wound healing, bone regeneration, and biosensors. This review focuses on the synthesis of electrospun polymeric nanofibers, their surface modification, and their biomedical applications. Nanofibers can be fabricated from both natural and synthetic polymers and their composites. Even though they mimic extracellular matrices, their surface features (physicochemical characteristics) are not always capable of fulfilling the purpose of the target application. Therefore, they need to be improved via surface modification techniques. Both needle-based and needleless electrospinning are thoroughly discussed. Various techniques and setups employed in each method are also reviewed. Furthermore, pre- and postspinning modification approaches for electrospun nanofibers, including instrument design and the modification features for targeted biomedical applications, are also extensively discussed. In this way, the remarkable potential of electrospun polymeric nanofibers can be highlighted to reveal future research directions in this dynamic field.
Collapse
Affiliation(s)
- Abdurohman Mengesha Yessuf
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mohamed Bahri
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Tibebu Shiferaw Kassa
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bharat Prasad Sharma
- Beijing Key Laboratory of Electrochemical Process and Technology of Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ahmed M Salama
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Changmin Xing
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qidong Zhang
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yong Liu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
16
|
Gavali P, Desai J, Shah P, Sawarkar S. Transmucosal Delivery of Peptides and Proteins Through Nanofibers: Current Status and Emerging Developments. AAPS PharmSciTech 2024; 25:74. [PMID: 38575778 DOI: 10.1208/s12249-024-02794-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/16/2024] [Indexed: 04/06/2024] Open
Abstract
Advancements in recombinant DNA technology have made proteins and peptides available for diagnostic and therapeutic applications, but their effectiveness when taken orally leads to poor patient compliance, requiring clinical administration. Among the alternative routes, transmucosal delivery has the advantage of being noninvasive and bypassing hepato-gastrointestinal clearance. Various mucosal routes-buccal, nasal, pulmonary, rectal, and vaginal-have been explored for delivering these macromolecules. Nanofibers, due to their unique properties like high surface-area-to-volume ratio, mechanical strength, and improved encapsulation efficiency, serve as promising carriers for proteins and peptides. These nanofibers can be tailored for quick dissolution, controlled release, enhanced encapsulation, targeted delivery, and improved bioavailability, offering superior pharmaceutical and pharmacokinetic performance compared to conventional methods. This leads to reduced dosages, fewer side effects, and enhanced patient compliance. Hence, nanofibers hold tremendous potential for protein/peptide delivery, especially through mucosal routes. This review focuses on the therapeutic application of proteins and peptides, challenges faced in their conventional delivery, techniques for fabricating different types of nanofibers and, various nanofiber-based dosage forms, and factors influencing nanofiber generation. Insights pertaining to the precise selection of materials used for fabricating nanofibers and regulatory aspects have been covered. Case studies wherein the use of specific protein/peptide-loaded nanofibers and delivered via oral/vaginal/nasal mucosa for diagnostic/therapeutic use and related preclinical and clinical studies conducted have been included in this review.
Collapse
Affiliation(s)
- Priyanka Gavali
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, 1st Floor Gate No. 1, Mithibai College Campus, VM Road, Vile Parle West, 400056, Maharashtra, India
| | - Jagruti Desai
- Department of Pharmaceutics and Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388421, India
| | - Pranav Shah
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli-Mahuva Road, Tarsadi, Surat, 394350, Gujrat, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, 1st Floor Gate No. 1, Mithibai College Campus, VM Road, Vile Parle West, 400056, Maharashtra, India.
| |
Collapse
|
17
|
Lu G, Yang C, Chu K, Zhu Y, Huang S, Zheng J, Jia H, Li X, Ban J. Implantable celecoxib nanofibers made by electrospinning: fabrication and characterization. Nanomedicine (Lond) 2024; 19:657-669. [PMID: 38305028 DOI: 10.2217/nnm-2023-0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Background: Osteoarthritis causes tremendous damage to the joints, reducing the quality of life and imposing significant financial burden. An implantable drug-delivery system can improve the symptomatic manifestations with low doses and frequencies. However, the free drug has short retention in the joint cavity. Materials & methods: This study used electrostatic spinning technology to create an implantable drug-delivery system loaded with celecoxib (celecoxib nanofibers [Cel-NFs]) to improve retention and bioavailability. Results: Cel-NFs exhibited good formability, hydrophilicity and tensile properties. Cel-NFs were able to continuously release drugs for 2 weeks and increase the uptake capacity of Raw 264.7 cells, ultimately ameliorating symptoms in osteoarthritis rats. Conclusion: These results suggest that Cel-NFs can effectively ameliorate cartilage damage, reduce joint pain and alleviate osteoarthritis progression.
Collapse
Affiliation(s)
- Geng Lu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Chuangzan Yang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Kedi Chu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yi Zhu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Sa Huang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Juying Zheng
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Huanhuan Jia
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Sysytems, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiaofang Li
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, China
| | - Junfeng Ban
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- The Innovation Team for Integrating Pharmacy with Entrepreneurship, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510663, China
| |
Collapse
|
18
|
Gavande V, Nagappan S, Seo B, Lee WK. A systematic review on green and natural polymeric nanofibers for biomedical applications. Int J Biol Macromol 2024; 262:130135. [PMID: 38354938 DOI: 10.1016/j.ijbiomac.2024.130135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Electrospinning is the simplest technique to produce ultrathin nanofibers, which enables the use of nanotechnology in various applications. Nanofibrous materials produced through electrospinning have garnered significant attention in biomedical applications due to their unique properties and versatile potential. In recent years, there has been a growing emphasis on incorporating sustainability principles into material design and production. However, electrospun nanofibers, owing to their reliance on solvents associated with significant drawbacks like toxicity, flammability, and disposal challenges, frequently fall short of meeting environmentally friendly standards. Due to the limited solvent choices and heightened concerns for safety and hygiene in modern living, it becomes imperative to carefully assess the implications of employing electrospun nanofibers in diverse applications and consumer products. This systematic review aims to comprehensively assess the current state of research and development in the field of "green and natural" electrospun polymer nanofibers as well as more fascinating and eco-friendly commercial techniques, solvent preferences, and other green routes that respect social and legal restrictions tailored for biomedical applications. We explore the utilization of biocompatible and biodegradable polymers sourced from renewable feedstocks, eco-friendly processing techniques, and the evaluation of environmental impacts. Our review highlights the potential of green and natural electrospun nanofibers to address sustainability concerns while meeting the demanding requirements of various biomedical applications, including tissue engineering, drug delivery, wound healing, and diagnostic platforms. We analyze the advantages, challenges, and future prospects of these materials, offering insights into the evolving landscape of environmentally responsible nanofiber technology in the biomedical field.
Collapse
Affiliation(s)
- Vishal Gavande
- Department of Polymer Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Saravanan Nagappan
- Industry-University Cooperation Foundation, Pukyong National University, Busan 48513, Republic of Korea
| | - Bongkuk Seo
- Advanced Industrial Chemistry Research Center, Advanced Convergent Chemistry Division, Korea Research Institute of Chemical Technology (KRICT), 45 Jonggaro, Ulsan 44412, Republic of Korea
| | - Won-Ki Lee
- Department of Polymer Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
19
|
Broadwin M, Imarhia F, Oh A, Stone CR, Sellke FW, Bhowmick S, Abid MR. Exploring Electrospun Scaffold Innovations in Cardiovascular Therapy: A Review of Electrospinning in Cardiovascular Disease. Bioengineering (Basel) 2024; 11:218. [PMID: 38534492 DOI: 10.3390/bioengineering11030218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of mortality worldwide. In particular, patients who suffer from ischemic heart disease (IHD) that is not amenable to surgical or percutaneous revascularization techniques have limited treatment options. Furthermore, after revascularization is successfully implemented, there are a number of pathophysiological changes to the myocardium, including but not limited to ischemia-reperfusion injury, necrosis, altered inflammation, tissue remodeling, and dyskinetic wall motion. Electrospinning, a nanofiber scaffold fabrication technique, has recently emerged as an attractive option as a potential therapeutic platform for the treatment of cardiovascular disease. Electrospun scaffolds made of biocompatible materials have the ability to mimic the native extracellular matrix and are compatible with drug delivery. These inherent properties, combined with ease of customization and a low cost of production, have made electrospun scaffolds an active area of research for the treatment of cardiovascular disease. In this review, we aim to discuss the current state of electrospinning from the fundamentals of scaffold creation to the current role of electrospun materials as both bioengineered extracellular matrices and drug delivery vehicles in the treatment of CVD, with a special emphasis on the potential clinical applications in myocardial ischemia.
Collapse
Affiliation(s)
- Mark Broadwin
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Frances Imarhia
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Amy Oh
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Christopher R Stone
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Sankha Bhowmick
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
| | - M Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
20
|
Renkler NZ, Scialla S, Russo T, D’Amora U, Cruz-Maya I, De Santis R, Guarino V. Micro- and Nanostructured Fibrous Composites via Electro-Fluid Dynamics: Design and Applications for Brain. Pharmaceutics 2024; 16:134. [PMID: 38276504 PMCID: PMC10819193 DOI: 10.3390/pharmaceutics16010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The brain consists of an interconnected network of neurons tightly packed in the extracellular matrix (ECM) to form complex and heterogeneous composite tissue. According to recent biomimicry approaches that consider biological features as active components of biomaterials, designing a highly reproducible microenvironment for brain cells can represent a key tool for tissue repair and regeneration. Indeed, this is crucial to support cell growth, mitigate inflammation phenomena and provide adequate structural properties needed to support the damaged tissue, corroborating the activity of the vascular network and ultimately the functionality of neurons. In this context, electro-fluid dynamic techniques (EFDTs), i.e., electrospinning, electrospraying and related techniques, offer the opportunity to engineer a wide variety of composite substrates by integrating fibers, particles, and hydrogels at different scales-from several hundred microns down to tens of nanometers-for the generation of countless patterns of physical and biochemical cues suitable for influencing the in vitro response of coexistent brain cell populations mediated by the surrounding microenvironment. In this review, an overview of the different technological approaches-based on EFDTs-for engineering fibrous and/or particle-loaded composite substrates will be proposed. The second section of this review will primarily focus on describing current and future approaches to the use of composites for brain applications, ranging from therapeutic to diagnostic/theranostic use and from repair to regeneration, with the ultimate goal of providing insightful information to guide future research efforts toward the development of more efficient and reliable solutions.
Collapse
Affiliation(s)
- Nergis Zeynep Renkler
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy
| | - Stefania Scialla
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| | - Teresa Russo
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| | - Ugo D’Amora
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| | - Iriczalli Cruz-Maya
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| | - Roberto De Santis
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council of Italy, Mostra d’Oltremare Pad. 20, Viale J.F. Kennedy 54, 80125 Naples, Italy (S.S.); (I.C.-M.)
| |
Collapse
|
21
|
Gomez-Romero P, Pokhriyal A, Rueda-García D, Bengoa LN, González-Gil RM. Hybrid Materials: A Metareview. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:8-27. [PMID: 38222940 PMCID: PMC10783426 DOI: 10.1021/acs.chemmater.3c01878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 01/16/2024]
Abstract
The field of hybrid materials has grown so wildly in the last 30 years that writing a comprehensive review has turned into an impossible mission. Yet, the need for a general view of the field remains, and it would be certainly useful to draw a scientific and technological map connecting the dots of the very different subfields of hybrid materials, a map which could relate the essential common characteristics of these fascinating materials while providing an overview of the very different combinations, synthetic approaches, and final applications formulated in this field, which has become a whole world. That is why we decided to write this metareview, that is, a review of reviews that could provide an eagle's eye view of a complex and varied landscape of materials which nevertheless share a common driving force: the power of hybridization.
Collapse
Affiliation(s)
- Pedro Gomez-Romero
- Novel
Energy-Oriented Materials Group at Catalan Institute of Nanoscience
and Nanotechnology (ICN2) CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Anukriti Pokhriyal
- Novel
Energy-Oriented Materials Group at Catalan Institute of Nanoscience
and Nanotechnology (ICN2) CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Daniel Rueda-García
- Napptilus
Battery Labs, Tech Barcelona
01, Plaça de Pau Vila, 1, Oficina 2B, 08039 Barcelona, Spain
| | - Leandro N. Bengoa
- Novel
Energy-Oriented Materials Group at Catalan Institute of Nanoscience
and Nanotechnology (ICN2) CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Rosa M. González-Gil
- Novel
Energy-Oriented Materials Group at Catalan Institute of Nanoscience
and Nanotechnology (ICN2) CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
22
|
Ferreira CAM, Guerreiro SFC, Padrão T, Alves NMF, Dias JR. Antimicrobial Nanofibers to Fight Multidrug-Resistant Bacteria. NANOTECHNOLOGY BASED STRATEGIES FOR COMBATING ANTIMICROBIAL RESISTANCE 2024:533-579. [DOI: 10.1007/978-981-97-2023-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
23
|
Bayram Sarıipek F. Biopolymeric nanofibrous scaffolds of poly(3-hydroxybuthyrate)/chitosan loaded with biogenic silver nanoparticle synthesized using curcumin and their antibacterial activities. Int J Biol Macromol 2024; 256:128330. [PMID: 38007025 DOI: 10.1016/j.ijbiomac.2023.128330] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
The increasing prevalence of multi-drug resistant bacteria poses a significant threat to public health, especially in wound infections. Developing new bactericidal agents and treatment strategies is crucial to address this issue. In this study, biopolymeric nanofibrous scaffolds containing green-synthesized silver nanoparticles (AgNPs) with curcumin (CUR) were evaluated as antimicrobial materials for wound healing therapy. Firstly, CUR was utilized to synthesize AgNPs, which were then analyzed using various analytical methods. The microstructural analysis revealed that the biogenic AgNPs, which had a spherical shape and an average size of 19.83 nm, were uniformly anchored on PHB/CTS nanofibers. Then, the AgNPs with various content (0.25-1%wt) were incorporated into PHB/CTS matrix to enhance its wettability, thermal and bactericidal behaviors. The nanofibrous scaffolds were characterized by FT-IR, FE-SEM, TGA analysis and water contact angle measurement. Overall, the addition of CUR-AgNPs to the PHB/CTS matrix led to a reduction in fiber diameter, enhanced hydrophilicity and improved thermal properties. Additionally, antibacterial activity against Staphylococcus aureus and Escherichia coli was performed on samples of AgNPS and PHB/CTS/CUR-Ag. The synthesized AgNPs showed antibacterial activity against both microorganisms, especially against S. aureus. Higher concentrations of AgNPs in nanofibers led to a significant reduction in bacterial colony formation. The results displayed that PHB/CTS/CUR-AgNPs nanofibrous scaffolds could be a promising material for the biomedical applications such as wound healing.
Collapse
|
24
|
Sharifi E, Jamaledin R, Familsattarian F, Nejaddehbashi F, Bagheri M, Chehelgerdi M, Nazarzadeh Zare E, Akhavan O. Bioactive chitosan/poly(ethyleneoxide)/CuFe 2O 4 nanofibers for potential wound healing. ENVIRONMENTAL RESEARCH 2023; 239:117448. [PMID: 37858692 DOI: 10.1016/j.envres.2023.117448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
Wound healing is a complex process that often requires intervention to accelerate tissue regeneration and prevent complications. The goal of this research was to assess the potential of bioactive chitosan@poly (ethylene oxide)@CuFe2O4 (CS@PEO@CF) nanofibers for wound healing applications by evaluating their morphology, mechanical properties, and magnetic behavior. Additionally, in vitro and in vivo studies were conducted to investigate their effectiveness in promoting wound healing treatment. The nanoparticles exhibited remarkable antibacterial and antioxidant properties. In the nanofibrous mats, the optimal concentration of CuFe2O4 was determined to be 0.1% Wt/V. Importantly, this concentration did not adversely affect the viability of fibroblast cells, which also identified the ideal concentration. The scaffold's hemocompatibility revealed nonhemolytic properties. Additionally, a wound-healing experiment demonstrated significant migration and growth of fibroblast cells at the edge of the wound. These nanofibrous mats are applied to treat rats with full-thickness excisional wounds. Histopathological analysis of these wounds showed enhanced wound healing ability, as well as regeneration of sebaceous glands and hair follicles within the skin. Overall, the developed wound dressing comprises CuFe2O4 nanoparticles incorporated into CS/PEO nanofibrous mats demonstrating its potential for successful application in wound treatment.
Collapse
Affiliation(s)
- Esmaeel Sharifi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Jamaledin
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
| | - Fatemeh Familsattarian
- Department of Materials Engineering, Bu-Ali Sina University, Hamedan, Iran, P.O.B: 65178-38695
| | - Fereshteh Nejaddehbashi
- Cellular and Molecular Research Center, Medical Basic Sciences Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mitra Bagheri
- Department of Tissue Engineering and Applied Cellular Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran; Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Omid Akhavan
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran.
| |
Collapse
|
25
|
Kim D, Youn J, Lee J, Kim H, Kim DS. Recent Progress in Fabrication of Electrospun Nanofiber Membranes for Developing Physiological In Vitro Organ/Tissue Models. Macromol Biosci 2023; 23:e2300244. [PMID: 37590903 DOI: 10.1002/mabi.202300244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/13/2023] [Indexed: 08/19/2023]
Abstract
Nanofiber membranes (NFMs), which have an extracellular matrix-mimicking structure and unique physical properties, have garnered great attention as biomimetic materials for developing physiologically relevant in vitro organ/tissue models. Recent progress in NFM fabrication techniques immensely contributes to the development of NFM-based cell culture platforms for constructing physiological organ/tissue models. However, despite the significance of the NFM fabrication technique, an in-depth discussion of the fabrication technique and its future aspect is insufficient. This review provides an overview of the current state-of-the-art of NFM fabrication techniques from electrospinning techniques to postprocessing techniques for the fabrication of various types of NFM-based cell culture platforms. Moreover, the advantages of the NFM-based culture platforms in the construction of organ/tissue models are discussed especially for tissue barrier models, spheroids/organoids, and biomimetic organ/tissue constructs. Finally, the review concludes with perspectives on challenges and future directions for fabrication and utilization of NFMs.
Collapse
Affiliation(s)
- Dohui Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jaeseung Youn
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jisang Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hyeonji Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50, Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
26
|
Hudecki A, Rzeszutek I, Lewińska A, Warski T, Baranowska-Korczyc A, Wojnarowska-Nowak R, Betlej G, Deręgowska A, Hudecki J, Łyko-Morawska D, Likus W, Moskal A, Krzemiński P, Cieślak M, Kęsik-Brodacka M, Kolano-Burian A, Wnuk M. Electrospun fiber-based micro- and nano-system for delivery of high concentrated quercetin to cancer cells. BIOMATERIALS ADVANCES 2023; 153:213582. [PMID: 37591178 DOI: 10.1016/j.bioadv.2023.213582] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Abstract
The anticancer potential of quercetin (Q), a plant-derived flavonoid, and underlining molecular mechanisms are widely documented in cellular models in vitro. However, biomedical applications of Q are limited due to its low bioavailability and hydrophilicity. In the present study, the electrospinning approach was used to obtain polylactide (PLA) and PLA and polyethylene oxide (PEO)-based micro- and nanofibers containing Q, namely PLA/Q and PLA/PEO/Q, respectively, in a form of non-woven fabrics. The structure and physico-chemical properties of Q-loaded fibers were characterized by scanning electron and atomic force microscopy (SEM and AFM), X-ray powder diffraction (XRD), differential scanning calorimetry (DSC), goniometry and FTIR and Raman spectroscopy. The anticancer action of PLA/Q and PLA/PEO/Q was revealed using two types of cancer and nine cell lines, namely osteosarcoma (MG-63, U-2 OS, SaOS-2 cells) and breast cancer (SK-BR-3, MCF-7, MDA-MB-231, MDA-MB-468, Hs 578T, and BT-20 cells). The anticancer activity of Q-loaded fibers was more pronounced than the action of free Q. PLA/Q and PLA/PEO/Q promoted cell cycle arrest, oxidative stress and apoptotic cell death that was not overcome by heat shock protein (HSP)-mediated adaptive response. PLA/Q and PLA/PEO/Q were biocompatible and safe, as judged by in vitro testing using normal fibroblasts. We postulate that PLA/Q and PLA/PEO/Q with Q releasing activity can be considered as a novel and more efficient micro- and nano-system to deliver Q and eliminate phenotypically different cancer cells.
Collapse
Affiliation(s)
- Andrzej Hudecki
- Lukasiewicz Research Network-Institute of Non-Ferrous Metals, Gliwice, Poland
| | - Iwona Rzeszutek
- Institute of Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Anna Lewińska
- Institute of Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Tymon Warski
- Lukasiewicz Research Network-Institute of Non-Ferrous Metals, Gliwice, Poland; PhD School, Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland
| | | | - Renata Wojnarowska-Nowak
- Center for Microelectronics and Nanotechnology, Institute of Materials Engineering, University of Rzeszow, Rzeszow, Poland
| | - Gabriela Betlej
- Institute of Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Anna Deręgowska
- Institute of Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Jacek Hudecki
- Department of Laryngology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Dorota Łyko-Morawska
- Department of General Surgery, Vascular Surgery, Angiology and Phlebology, Medical University of Silesia, Katowice, Poland
| | - Wirginia Likus
- Department of Anatomy, Faculty of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | | | - Piotr Krzemiński
- Center for Microelectronics and Nanotechnology, Institute of Materials Engineering, University of Rzeszow, Rzeszow, Poland
| | - Małgorzata Cieślak
- Lukasiewicz Research Network - Lodz Institute of Technology, Lodz, Poland
| | | | | | - Maciej Wnuk
- Institute of Biotechnology, University of Rzeszow, Rzeszow, Poland.
| |
Collapse
|
27
|
Liu H, Dai Y, Li J, Liu P, Zhou W, Yu DG, Ge R. Fast and convenient delivery of fluidextracts liquorice through electrospun core-shell nanohybrids. Front Bioeng Biotechnol 2023; 11:1172133. [PMID: 37091339 PMCID: PMC10117974 DOI: 10.3389/fbioe.2023.1172133] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
Introduction: As an interdisciplinary field, drug delivery relies on the developments of modern science and technology. Correspondingly, how to upgrade the traditional dosage forms for a more efficacious, safer, and convenient drug delivery poses a continuous challenge to researchers. Methods, results and discussion: In this study, a proof-of-concept demonstration was conducted to convert a popular traditional liquid dosage form (a commercial oral compound solution prepared from an intermediate licorice fluidextract) into a solid dosage form. The oral commercial solution was successfully encapsulated into the core-shell nanohybrids, and the ethanol in the oral solution was removed. The SEM and TEM evaluations showed that the prepared nanofibers had linear morphologies without any discerned spindles or beads and an obvious core-shell nanostructure. The FTIR and XRD results verified that the active ingredients in the commercial solution were compatible with the polymeric matrices and were presented in the core section in an amorphous state. Three different types of methods were developed, and the fast dissolution of the electrospun core-shell nanofibers was verified. Conclusion: Coaxial electrospinning can act as a nano pharmaceutical technique to upgrade the traditional oral solution into fast-dissolving solid drug delivery films to retain the advantages of the liquid dosage forms and the solid dosage forms.
Collapse
Affiliation(s)
- Hang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Yelin Dai
- Wenqi Middle School, Shanghai, China
- Qingpu Campus, High School Affiliated to Fudan University, Shanghai, China
| | - Jia Li
- Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Ping Liu
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
- Institute of Orthopaedic Basic and Clinical Transformation, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenhui Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Ruiliang Ge
- Department of Outpatient, The Third Affiliated Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|