1
|
Noorwali A, Aljoud F, Alghamdi A, Sattami N, Bashah T, Noorwali A, Pushparaj PN, Gauthaman K. Evaluation of serum biomarkers after intra-articular injection of rat bone marrow-derived mesenchymal stem cells in a rat model of knee osteoarthritis. Heliyon 2024; 10:e39940. [PMID: 39553645 PMCID: PMC11565378 DOI: 10.1016/j.heliyon.2024.e39940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
Background Osteoarthritis (OA) is a prevalent joint disorder characterized by joint pain, functional impairment, and disability. The current study investigated the therapeutic effects of intra-articular injection of rat bone marrow-derived mesenchymal stem cells (rBM-MSCs) in rats with knee OA. Methods Fourty five male Wistar rats were randomly divided into three groups (A-C) and received either an intra-articular injection of normal saline (NS) or rBM-MSCs. The normal control group (A, n = 15) received NS, the OA control group (B, n = 15) received NS, and the OA treated group (C, n = 15) received rBM-MSCs (0.5 × 106 cells in 25 μL NS). Knee OA was induced using monosodium iodoacetate (MIA). rBM-MSCs were sourced from female Wistar rats and their stem cells were characterized using flow cytometry. Histomorphometric analyses were performed on knee sections from both normal and OA knee. Serum biomarkers, including hyaluronic acid (HA), cross-linked N-telopeptide of type I collagen-1 (NTX-1), NGF, calcitonin gene-related peptide (CGRP), matrix metalloproteinase-3 (MMP-3), oligomeric cartilage matrix protein COMP, interleukin-6 (IL-6), and soluble IL-6 receptor (sIL-6R), were analyzed using ELISA kits. Ingenuity Pathway Analysis (IPA) was used to determine the genes regulated by MSCs in OA, and the protective mechanisms were determined using the Molecular Activity Predictor (MAP). Results rBM-MSCs were positive for CD29 and CD90 and negative for CD45 surface markers. OA biomarkers were significantly elevated in the untreated OA group but decreased after treatment with intra-articular MSCs. The OA group treated with MSCs showed significant repair of the damaged cartilage compared to the control group. Conclusions Cartilage damage leads to an increase in inflammatory cytokine levels and is associated with an increase in serum biomarkers related to cartilage degradation. Intra-articular administration of MSCs showed beneficial effects, including regeneration of damaged cartilage and a reduction in inflammation-related serum biomarker levels.
Collapse
Affiliation(s)
- Abdulwahab Noorwali
- Regenerative Medicine Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Fadwa Aljoud
- Regenerative Medicine Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Scientific Research Center, Dar Al-Hekma University, Jeddah, 22246, Saudi Arabia
| | - Amani Alghamdi
- Regenerative Medicine Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Noora Sattami
- Regenerative Medicine Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Taghreed Bashah
- Regenerative Medicine Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdulsalam Noorwali
- Regenerative Medicine Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Peter Natesan Pushparaj
- Institute of Genomic Medicine Sciences (IGMS) and Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Kalamegam Gauthaman
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
- Pharmaceutical Division, Nibblen Life Sciences Private Limited, Chennai, 600061, India
| |
Collapse
|
2
|
Khodaie SA, Razavi R, Nikkhah H, Namiranian N, Kamalinejad M. Nigella sativa L. and its bioactive and nutraceutical components in the management of diabetic peripheral neuropathy. Inflammopharmacology 2024:10.1007/s10787-024-01528-6. [PMID: 39143432 DOI: 10.1007/s10787-024-01528-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/05/2024] [Indexed: 08/16/2024]
Abstract
Diabetes-induced hyperglycemia leads to excessive production of oxygen free radicals, inflammatory cytokines, and oxidative stress, which initiates diabetic peripheral neuropathy (DPN). Currently, this condition affects 20% of adults with diabetes. Despite significant advances in the treatment of diabetes, the incidence of its complications, including DPN, is still high. Thus, there is a growing research interest in developing more effective and treatment approaches with less side effects for diabetes and its complications. Nigella sativa L. (NS) has received much research attention as an antioxidant, anti-yperglycemic factor, and anti-inflammatory agent. This natural compound demonstrates its antidiabetic neuropathy effect through various pathways, including the reduction of lipid peroxidation, the enhancement of catalase and superoxide dismutase enzyme activity, and the decrease in inflammatory cytokine levels. The present review focuses on the bioactive and nutraceutical components of black cumin (Nigella sativa L.) and their effects on DPN. In addition, we have also summarized the findings obtained from several experimental and clinical studies regarding the antidiabetic neuropathy effect of NS in animal models and human subjects.
Collapse
Affiliation(s)
- Seyed-Ali Khodaie
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Roghaye Razavi
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Haniyeh Nikkhah
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nasim Namiranian
- Community & Preventive Medicine, Yazd Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Kamalinejad
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Behdane Baran Salem Abi Company, Tehran, Iran.
- AB Pharma inc267 Esplanade West, North Vancouver, BC, Canada.
| |
Collapse
|
3
|
Gupta P, Sharma S, Gupta A, Kawish SM, Iqbal M, Rahman S, Aqil M, Kohli K, Sultana Y. Development and Validation of a Robust RP-HPLC Method for the Simultaneous Analysis of Exemestane and Thymoquinone and Its Application to Lipid-Based Nanoformulations. ACS OMEGA 2024; 9:30120-30130. [PMID: 39035924 PMCID: PMC11256079 DOI: 10.1021/acsomega.3c08078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 07/23/2024]
Abstract
The present study describes the development and validation of a simple and rapid HPLC method for the simultaneous quantification of exemestane and thymoquinone. The separation of both compounds was performed on a 5 μ C-18 column utilizing phase A as water/methanol (45:5 v/v) and phase B as acetonitrile (50 v/v) (total ratio of A/B = 40:60 v/v) in isocratic elution mode as the mobile phase at a flow rate of 0.8 mL/min. Further, the Box-Behnken design was used for optimizing the analytical method. The proposed method was validated for various parameters, and all parameters were found to be within an acceptable range. The simultaneous detection of both drugs was monitored at 243 nm with a retention time of 5.73 and 6.93 min, respectively. Moreover, the forced degradation studies were conducted under various stress conditions, and the relevance of the validated RP-HPLC method was further explored for the estimation of drugs from lipid-based nanoformulation. Taken together, the study construed the development of an efficient and robust method that could be used for the quantification of these agents in various in vitro as well as in vivo models.
Collapse
Affiliation(s)
- Priya Gupta
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shwetakshi Sharma
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Annie Gupta
- Amity
Institute of Pharmacy, Amity University, Noida 201301, Uttar Pradesh, India
| | - S. M. Kawish
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Muzaffar Iqbal
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shakilur Rahman
- Department
of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birgmingham, Alabama 35294, United States
| | - Mohd Aqil
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Kanchan Kohli
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
- Lloyd
Institute
of Management and Technology (Pharm.), Plot No. 11, Knowledge Park-II, Greater Noida 201308, Uttar Pradesh, India
| | - Yasmin Sultana
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
4
|
Mousavi SE, Noori M, Marandi H, Fazlollahi A, Nejadghaderi SA, Rahmani S, Noordoost M, Karamzad N, Sullman MJM, Kolahi A, Safiri S. The efficacy and safety of Nigella sativa in the management of osteoarthritis: A systematic review. Health Sci Rep 2024; 7:e1989. [PMID: 38650731 PMCID: PMC11033494 DOI: 10.1002/hsr2.1989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/12/2024] [Accepted: 03/03/2024] [Indexed: 04/25/2024] Open
Abstract
Background and Aims Osteoarthritis (OA) is one of the most common debilitating diseases among the aging population. Nigella sativa is one potential treatment for OA. Here, we sought to evaluate the efficacy and safety of Nigella sativa for treating patients with OA. Methods PubMed, Scopus, Embase, and Web of Science were searched up to October 20, 2022. The primary outcome was changes in the pain score after receiving Nigella sativa or control agents based on the results of randomized controlled trials (RCTs). The secondary outcome was set as the frequency of adverse events reported during the follow-up period. Results Six RCTs involving a total of 370 patients with knee OA were included in the present systematic review. Among the four screened studies, the topical administration of Nigella sativa oil was found to be more effective than the placebo in relieving pain in three trials. Additionally, the oral use of Nigella sativa oil was assessed in two trials, and an improvement in pain score relative to placebo was documented in only one of the studies. Also, the trial that evaluated the effectiveness of Nigella sativa oral capsules did not demonstrate any difference in pain reduction between the intervention and placebo groups. Overall, either topical or oral administration of Nigella sativa was well tolerated, and no serious adverse events were reported. Conclusion Nigella sativa is generally safe, but conflicting findings from low-quality studies hinder the ability to make clinical recommendations for or against treating OA. Robust trials are needed for informed decisions.
Collapse
Affiliation(s)
- Seyed Ehsan Mousavi
- Neurosciences Research Center, Aging Research InstituteTabriz University of Medical SciencesTabrizIran
| | - Maryam Noori
- Student Research Committee, School of MedicineIran University of Medical SciencesTehranIran
| | - Hanieh Marandi
- School of MedicineUrmia University of Medical SciencesUrmiaIran
| | - Asra Fazlollahi
- Neurosciences Research Center, Aging Research InstituteTabriz University of Medical SciencesTabrizIran
| | - Seyed Aria Nejadghaderi
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in HealthKerman University of Medical SciencesKermanIran
- Research Center for Integrative Medicine in Aging, Aging Research InstituteTabriz University of Medical SciencesTabrizIran
| | - Shayan Rahmani
- Student Research Committee, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Mahdi Noordoost
- Research Center for Integrative Medicine in Aging, Aging Research InstituteTabriz University of Medical SciencesTabrizIran
| | - Nahid Karamzad
- Department of Persian Medicine, School of Traditional MedicineTabriz University of Medical SciencesTabrizIran
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, School of Nutrition and Food SciencesTabriz University of Medical SciencesTabrizIran
| | - Mark J. M. Sullman
- Department of Life and Health SciencesUniversity of NicosiaNicosiaCyprus
- Department of Social SciencesUniversity of NicosiaNicosiaCyprus
| | - Ali‐Asghar Kolahi
- Social Determinants of Health Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Saeid Safiri
- Neurosciences Research Center, Aging Research InstituteTabriz University of Medical SciencesTabrizIran
- Clinical Research Development Unit of Tabriz Valiasr HospitalTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
5
|
Tiwari G, Gupta M, Devhare LD, Tiwari R. Therapeutic and Phytochemical Properties of Thymoquinone Derived from Nigella sativa. Curr Drug Res Rev 2024; 16:145-156. [PMID: 37605475 DOI: 10.2174/2589977515666230811092410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/13/2023] [Accepted: 05/04/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Nigella sativa (N. sativa), commonly known as black seed or black cumin, belongs to the family Ranunculaceae. It contains several phytoconstituents, Thymoquinone (TQ), thymol, thymohydroquinone, carvacrol, and dithymoquinone. TQ is the main phytoconstituent present in N. sativa that is used as an herbal compound, and it is widely used as an antihypertensive, liver tonic, diuretic, digestive, anti-diarrheal, appetite stimulant, analgesic, and antibacterial agent, and in skin disorders. OBJECTIVE The study focused on collecting data on the therapeutic or pharmacological activities of TQ present in N. sativa seed. METHODS Antidiabetic, anticancer, immunomodulator, analgesic, antimicrobial, anti-inflammatory, hepato-protective, renal protective, and antioxidant properties of TQ have been studied by various scientists. CONCLUSION TQ seems to have a variety of consequences on how infected cells behave at the cellular level.
Collapse
Affiliation(s)
- Gaurav Tiwari
- Department of Pharmaceutics, PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur - Agra - Delhi, NH2, Bhauti, Kanpur, Uttar Pradesh, 209305, India
| | - Monisha Gupta
- Department of Pharmaceutics, PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur - Agra - Delhi, NH2, Bhauti, Kanpur, Uttar Pradesh, 209305, India
| | - Lalchand D Devhare
- School of Pharmacy, G H Raisoni University, Saikheda, Chhindwara, Maharashtra, 480337, India
| | - Ruchi Tiwari
- Department of Pharmaceutics, PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur - Agra - Delhi, NH2, Bhauti, Kanpur, Uttar Pradesh, 209305, India
| |
Collapse
|
6
|
Maring M, Balaji C, Komala M, Nandi S, Latha S, Raghavendran HB. Aromatic Plants as Potential Resources to Combat Osteoarthritis. Comb Chem High Throughput Screen 2024; 27:1434-1465. [PMID: 37861046 DOI: 10.2174/0113862073267213231004094629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023]
Abstract
Osteoarthritis, which affects an estimated 10% of men and 18% of women over the age of 60 and is increasing in genetic prevalence and incidence, is acknowledged as the condition that degrades the quality of life for older adults in the world. There is currently no known treatment for osteoarthritis. The majority of therapeutic methods slow the progression of arthritis or treat its symptoms, making effective treatment to end the degenerative process of arthritis elusive. When non-pharmacological therapy is ineffective, various pharmacological therapies may be used to treat osteoarthritis. Pharmacological therapy, however, can have major adverse effects and be very expensive. As a result, alternative remedies have been researched. The promise for the safe and efficient management of osteoarthritis has been demonstrated by herbal remedies. Experimental research suggests that herbal extracts and compounds can reduce inflammation, inhibit catabolic processes, and promote anabolic processes that are important for treating osteoarthritis. Due to their therapeutic and innate pharmacological qualities, aromatic herbs are frequently employed as herbal remedies. Recent research has shown that aromatic plants have the potency to treat osteoarthritis. Additionally, complex mixtures of essential oils and their bioactive ingredients, which have anti-inflammatory and antioxidant properties and are obtained from aromatic plants, are frequently utilized as complementary therapies for osteoarthritis. To establish new study avenues, the advantageous anti-osteoarthritic effects of aromatic herbal medicines, including plants, essential oils, and their bioactive components, are extensively discussed.
Collapse
Affiliation(s)
- Maphibanri Maring
- Department of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - C Balaji
- Department of Rheumatology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - M Komala
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology & Advanced Studies, Pallavaram, Chennai, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Kashipur, India
| | - S Latha
- Department of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - H Balaji Raghavendran
- Sri Ramachandra Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| |
Collapse
|
7
|
Amirtaheri Afshar A, Toopchizadeh V, Dolatkhah N, Jahanjou F, Farshbaf‐Khalili A. The efficacy of Nigella sativa L. oil on serum biomarkers of inflammation and oxidative stress and quality of life in patients with knee osteoarthritis: A parallel triple-arm double-blind randomized controlled trial. Food Sci Nutr 2023; 11:7910-7920. [PMID: 38107142 PMCID: PMC10724594 DOI: 10.1002/fsn3.3708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 12/19/2023] Open
Abstract
The aim of this double-blind clinical trial was to investigate the effects of Nigella sativa oil on serum inflammatory and oxidative stress biomarkers and quality of life in patients with knee osteoarthritis (OA). Forty-five patients who met the eligibility criteria were randomly divided into three groups with a ratio of 1:1:1. The first group received 2.5 mL oral N. sativa oil twice/day plus placebo topical oil, the second group received 2.5 mL topical N. sativa oil three times/day plus placebo oral oil, and the third group received oral and topical oil placebos. There were no intergroup differences in baseline characteristics. After 6 weeks of supplementation, oral N. sativa caused a significant improvement in the serum levels of hs-CRP (p = .003), MDA (p = .003), and TAC (p = .001). Oral N. sativa oil compared to placebo (aMD (95% CI): -0.81 (-1.45 to -0.19); p = .012) and topical N. sativa oil [aMD (95% CI): -0.76 (-1.38 to -0.15); p = .016] significantly reduced hs-CRP serum levels. Significant improvements were observed in the general, physical, and mental health subscales in the oral and topical N. sativa oil compared to the placebo group (p < .05). The six-week oral N. sativa oil supplementation was effective in improving inflammatory biomarkers in knee OA. Both oral and topical N. sativa oil increased the quality of life.
Collapse
Affiliation(s)
| | - Vahideh Toopchizadeh
- Physical Medicine and Rehabilitation Research Center, Aging Research InstituteTabriz University of Medical SciencesTabrizIran
| | - Neda Dolatkhah
- Physical Medicine and Rehabilitation Research Center, Aging Research InstituteTabriz University of Medical SciencesTabrizIran
| | - Fatemeh Jahanjou
- Physical Medicine and Rehabilitation Research Center, Aging Research InstituteTabriz University of Medical SciencesTabrizIran
| | - Azizeh Farshbaf‐Khalili
- Physical Medicine and Rehabilitation Research Center, Aging Research InstituteTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
8
|
Yao H, Hu L, Jiang N, Jiang N, Gao L, Jiang R, Liu X, Zheng W, Zhao G. Thymoquinone attenuates inflammation in C. Albicans keratitis by activating Nrf2/HO-1 signaling pathway and reducing fungal load. Cytokine 2023; 172:156375. [PMID: 37797357 DOI: 10.1016/j.cyto.2023.156375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023]
Abstract
PURPOSE This study aims to investigate the anti-inflammatory and antifungal properties of thymoquinone (TQ) and elucidate its mechanism of action in the context of C. albicans keratitis. METHODS Various methods were employed to identify a safe and effective concentration of TQ with antifungal properties, including the determination of the minimum inhibitory concentration (MIC), the cell counting kit-8 (CCK-8) test, and the Draize experiment. The severity of fungal keratitis (FK) was assessed through clinical ratings and slit-lamp imaging. Fungus burden was determined using plate counting and periodic acid Schiff (PAS) staining. Neutrophil infiltration and activity were investigated through immunofluorescence staining (IFS), myeloperoxidase (MPO) analysis, and hematoxylin and eosin (HE) staining. To explore the anti-inflammatory effects of TQ and its mechanism of action, we employed RT-PCR, ELISA, and western blot techniques. RESULTS TQ effectively controlled fungal growth at a concentration of 50 µg/mL while preserving the integrity of mouse corneas. Human corneal epithelial cells (HCECs) remained unaffected by TQ at concentrations ≤ 3.75 µg/mL. Treatment with TQ led to significant improvements in clinical scores, fungal burden, neutrophil infiltration, and the expression of inflammatory factors compared to the DMSO group. Moreover, TQ demonstrated the ability to reduce the levels of inflammatory factors in HCECs stimulated by C. albicans. Additionally, TQ enhanced the expressions of Nrf2 and HO-1 in mouse corneas. The downregulation of cytokines induced by TQ was reversed upon pretreatment with inhibitors of Nrf2 or HO-1. CONCLUSION TQ exhibits a protective effect in the context of C. albicans keratitis through multiple mechanisms, including inhibition of C. albicans growth, reduction of neutrophil recruitment, activation of the Nrf2/HO-1 pathway, and limitation of the expression of pro-inflammatory factors.
Collapse
Affiliation(s)
- Hua Yao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Liting Hu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Nan Jiang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Nan Jiang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Lin Gao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Runfa Jiang
- Department of Orthopedics, The People's Hospital of Jimo, Qingdao, Shandong Province, China.
| | - Xueqing Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Wendan Zheng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
9
|
Yilmaz M, Dokuyucu R. Effects of Thymoquinone on Urotensin-II and TGF-β1 Levels in Model of Osteonecrosis in Rats. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1781. [PMID: 37893499 PMCID: PMC10608466 DOI: 10.3390/medicina59101781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Objectives: We aimed to investigate the therapeutic effects of thymoquinone (TMQ) treatment in osteonecrotic rats by evaluating protein levels, osteonecrosis (ON) levels, fatty acid degeneration, oxidative status, and plasma levels of Urotensin-II (U-II) and transforming growth factor-beta (TGF-β1). Materials and Methods: 40 weight-matched adult male Wistar rats were grouped as control (n = 10), methylprednisolone acetate (MPA) (n = 10), thymoquinone (TMQ) (n = 10), and MPA + TMQ (n = 10). To induce ON, 15-week-old animals were subcutaneously injected with MPA at a dose of 15 mg/kg twice weekly for 2 weeks. TMQ was injected into 15-week-old rats via gastric gavage at a dose of 80 mg/kg per day for 4 weeks. The rats in the MPA + TMQ group were administered TMQ 2 weeks before the MPA injection. At the end of the treatments, cardiac blood samples and femur samples were collected for biochemical and histological evaluations. Results: In the control and TMQ groups, no ON pattern was observed. However, in tissues exposed to MPA, TMQ treatment resulted in significantly decreased ON levels compared to the MPA group. The number of cells that were positive for 8-OHdG and 4-HNE was significantly lower in the MPA + TMQ group than in the MPA group (p < 0.05). In terms of TGF-β1 and U-II levels, we observed that both TGF-β1 (367.40 ± 23.01 pg/mL vs. 248.9 ± 20.12 pg/mL) and U-II protein levels (259.5 ± 6.0 ng/mL vs. 168.20 ± 7.90 ng/mL) increased significantly in the MPA group compared to the control group (p < 0.001). Furthermore, TGF-β1 (293.50 ± 14.18 pg/mL) and U-II (174.80 ± 4.2 ng/mL) protein levels were significantly decreased in the MPA + TMQ group compared to the MPA group (p < 0.05 and p < 0.01, respectively). There was a statistically positive correlation (p < 0.05) between the TGF-β1 and U-II protein levels in all groups (p = 0.002, rcontrol = 0.890; p = 0.02, rTMQ = 0.861; p = 0.024, rMPA+TMQ = 0.868) except for the MPA group (p < 0.03, rMedrol = -0.870). Conclusions: As far as we know, this is the first study to demonstrate the curative functions of TMQ on ON by causing a correlated decrease in the expression of U-II and TGF-β1 in the femoral heads of rats.
Collapse
Affiliation(s)
- Mehmet Yilmaz
- Department of Orthopedic Surgery, 25 Aralik State Hospital, Gaziantep 27090, Turkey;
| | - Recep Dokuyucu
- Department of Physiology, Private Fizyoclinic Wellness Center, Gaziantep 27560, Turkey
| |
Collapse
|
10
|
Tang N, Ren YY, Wu HT, Lv XT, Liu XT, Li QL, Wang GE, Wu YH. Specnuezhenide ameliorates ultraviolet-induced skin photoaging in mice by regulating the Sirtuin 3/8-Oxoguanine DNA glycosylase signal. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2023; 39:478-486. [PMID: 37147870 DOI: 10.1111/phpp.12880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/22/2023] [Accepted: 04/22/2023] [Indexed: 05/07/2023]
Abstract
PURPOSE Ultraviolet-induced skin photoaging was involved in DNA oxidative damage. Specnuezhenide, one of the secoiridoids extracted from Ligustri Lucidi Fructus, possesses antioxidant and anti-inflammatory effects. Whether specnuezhenide ameliorates skin photoaging remains unclear. This study aimed to investigate the effect of specnuezhenide on skin photoaging induced by ultraviolet and explore the underlying mechanism. METHODS Mice were employed to treat with ultraviolet to induce skin photoaging, then administrated 10 and 20 mg/kg of specnuezhenide. Histological analysis, protein expression, network pharmacology, and autodock analysis were conducted. RESULTS Specnuezhenide ameliorated ultraviolet-induced skin photoaging in mice via the increase in collagen contents, and decrease in epidermal thickness, malondialdehyde content, and β-galactosidase expression in the skin. Specnuezhenide reduced cutaneous apoptosis and inflammation in mice with skin photoaging. In addition, network pharmacology data indicated that specnuezhenide possessed potential targets on the NOD-like receptor signaling pathway. Validation experiment found that specnuezhenide inhibited the expression of NOD-like receptor family pyrin domain-containing 3, gasdermin D-C1, and Caspase 1. Furthermore, the expression of 8-Oxoguanine DNA glycosylase (OGG1), sirtuin 3 (SIRT3), and superoxide dismutase 2 was increased in specnuezhenide-treated mice with photoaging. CONCLUSION Specnuezhenide protected against ultraviolet-induced skin photoaging in mice via a probable activation of SIRT3/OGG1 signal.
Collapse
Affiliation(s)
- Nan Tang
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Ying-Yun Ren
- Department of Dermatology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Hao-Tian Wu
- Department of Dermatology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Xi-Ting Lv
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiao-Ting Liu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qi-Lin Li
- Department of Dermatology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Guo-En Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yan-Hua Wu
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
11
|
Pushparaj PN, Rasool M, Naseer MI, Gauthaman K. Exploration of potential molecular mechanisms and genotoxicity of anti-cancer drugs using next generation knowledge discovery methods. Pak J Med Sci 2023; 39:988-993. [PMID: 37492288 PMCID: PMC10364265 DOI: 10.12669/pjms.39.4.7427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 07/27/2023] Open
Abstract
Background & Objectives Accurate identification of molecular and toxicological functions of potential drug candidates is crucial for drug discovery and development. This may aid in the evaluation of the risks of genotoxicity and carcinogenesis. In addition, in silico characterization of existing and new drugs might offer clues for future investigations and aid in the development of anticancer treatments. Using next-generation knowledge discovery (NGKD) methodology, we endeavored to establish a risk assessment of anticancer drugs for their molecular mechanism(s) and genotoxicity. Methods This study was performed at the Faculty of Applied Medical Sciences, King Abdulaziz University (KAU), Jeddah, Saudi Arabia, in November 2022. Using innovative in silico model systems, we assessed the molecular mechanism of action and toxicity of around 20 distinct substances such as Deguelin, Etoposide, Camptothecin, Cytarabine (Ara-C), Cisplatin, Hydroxyurea, Trichostain A, Antimycin, Colchicine, 2-deoxyglucose, Tunicamycin, Thapsigargin, Vinblastin, Docetaxel, Oxaliplatin, Methotrexate, 5-flurouracil, Bleomycin, Taxol (Paclitaxel), and Apicidin. Using the Ingenuity Pathway Analysis (IPA) knowledge base, the number of targets for each compound was determined in silico. Subsequently, they were examined using Fisher's exact test and Benjamini Hochberg Multiple Testing Correction (P<0.05) and submitted to core analysis with IPA to decode the biological and toxicological activities differently controlled by these drugs. In addition, a multiple comparison module in IPA was used to compare the core analyses of each molecule. In addition, we obtained the top 100 protein targets of Etoposide, Camptothecin, and Ara-C using SwissTargetPrediction, as well as the key pathways and gene ontologies affected by these drugs and disease associations using the WebGestalt tool. Results We identified distinct toxicological signatures and canonical signaling pathways in tumor cell lines regulated by these 20 anticancer drugs. These signaling pathways included cell death and apoptosis in addition to molecular processes, p53 signaling, and aryl hydrocarbon receptor signaling. The TP53 signaling pathway is utilized by these agents to effectively trigger cell death and apoptosis, and p53 functions as a master regulator in a variety of cellular stress responses, including genotoxic stress. Conclusion Our research has laid the groundwork for the discovery of additional biomarkers that assess both the safety and effectiveness of treatment. Our mechanism based "NGKD" tools have more relevance for the identification of safer therapies and has the potential to lead to the rational screening of drug candidates targeting specific molecular networks and canonical pathways implicated in cancer and genotoxicity. In addition, the combination of protein, microRNA and metabolome profiles may be essential for the development of translatable biomarkers for the safety and efficacy of pharmacotherapeutic agents.Our research has laid the groundwork for the discovery of additional biomarkers that assess both the safety and the effectiveness of a treatment.
Collapse
Affiliation(s)
- Peter Natesan Pushparaj
- Peter Natesan Pushparaj, PhD Associate Professor Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmood Rasool
- Mahmood Rasool, PhD Professor Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Imran Naseer
- Muhammad Imran Naseer, PhD Professor Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kalamegam Gauthaman
- Kalamegam Gauthaman, MBBS, PhD Professor, Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental, College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
12
|
Kovács P, Pushparaj PN, Takács R, Mobasheri A, Matta C. The clusterin connectome: Emerging players in chondrocyte biology and putative exploratory biomarkers of osteoarthritis. Front Immunol 2023; 14:1103097. [PMID: 37033956 PMCID: PMC10081159 DOI: 10.3389/fimmu.2023.1103097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionClusterin is amoonlighting protein that hasmany functions. It is amultifunctional Q6 holdase chaperone glycoprotein that is present intracellularly and extracellularly in almost all bodily fluids. Clusterin is involved in lipid transport, cell differentiation, regulation of apoptosis, and clearance of cellular debris, and plays a protective role in ensuring cellular survival. However, the possible involvement of clusterin in arthritic disease remains unclear. Given the significant potential of clusterin as a biomarker of osteoarthritis (OA), a more detailed analysis of its complex network in an inflammatory environment, specifically in the context of OA, is required. Based on the molecular network of clusterin, this study aimed to identify interacting partners that could be developed into biomarker panels for OA.MethodsThe STRING database and Cytoscape were used to map and visualize the clusterin connectome. The Qiagen Ingenuity Pathway Analysis (IPA) software was used to analyze and study clusterinassociated signaling networks in OA. We also analyzed transcription factors known to modulate clusterin expression, which may be altered in OA.ResultsThe top hits in the clusterin network were intracellular chaperones, aggregate-forming proteins, apoptosis regulators and complement proteins. Using a text-mining approach in Cytoscape, we identified additional interacting partners, including serum proteins, apolipoproteins, and heat shock proteins.DiscussionBased on known interactions with proteins, we predicted potential novel components of the clusterin connectome in OA, including selenoprotein R, semaphorins, and meprins, which may be important for designing new prognostic or diagnostic biomarker panels.
Collapse
Affiliation(s)
- Patrik Kovács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research (CEGMR), Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Roland Takács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ali Mobasheri
- FibroHealth Interdisciplinary Research Programme, Fibrobesity Cluster, Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium
- *Correspondence: Csaba Matta, ; Ali Mobasheri,
| | - Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- *Correspondence: Csaba Matta, ; Ali Mobasheri,
| |
Collapse
|
13
|
Huseini HF, Mohtashami R, Sadeghzadeh E, Shadmanfar S, Hashem-Dabaghian F, Kianbakht S. Efficacy and safety of oral Nigella sativa oil for symptomatic treatment of knee osteoarthritis: A double-blind, randomized, placebo-controlled clinical trial. Complement Ther Clin Pract 2022; 49:101666. [PMID: 36150238 DOI: 10.1016/j.ctcp.2022.101666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND PURPOSE The oil of Nigella sativa (NS) seeds has analgesic and anti-inflammatory effects. Therefore, the efficacy and safety of NS oil in the treatment of knee osteoarthritis were evaluated. MATERIALS AND METHODS One hundred and sixteen patients aged 50-70 years were randomly assigned to take 2.5 mL NS oil (N = 58) or placebo (N = 58) orally every 8 h for 1 month. WOMAC (Western Ontario and McMaster Universities Osteoarthritis Index) was the primary outcome measure and Visual Analog Scale (VAS) for pain, number of 500 mg acetaminophen tablets taken per day during the trial, patients' satisfaction with the interventions, complete blood count and the blood levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, creatinine and blood urea nitrogen were the secondary outcome measures. RESULTS Fifty two and 54 patients respectively in the NS oil and placebo groups completed the study. The VAS scores were decreased by 33.96 ± 17.04% (NS oil group) and 9.21 ± 0.32% (placebo group) (p < 0.001), and WOMAC total scores were decreased by 27.72 ± 18.61% (NS oil group) and 1.34 ± 2.31% (placebo group) (p < 0.001) compared to baseline. The NS oil reduced the dose of acetaminophen significantly compared with the placebo (p = 0.001). The patients were significantly more satisfied with the NS oil than the placebo (p < 0.001). The NS oil had no significant effect on the other variables. There was no side effect. CONCLUSION Oral NS oil safely reduces the osteoarthritis symptoms and analgesic dose in the knee osteoarthritis patients.
Collapse
Affiliation(s)
- Hasan Fallah Huseini
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Reza Mohtashami
- Medicine, Quran and Hadith Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Elaheh Sadeghzadeh
- Department of Internal Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Soraya Shadmanfar
- Department of Internal Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fataneh Hashem-Dabaghian
- Research Institute for Islamic and Complementary Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Kianbakht
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| |
Collapse
|
14
|
Natesan Pushparaj P, Damiati LA, Denetiu I, Bakhashab S, Asif M, Hussain A, Ahmed S, Hamdard MH, Rasool M. Deciphering SARS CoV-2-associated pathways from RNA sequencing data of COVID-19-infected A549 cells and potential therapeutics using in silico methods. Medicine (Baltimore) 2022; 101:e29554. [PMID: 36107502 PMCID: PMC9439635 DOI: 10.1097/md.0000000000029554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Coronavirus (CoV) disease (COVID-19) identified in Wuhan, China, in 2019, is mainly characterized by atypical pneumonia and severe acute respiratory syndrome (SARS) and is caused by SARS CoV-2, which belongs to the Coronaviridae family. Determining the underlying disease mechanisms is central to the identification and development of COVID-19-specific drugs for effective treatment and prevention of human-to-human transmission, disease complications, and deaths. METHODS Here, next-generation RNA sequencing (RNA Seq) data were obtained using Illumina Next Seq 500 from SARS CoV-infected A549 cells and mock-treated A549 cells from the Gene Expression Omnibus (GEO) (GSE147507), and quality control (QC) was assessed before RNA Seq analysis using CLC Genomics Workbench 20.0. Differentially expressed genes (DEGs) were imported into BioJupies to decipher COVID-19 induced signaling pathways and small molecules derived from chemical synthesis or natural sources to mimic or reverse COVID -19 specific gene signatures. In addition, iPathwayGuide was used to identify COVID-19-specific signaling pathways, as well as drugs and natural products with anti-COVID-19 potential. RESULTS Here, we identified the potential activation of upstream regulators such as signal transducer and activator of transcription 2 (STAT2), interferon regulatory factor 9 (IRF9), and interferon beta (IFNβ), interleukin-1 beta (IL-1β), and interferon regulatory factor 3 (IRF3). COVID-19 infection activated key infectious disease-specific immune-related signaling pathways such as influenza A, viral protein interaction with cytokine and cytokine receptors, measles, Epstein-Barr virus infection, and IL-17 signaling pathway. Besides, we identified drugs such as prednisolone, methylprednisolone, diclofenac, compound JQ1, and natural products such as Withaferin-A and JinFuKang as candidates for further experimental validation of COVID-19 therapy. CONCLUSIONS In conclusion, we have used the in silico next-generation knowledge discovery (NGKD) methods to discover COVID-19-associated pathways and specific therapeutics that have the potential to ameliorate the disease pathologies associated with COVID-19.
Collapse
Affiliation(s)
- Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
- * Correspondence: Peter Natesan Pushparaj, Department of Medical Laboratory Technology, Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia (e-mail: )
| | | | - Iuliana Denetiu
- King Fahad Medical Research Center, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherin Bakhashab
- Department of Biochemistry, Faculty of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Asif
- Department of Biotechnology, BUITEMS, Quetta, Pakistan
- Office of Research Innovation and Commercialization, BUITEMS, Quetta, Pakistan
| | - Abrar Hussain
- Department of Biotechnology, BUITEMS, Quetta, Pakistan
| | - Sagheer Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University Islamabad, Pakistan
| | | | - Mahmood Rasool
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
15
|
Imran M, Khan SA, Abida, Alshammari MK, Alkhaldi SM, Alshammari FN, Kamal M, Alam O, Asdaq SMB, Alzahrani AK, Jomah S. Nigella sativa L. and COVID-19: A Glance at The Anti-COVID-19 Chemical Constituents, Clinical Trials, Inventions, and Patent Literature. Molecules 2022; 27:2750. [PMID: 35566101 PMCID: PMC9105261 DOI: 10.3390/molecules27092750] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19 has had an impact on human quality of life and economics. Scientists have been identifying remedies for its prevention and treatment from all possible sources, including plants. Nigella sativa L. (NS) is an important medicinal plant of Islamic value. This review highlights the anti-COVID-19 potential, clinical trials, inventions, and patent literature related to NS and its major chemical constituents, like thymoquinone. The literature was collected from different databases, including Pubmed, Espacenet, and Patentscope. The literature supports the efficacy of NS, NS oil (NSO), and its chemical constituents against COVID-19. The clinical data imply that NS and NSO can prevent and treat COVID-19 patients with a faster recovery rate. Several inventions comprising NS and NSO have been claimed in patent applications to prevent/treat COVID-19. The patent literature cites NS as an immunomodulator, antioxidant, anti-inflammatory, a source of anti-SARS-CoV-2 compounds, and a plant having protective effects on the lungs. The available facts indicate that NS, NSO, and its various compositions have all the attributes to be used as a promising remedy to prevent, manage, and treat COVID-19 among high-risk people as well as for the therapy of COVID-19 patients of all age groups as a monotherapy or a combination therapy. Many compositions of NS in combination with countless medicinal herbs and medicines are still unexplored. Accordingly, the authors foresee a bright scope in developing NS-based anti-COVID-19 composition for clinical use in the future.
Collapse
Affiliation(s)
- Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | - Shah Alam Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, Muscat 130, Oman;
| | - Abida
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | | | - Saif M. Alkhaldi
- Department of Pharmaceutical Care, King Khalid Hospital in Majmaah, Riyadh 76312, Saudi Arabia;
| | | | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | | | - A. Khuzaim Alzahrani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia;
| | - Shahamah Jomah
- Pharmacy Department, Sulaiman Al-Habib Medical Group, Riyadh 11643, Saudi Arabia
| |
Collapse
|
16
|
Thymoquinone-Mediated Modulation of Toll-like Receptors and Pluripotency Factors in Gingival Mesenchymal Stem/Progenitor Cells. Cells 2022; 11:cells11091452. [PMID: 35563755 PMCID: PMC9101758 DOI: 10.3390/cells11091452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
Thymoquinone (TQ), the key active component of Nigella sativa (NS), demonstrates very promising biomedical anti-inflammatory, antioxidant, antimicrobial and anticancer properties. Several investigations have inspected the modulative activities of TQ on different stem/progenitor cell types, but its possible role in the regulation of gingival mesenchymal stem/progenitor cells (G-MSCs) has not yet been characterized. For the first time, this study investigates the effects of TQ on G-MSCs’ stemness and Toll-like receptor expression profiles. G-MSCs (n = 5) were isolated, sorted via anti-STRO-1 antibodies and then disseminated on cell culture dishes to create colony-forming units (CFUs), and their stem/progenitor cell attributes were characterized. TQ stimulation of the G-MSCs was performed, followed by an examination of the expression of pluripotency-related factors using RT-PCR and the expression profiles of TLRs 1−10 using flowcytometry, and they were compared to a non-stimulated control group. The G-MSCs presented all the predefined stem/progenitor cells’ features. The TQ-activated G-MSCs displayed significantly higher expressions of TLR3 and NANOG with a significantly reduced expression of TLR1 (p < 0.05, Wilcoxon signed-rank test). TQ-mediated stimulation preserves G-MSCs’ pluripotency and facilitates a cellular shift into an immunocompetent-differentiating phenotype through increased TLR3 expression. This characteristic modulation might impact the potential therapeutic applications of G-MSCs.
Collapse
|
17
|
Al-Qubaisi MS, Al-Abboodi AS, Alhassan FH, Hussein-Al-Ali S, Flaifel MH, Eid EE, Alshwyeh HA, Hussein MZ, Alnasser SM, Saeed MI, Rasedee A, Ibrahim WN. Preparation, characterization, in vitro drug release and anti-inflammatory of thymoquinone-loaded chitosan nanocomposite. Saudi Pharm J 2022; 30:347-358. [PMID: 35527823 PMCID: PMC9068746 DOI: 10.1016/j.jsps.2022.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, we formulated Thymoquinone-loaded nanocomposites (TQ-NCs) using high-pressure homogenizer without sodium tripolyphosphate. The TQ-NCs were characterized and their anti-inflammatory determined by the response of the LPS-stimulated macrophage RAW 264.7 cells in the production of nitric oxide, prostaglandin E2, tumor necrosis factor-α, interleukin-6, and interleukin-1β. The physicochemical properties of TQ-NC were determined using different machines. TQ was fully incorporated in the highly thermal stable nanoparticles. The nanoparticles showed rapid release of TQ in the acidic medium of the gastric juice. In medium of pH 6.8, TQ-NC exhibited sustained release of TQ over a period of 100 h. The results suggest that TQ-NC nanoparticles have potential application as parenterally administered therapeutic compound. TQ-NC effectively reduce production of inflammatory cytokines by the LPS-stimulated RAW 264.7 cells, indicating that they have anti-inflammatory properties. In conclusion, TQ-NC nanoparticles have the characteristics of efficient carrier for TQ and an effective anti-inflammatory therapeutic compound.
Collapse
Affiliation(s)
| | | | - Fatah H. Alhassan
- Department of Applied Chemistry and Technology, College of Science and Arts, Alkamel University of Jeddah, Jeddah 21589, Saudi Arabia
| | | | - Moayad Husein Flaifel
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Basic & Applied Scientific Research Center, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Eltayeb E.M. Eid
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Saudi Arabia
| | - Hussah Abdullah Alshwyeh
- Basic & Applied Scientific Research Center, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mohd Zobir Hussein
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | | | - Mohammed Ibrahim Saeed
- Faculty of Medical Laboratory Sciences, National Ribat University, Khartoum 11111, Sudan
| | - Abdullah Rasedee
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
18
|
Pushparaj PN, Kalamegam G, Wali Sait KH, Rasool M. Decoding the Role of Astrocytes in the Entorhinal Cortex in Alzheimer’s Disease Using High-Dimensional Single-Nucleus RNA Sequencing Data and Next-Generation Knowledge Discovery Methodologies: Focus on Drugs and Natural Product Remedies for Dementia. Front Pharmacol 2022; 12:720170. [PMID: 35295737 PMCID: PMC8918735 DOI: 10.3389/fphar.2021.720170] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
Introduction: Alzheimer’s disease (AD) is a major cause of the development of cognitive decline and dementia. AD and associated dementias (ADRD) are the major contributors to the enormous burden of morbidity and mortality worldwide. To date, there are no robust therapies to alleviate or cure this debilitating disease. Most drug treatments focus on restoring the normal function of neurons and the cells that cause inflammation, such as microglia in the brain. However, the role of astrocytes, the brain’s housekeeping cells, in the development of AD and the initiation of dementia is still not well understood. Objective: To decipher the role of astrocytes in the entorhinal cortex of AD patients using single nuclear RNA sequencing (snRNASeq) datasets from the Single Cell RNA-seq Database for Alzheimer’s Disease (scREAD). The datasets were originally derived from astrocytes, isolated from the entorhinal cortex of AD brain and healthy brain to decipher disease-specific signaling pathways as well as drugs and natural products that reverse AD-specific signatures in astrocytes. Methods: We used snRNASeq datasets from the scREAD database originally derived from astrocytes isolated from the entorhinal cortex of AD and healthy brains from the Gene Expression Omnibus (GEO) (GSE138852 and GSE147528) and analyzed them using next-generation knowledge discovery (NGKD) platforms. scREAD is a user-friendly open-source interface available at https://bmbls.bmi.osumc.edu/scread/that enables more discovery-oriented strategies. snRNASeq data and metadata can also be visualized and downloaded via an interactive web application at adsn.ddnetbio.com. Differentially expressed genes (DEGs) for each snRNASeq dataset were analyzed using iPathwayGuide to compare and derive disease-specific pathways, gene ontologies, and in silico predictions of drugs and natural products that regulate AD -specific signatures in astrocytes. In addition, DEGs were analyzed using the L1000FWD and L1000CDS2 signature search programming interfaces (APIs) to identify additional drugs and natural products that mimic or reverse AD-specific gene signatures in astrocytes. Results: We found that PI3K/AKT signaling, Wnt signaling, neuroactive ligand-receptor interaction pathways, neurodegeneration pathways, etc. were significantly impaired in astrocytes from the entorhinal cortex of AD patients. Biological processes such as glutamate receptor signaling pathway, regulation of synapse organization, cell-cell adhesion via plasma membrane adhesion molecules, and chylomicrons were negatively enriched in the astrocytes from the entorhinal cortex of AD patients. Gene sets involved in cellular components such as postsynaptic membrane, synaptic membrane, postsynapse, and synapse part were negatively enriched (p < 0.01). Moreover, molecular functions such as glutamate receptor activity, neurotransmitter receptor activity, and extracellular ligand-gated ion channels were negatively regulated in the astrocytes of the entorhinal cortex of AD patients (p < 0.01). Moreover, the application of NGKD platforms revealed that antirheumatic drugs, vitamin-E, emetine, narciclasine, cephaeline, trichostatin A, withaferin A, dasatinib, etc. can potentially reverse gene signatures associated with AD. Conclusions: The present study highlights an innovative approach to use NGKD platforms to find unique disease-associated signaling pathways and specific synthetic drugs and natural products that can potentially reverse AD and ADRD-associated gene signatures.
Collapse
Affiliation(s)
- Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
- *Correspondence: Peter Natesan Pushparaj, ; Mahmood Rasool,
| | - Gauthaman Kalamegam
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Khalid Hussain Wali Sait
- Department of Obstetrics and Gynaecology, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmood Rasool
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- *Correspondence: Peter Natesan Pushparaj, ; Mahmood Rasool,
| |
Collapse
|
19
|
Phua CYH, Teoh ZL, Goh BH, Yap WH, Tang YQ. Triangulating the pharmacological properties of thymoquinone in regulating reactive oxygen species, inflammation, and cancer: Therapeutic applications and mechanistic pathways. Life Sci 2021; 287:120120. [PMID: 34762903 DOI: 10.1016/j.lfs.2021.120120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/24/2021] [Accepted: 11/01/2021] [Indexed: 12/29/2022]
Abstract
Cancer is a heterogeneous disease with high morbidity and mortality rate involving changes in redox balance and deregulation of redox signalling. For decades, studies have involved developing an effective cancer treatment to combat treatment resistance. As natural products such as thymoquinone have numerous health benefits, studies are also focusing on using them as a viable method for cancer treatment, as they have minimal toxic effects compared with standard cancer treatments. Thymoquinone studies have shown numerous mechanisms of action, such as regulation of reactive species interfering with DNA structure, modulating various potential targets and their signalling pathways as well as immunomodulatory effects in vitro and in vivo. Thymoquinone's anti-cancer effect is mainly due to the induction of apoptotic mechanisms, such as activation of caspases, downregulation of precancerous genes, inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), anti-tumour cell proliferation, ROS regulation, hypoxia and anti-metastasis. Insight into thymoquinone's potential as an alternative treatment for chemoprevention and inflammation can be accomplished via compiling these studies, to provide a better understanding on how and why it works, as well as its interactions with common chemotherapeutic treatments.
Collapse
Affiliation(s)
- Caroline Yuin Hueii Phua
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia
| | - Zhi Ling Teoh
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Wei Hsum Yap
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia; Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Yin-Quan Tang
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia; Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| |
Collapse
|
20
|
Huwait EA, Saddeek SY, Al-Massabi RF, Almowallad SJ, Pushparaj PN, Kalamegam G. Antiatherogenic Effects of Quercetin in the THP-1 Macrophage Model In Vitro, With Insights Into Its Signaling Mechanisms Using In Silico Analysis. Front Pharmacol 2021; 12:698138. [PMID: 34385920 PMCID: PMC8353397 DOI: 10.3389/fphar.2021.698138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/25/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Atherosclerosis (AS), a major risk factor for stroke and brain tissue destruction, is an inflammatory disease of the blood vessels, and the underlying pathology is inflammation mediated by various chemokines and cytokines. Quercetin, a natural flavonol, is reported to have both anti-inflammatory and antioxidant properties. As such, in the present study, we evaluated the antiatherogenic effects of quercetin in a human THP-1 cell line in vitro and also the signaling mechanisms using in silico analysis. Materials and Methods: THP-1 macrophages exposed to different concentrations of quercetin (5–100 μM for 24 h) were tested for cytotoxicity. Real-time gene expression assay for intercellular adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein-1 (MCP-1) was carried out following treatment with quercetin at 15 and 30 μM for 24 h either in the absence or presence of interferon (IFN-γ) for 3 h to induce inflammation. Monocyte migration and cholesterol efflux were also assessed. Results: Quercetin did not exert any cytotoxic effects on THP-1 cells at the various concentrations tested. The gene expression assay showed a significant decrease in ICAM-1 (by 3.05 and 2.70) and MCP-1 (by 22.71 and 27.03), respectively. Quercetin at 15 µM decreased THP-1 monocyte migration by 33% compared to the MCP-1-treated cells. It also increased cholesterol efflux significantly by1.64-fold and 1.60-fold either alone or in combination with IFN-γ, respectively. Ingenuity Pathway Analysis of the molecular interactions of quercetin identified canonical pathways directly related to lipid uptake and cholesterol efflux. Furthermore, CD36, SR-A, and LXR-α also demonstrated significant increases by 72.16-, 149.10-, and 29.68-fold, respectively. Conclusion: Our results from both in vitro and in silico studies identified that quercetin inhibited the THP-1 monocyte migration, MCP-1, and ICAM-1 and increased cholesterol efflux probably mediated via the LXR/RXR signaling pathway. Therefore, quercetin will help prevent cell infiltration in atherosclerotic plaques and reduce the risk of stroke or brain destruction.
Collapse
Affiliation(s)
- Etimad A Huwait
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Cell Culture Unit and Experimental Biochemistry Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salma Y Saddeek
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Cell Culture Unit and Experimental Biochemistry Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia.,Chemistry Department, Faculty of Sciences, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Rehab F Al-Massabi
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Cell Culture Unit and Experimental Biochemistry Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia.,Biochemistry Department, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Sanaa J Almowallad
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Cell Culture Unit and Experimental Biochemistry Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia.,Biochemistry Department, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gauthaman Kalamegam
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Pharmaceutical Division, Nibblen Life Sciences Private Limited, Chennai, India
| |
Collapse
|
21
|
Kohandel Z, Farkhondeh T, Aschner M, Samarghandian S. Anti-inflammatory effects of thymoquinone and its protective effects against several diseases. Biomed Pharmacother 2021; 138:111492. [PMID: 33743334 DOI: 10.1016/j.biopha.2021.111492] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
Thymoquinone (TQ, 2-methyl-5-isopropyl-1, 4-benzoquinone), a monoterpene molecule present in Nigella sativa L., has an anti-inflammatory, anti-oxidant, and anti-apoptotic properties in several disorders such as asthma, hypertension, diabetes, inflammation, bronchitis, headache, eczema, fever, dizziness and influenza. TQ exerts its anti-inflammatory and anti-oxidant effects via several molecular pathways, including the release of cytokines, and activation of cyclooxygenase-2 (COX2), nuclear factor erythroid 2-related factor 2 (Nrf2), phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), nuclear factor kappa-light-chain-enhancer of activated B (NF-Κβ). In this review, recent reports on the anti-inflammatory efficacy of TQ in heart disorders, respiratory diseases, neuroinflammation, diabetes and arthritis are summarized. We suggest that further investigation is necessary to better characterize the efficacy of TQ as a therapeutic agent.
Collapse
Affiliation(s)
- Zeynab Kohandel
- Department of Biology, Faculty of Sciences, University of Tehran, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran; Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, New York, USA
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
22
|
Nigella sativa (Black Seed) as a Natural Remedy against Viruses. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The currently available antiviral agents are associated with serious adverse effects, coupled with the increasing rate of viral resistance to the existing antiviral drugs. Hence, the search for alternative natural remedies is gaining momentum across the globe. Nigella sativa Linnen, also called Black seed, is a medicinal plant that is gaining worldwide recognition and has been extensively investigated. The present work is aimed to review the existing literature on the antiviral efficacy of Nigella sativa extracts (oil & bioactive compounds). The findings reveal that numerous articles have been published on Nigella sativa and its beneficial effects against different kinds of diseases. However, the antiviral efficacy of Nigella sativa is yet to be given the proper research attention it deserves.
Collapse
|
23
|
Schulze-Tanzil G. Experimental Therapeutics for the Treatment of Osteoarthritis. J Exp Pharmacol 2021; 13:101-125. [PMID: 33603501 PMCID: PMC7887204 DOI: 10.2147/jep.s237479] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) therapy remains a large challenge since no causative treatment options are so far available. Despite some main pathways contributing to OA are identified its pathogenesis is still rudimentary understood. A plethora of therapeutically promising agents are currently tested in experimental OA research to find an opportunity to reverse OA-associated joint damage and prevent its progression. Hence, this review aims to summarize novelly emerging experimental approaches for OA. Due to the diversity of strategies shown only main aspects could be summarized here including herbal medicines, nanoparticular compounds, growth factors, hormones, antibody-, cell- and extracellular vesicle (EV)-based approaches, optimized tools for joint viscosupplementation, genetic regulators such as si- or miRNAs and promising combinations. An abundant multitude of compounds obtained from plants, environmental, autologous or synthetic sources have been identified with anabolic, anti-inflammatory, -catabolic and anti-apoptotic properties. Some ubiquitous signaling pathways such as wingless and Integration site-1 (Wnt), Sirtuin, Toll-like receptor (TLR), mammalian target of rapamycin (mTOR), Nuclear Factor (NF)-κB and complement are involved in OA and addressed by them. Hyaluronan (HA) provided benefit in OA since many decades, and novel HA formulations have been developed now with higher HA content and long-term stability achieved by cross-linking suitable to be combined with other agents such as components from herbals or chemokines to attract regenerative cells. pH- or inflammation-sensitive nanoparticular compounds could serve as versatile slow-release systems of active compounds, for example, miRNAs. Some light has been brought into the intimate regulatory network of small RNAs in the pathogenesis of OA which might be a novel avenue for OA therapy in future. Attraction of autologous regenerative cells by chemokines and exosome-based treatment strategies could also innovate OA therapy.
Collapse
Affiliation(s)
- Gundula Schulze-Tanzil
- Department of Anatomy and Cell Biology, Paracelsus Medical University, Nuremberg, Bavaria, Germany
| |
Collapse
|