1
|
Aderibigbe O, Wood LB, Margulies SS. Cyclosporine A Accelerates Neurorecovery Transcriptional Trajectory in a Swine Model of Diffuse Traumatic Brain Injury. Int J Mol Sci 2025; 26:3531. [PMID: 40331981 PMCID: PMC12026708 DOI: 10.3390/ijms26083531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 05/08/2025] Open
Abstract
Mild traumatic brain injury (mTBI) is a leading cause of morbidity in children with both short- and long-term neurological, cognitive, cerebrovascular, and emotional deficits. These deficits have been attributed to ongoing pathophysiological cascades that occur acutely and persist post-injury. Given our limited understanding of the transcriptional changes associated with these pathophysiological cascades, we studied formalin-fixed paraffin-embedded (FFPE) tissues from the frontal cortex (FC) and the hippocampus + amygdala (H&A) regions of swine (N = 40) after a sagittal rapid non-impact head rotation (RNR). We then sequenced RNA to define transcriptional changes at 1 day and 1 week after injury and investigated the protective influence of cyclosporine A (CsA) treatment. Differentially expressed genes (DEGs) were classified into five temporal patterns (Early, Transient, Persistent, Intensified, Delayed, or Late). DEGs were more abundant at 1 week than 1 day. Shared significant gene ontology annotations in both regions included terms associated with neuronal distress at 1 day and neurorecovery at 1 week. CsA (20 mg/kg/day) infused for 1 day (beginning at 6 h after injury) accelerated 466 DEGs in the FC and 2794 DEGs in the H&A, such that the CsA-treated transcriptional profile was associated with neurorecovery. Overall, our data reveal the effects of anatomic region and elapsed time on gene expression post-mTBI and motivate future studies of CsA treatment.
Collapse
Affiliation(s)
- Oluwagbemisola Aderibigbe
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA;
| | - Levi B. Wood
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA;
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Susan S. Margulies
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA;
| |
Collapse
|
2
|
Pulat S, Paguiri JAG, Gamage CDB, Varlı M, Zhou R, Park SY, Hur JS, Kim H. Lobaric acid suppresses the stemness potential of colorectal cancer cells through mTOR/AKT. Biofactors 2025; 51:e70002. [PMID: 39874220 DOI: 10.1002/biof.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025]
Abstract
Stereocaulon alpinum has been found to have potential pharmaceutical properties due to the presence of secondary metabolites such as usnic acid, atranorin, and lobaric acid (LA) which have anticancer activity. On the other hand, the effect of LA on the stemness potential of colorectal cancer (CRC) cells remains unexplored, and has not yet been thoroughly investigated. In this study, we examined the inhibitory activity of LA from Stereocaulon alpinum against the stemness potential of CRC cells and investigated the possible underlying mechanisms. The results demonstrated that LA did not inhibit the cell viability of CSC221 and DLD1. In addition, LA significantly decreased the spheroid formation of CSC221 and DLD1. Moreover, LA treatment suppressed cancer stem cell (CSC) markers; aldehyde dehydrogenase 1 (ALDH1), B-cell-specific Moloney leukemia virus insertion site 1 (BMI1), musashi1 (MSI1), and leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5), along with the sonic hedgehog (Shh) and mTOR/AKT pathways that contribute significantly to maintaining the stemness of CRC cells. Therefore, LA may be a new therapeutic approach for reducing the stemness of CRC cells.
Collapse
Affiliation(s)
- Sultan Pulat
- College of Pharmacy, Sunchon National University, Sunchon, Republic of Korea
| | | | | | - Mücahit Varlı
- College of Pharmacy, Sunchon National University, Sunchon, Republic of Korea
| | - Rui Zhou
- College of Pharmacy, Sunchon National University, Sunchon, Republic of Korea
| | - So-Yeon Park
- College of Pharmacy, Sunchon National University, Sunchon, Republic of Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Sunchon, Republic of Korea
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, Sunchon, Republic of Korea
| |
Collapse
|
3
|
Kang S, Ni Y, Lan K, Lv F. Hsa_circ_0008133 contributes to lung cancer progression by promoting glycolysis metabolism through the miR-760/MEX3A axis. ENVIRONMENTAL TOXICOLOGY 2024; 39:3014-3025. [PMID: 38317294 DOI: 10.1002/tox.24162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/08/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Lung cancer is a very common cancer with poor prognosis and high mortality. Circular RNAs (circRNAs) have been confirmed to be related to the occurrence of lung cancer, and circ_0008133 has been found to be possibly related to lung cancer. METHODS Expression of circ_0008133, miR-760, and mex-3 RNA binding family member A (MEX3A) messenger RNA (mRNA) was detected using quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability, colony number, migration, and invasion were assessed using cell counting kit-8 (CCK8), colony formation, wound healing, and transwell assays. Glucose consumption and lactate production were detected using commercial kits. Protein expression was measured using western blot. Dual-luciferase reporter assay and RNA pull-down assay were used to analyze the relationships between miR-760 and circ_0008133 or MEX3A. The effects of circ_0008133 knockdown on tumor growth in vivo were examined by the nude mice expriment. Immunohistochemistry (IHC) assay analyzed Ki-67 expression. RESULTS Circ_0008133 and MEX3A were markedly boosted in lung cancer tissues and cells. Circ_0008133 knockdown decreased lung cancer cell viability, glucose consumption, lactate production, colony formation, migration, and invasion. In mechanism, circ_0008133 might positively regulate MEX3A expression by sponging miR-760. Additionally, knockdown of circ_0008133 inhibited tumor growth in vivo. CONCLUSION Circ_0008133 accelerated the progression of lung cancer by promoting glycolysis metabolism through the miR-760/MEX3A axis.
Collapse
Affiliation(s)
- Shuhong Kang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, China
| | - Yunfeng Ni
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, China
| | - Ke Lan
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, China
| | - Feng Lv
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, China
| |
Collapse
|
4
|
Yue Y, Tao J, An D, Shi L. Three molecular subtypes and a five-gene signature for hepatocellular carcinoma based on m7G-related classification. J Gene Med 2024; 26:e3611. [PMID: 37847055 DOI: 10.1002/jgm.3611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND The current research investigated the heterogeneity of hepatocellular carcinoma (HCC) based on the expression of N7-methylguanosine (m7G)-related genes as a classification model and developed a risk model predictive of HCC prognosis, key pathological behaviors and molecular events of HCC. METHODS The RNA sequencing data of HCC were extracted from The Cancer Genome Atlas (TCGA)-live cancer (LIHC) database, hepatocellular carcinoman database (HCCDB) and Gene Expression Omnibus database, respectively. According to the expression level of 29 m7G-related genes, a consensus clustering analysis was conducted. The least absolute shrinkage and selection operator (LASSO) regression analysis and COX regression algorithm were applied to create a risk prediction model based on normalized expression of five characteristic genes weighted by coefficients. Tumor microenvironment (TME) analysis was performed using the MCP-Counter, TIMER, CIBERSORT and ESTIMATE algorithms. The Tumor Immune Dysfunction and Exclusion algorithm was applied to assess the responses to immunotherapy in different clusters and risk groups. In addition, patient sensitivity to common chemotherapeutic drugs was determined by the biochemical half-maximal inhibitory concentration using the R package pRRophetic. RESULTS Three molecular subtypes of HCC were defined based on the expression level of m7G-associated genes, each of which had its specific survival rate, genomic variation status, TME status and immunotherapy response. In addition, drug sensitivity analysis showed that the C1 subtype was more sensitive to a number of conventional oncolytic drugs (including paclitaxel, imatinib, CGP-082996, pyrimethamine, salubrinal and vinorelbine). The current five-gene risk prediction model accurately predicted HCC prognosis and revealed the degree of somatic mutations, immune microenvironment status and specific biological events. CONCLUSION In this study, three heterogeneous molecular subtypes of HCC were defined based on m7G-related genes as a classification model, and a five-gene risk prediction model was created for predicting HCC prognosis, providing a potential assessment tool for understanding the genomic variation, immune microenvironment status and key pathological mechanisms during HCC development.
Collapse
Affiliation(s)
- Yuan Yue
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jie Tao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dan An
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lei Shi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Abstract
As a gastrointestinal malignancy, colorectal cancer (CRC) is a main cause of cancer-related deaths worldwide. Mex-3 RNA-binding family member A (MEX3A) is upregulated in multiple types of tumors and plays a critical role in tumor proliferation and metastasis. However, the function of MEX3A in CRC angiogenesis has not been fully understood. Hence, the aim of this study was to explore the role of MEX3A in CRC angiogenesis and investigate its underlying mechanisms. MEX3A expression in CRC was first investigated by bioinformatics means and then measured by qRT-PCR and Western blot. CCK-8 assay was employed to test cell viability. Angiogenesis assay was used to assess angiogenesis. The protein levels of VEGF, FGF and SDF-1 were evaluated using Western blot. The expression levels of MYC, HK2 and PGK1 were investigated by qRT-PCR. Extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) were determined by Seahorse XP 96. The levels of pyruvate, lactate, citric acid and malate were measured by corresponding kits. Bioinformatics analysis demonstrated high MEX3A expression in CRC tissues and MEX3A enrichment in glycolysis and angiogenesis pathways. Cell assays showed high MEX3A expression in CRC cells and its promoting effects in CRC cell proliferation and glycolysis as well as angiogenesis. Rescue experiment confirmed that glycolysis inhibitor 2-DG could offset the promoting effects of MEX3A on the proliferation, angiogenesis and glycolysis of CRC cells. In conclusion, MEX3A could facilitate CRC angiogenesis by activating the glycolytic pathway, suggesting that MEX3A may be a novel therapeutic target for CRC.
Collapse
Affiliation(s)
- Yong Lu
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Tienan Bi
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Shenkang Zhou
- Department of Gastrointestinal Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Minhui Guo
- Department of Gynecology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| |
Collapse
|
6
|
Tibi M, Biton Hayun S, Hochgerner H, Lin Z, Givon S, Ophir O, Shay T, Mueller T, Segev R, Zeisel A. A telencephalon cell type atlas for goldfish reveals diversity in the evolution of spatial structure and cell types. SCIENCE ADVANCES 2023; 9:eadh7693. [PMID: 37910612 PMCID: PMC10619943 DOI: 10.1126/sciadv.adh7693] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023]
Abstract
Teleost fish form the largest group of vertebrates and show a tremendous variety of adaptive behaviors, making them critically important for the study of brain evolution and cognition. The neural basis mediating these behaviors remains elusive. We performed a systematic comparative survey of the goldfish telencephalon. We mapped cell types using single-cell RNA sequencing and spatial transcriptomics, resulting in de novo molecular neuroanatomy parcellation. Glial cells were highly conserved across 450 million years of evolution separating mouse and goldfish, while neurons showed diversity and modularity in gene expression. Specifically, somatostatin interneurons, famously interspersed in the mammalian isocortex for local inhibitory input, were curiously aggregated in a single goldfish telencephalon nucleus but molecularly conserved. Cerebral nuclei including the striatum, a hub for motivated behavior in amniotes, had molecularly conserved goldfish homologs. We suggest elements of a hippocampal formation across the goldfish pallium. Last, aiding study of the teleostan everted telencephalon, we describe substantial molecular similarities between goldfish and zebrafish neuronal taxonomies.
Collapse
Affiliation(s)
- Muhammad Tibi
- Faculty of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, 3200003 Haifa, Israel
| | - Stav Biton Hayun
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel
| | - Hannah Hochgerner
- Faculty of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, 3200003 Haifa, Israel
| | - Zhige Lin
- Faculty of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, 3200003 Haifa, Israel
| | - Shachar Givon
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel
| | - Osnat Ophir
- Faculty of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, 3200003 Haifa, Israel
| | - Tal Shay
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel
| | - Thomas Mueller
- Department of Biology, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, USA
| | - Ronen Segev
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel
| | - Amit Zeisel
- Faculty of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, 3200003 Haifa, Israel
| |
Collapse
|
7
|
Feng G, Wang P, Zhang H, Cheng S, Xing Y, Wang Y. MEX3A induces the development of thyroid cancer via targeting CREB1. Cell Biol Int 2023; 47:1843-1853. [PMID: 37529875 DOI: 10.1002/cbin.12076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
Thyroid cancer is a prevalent form of endocrine cancer, and its global incidence has been steadily increasing. MEX3A is a protein that is known to be highly expressed in various human malignant tumors, including thyroid cancer, and it has been linked to patient prognosis. However, the molecular mechanisms underlying MEX3A's tumorigenic capabilities in thyroid cancer are not fully understood. In this study, we aimed to investigate the role of MEX3A in thyroid cancer. We confirmed that MEX3A was overexpressed in both thyroid cancer tissues and cell lines. Additionally, we found a positive correlation between high levels of MEX3A and the AJCC stage. To further understand the functional significance of MEX3A in thyroid cancer, we depleted MEX3A expression in B-CPAP and TPC-1 cells. Interestingly, we observed a significant reduction in thyroid cancer cell proliferation and migration, as well as ameliorated cell apoptosis and arrested tumor growth upon MEX3A depletion. These findings strongly suggested that MEX3A played a critical role in the development of thyroid cancer. Furthermore, our study uncovered an important interaction between MEX3A and CREB1 (cAMP response element-binding protein 1). The interaction between MEX3A and CREB1 appeared to contribute to the tumor-promoting effects of MEX3A in thyroid cancer by directly targeting CREB1. Silencing CREB1 was observed to alleviate the malignant phenotypes promoted by MEX3A in thyroid cancer cells. Together, this study highlighted the importance of the MEX3A-CREB1 interaction in thyroid cancer development and suggested the therapeutic potential of targeting MEX3A for the treatment of this disease.
Collapse
Affiliation(s)
- Guoxun Feng
- Department of General Surgery, Beijing Tiantan Hospital, Beijing, China
| | - Penghui Wang
- Department of General Surgery, Beijing Tiantan Hospital, Beijing, China
| | - Hongyi Zhang
- Department of General Surgery, Beijing Tiantan Hospital, Beijing, China
| | - Shi Cheng
- Department of General Surgery, Beijing Tiantan Hospital, Beijing, China
| | - Ying Xing
- Department of General Surgery, Beijing Tiantan Hospital, Beijing, China
| | - Yuan Wang
- Department of General Surgery, Peking University People Hospital, Beijing, China
| |
Collapse
|
8
|
Aryal S, Anand D, Huang H, Reddy AP, Wilmarth PA, David LL, Lachke SA. Proteomic profiling of retina and retinal pigment epithelium combined embryonic tissue to facilitate ocular disease gene discovery. Hum Genet 2023; 142:927-947. [PMID: 37191732 PMCID: PMC10680127 DOI: 10.1007/s00439-023-02570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
To expedite gene discovery in eye development and its associated defects, we previously developed a bioinformatics resource-tool iSyTE (integrated Systems Tool for Eye gene discovery). However, iSyTE is presently limited to lens tissue and is predominantly based on transcriptomics datasets. Therefore, to extend iSyTE to other eye tissues on the proteome level, we performed high-throughput tandem mass spectrometry (MS/MS) on mouse embryonic day (E)14.5 retina and retinal pigment epithelium combined tissue and identified an average of 3300 proteins per sample (n = 5). High-throughput expression profiling-based gene discovery approaches-involving either transcriptomics or proteomics-pose a key challenge of prioritizing candidates from thousands of RNA/proteins expressed. To address this, we used MS/MS proteome data from mouse whole embryonic body (WB) as a reference dataset and performed comparative analysis-termed "in silico WB-subtraction"-with the retina proteome dataset. In silico WB-subtraction identified 90 high-priority proteins with retina-enriched expression at stringency criteria of ≥ 2.5 average spectral counts, ≥ 2.0 fold-enrichment, false discovery rate < 0.01. These top candidates represent a pool of retina-enriched proteins, several of which are associated with retinal biology and/or defects (e.g., Aldh1a1, Ank2, Ank3, Dcn, Dync2h1, Egfr, Ephb2, Fbln5, Fbn2, Hras, Igf2bp1, Msi1, Rbp1, Rlbp1, Tenm3, Yap1, etc.), indicating the effectiveness of this approach. Importantly, in silico WB-subtraction also identified several new high-priority candidates with potential regulatory function in retina development. Finally, proteins exhibiting expression or enriched-expression in the retina are made accessible in a user-friendly manner at iSyTE ( https://research.bioinformatics.udel.edu/iSyTE/ ), to allow effective visualization of this information and facilitate eye gene discovery.
Collapse
Affiliation(s)
- Sandeep Aryal
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Hongzhan Huang
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19713, USA
| | - Ashok P Reddy
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Phillip A Wilmarth
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Larry L David
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19713, USA.
| |
Collapse
|
9
|
Aryal S, Anand D, Huang H, Reddy AP, Wilmarth PA, David LL, Lachke SA. Proteomic profiling of retina and retinal pigment epithelium combined embryonic tissue to facilitate ocular disease gene discovery. RESEARCH SQUARE 2023:rs.3.rs-2652395. [PMID: 36993571 PMCID: PMC10055508 DOI: 10.21203/rs.3.rs-2652395/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To expedite gene discovery in eye development and its associated defects, we previously developed a bioinformatics resource-tool iSyTE (integrated Systems Tool for Eye gene discovery). However, iSyTE is presently limited to lens tissue and is predominantly based on transcriptomics datasets. Therefore, to extend iSyTE to other eye tissues on the proteome level, we performed high-throughput tandem mass spectrometry (MS/MS) on mouse embryonic day (E)14.5 retina and retinal pigment epithelium combined tissue and identified an average of 3,300 proteins per sample (n=5). High-throughput expression profiling-based gene discovery approaches-involving either transcriptomics or proteomics-pose a key challenge of prioritizing candidates from thousands of RNA/proteins expressed. To address this, we used MS/MS proteome data from mouse whole embryonic body (WB) as a reference dataset and performed comparative analysis-termed "in silico WB-subtraction"-with the retina proteome dataset. In silico WB-subtraction identified 90 high-priority proteins with retina-enriched expression at stringency criteria of ³2.5 average spectral counts, ³2.0 fold-enrichment, False Discovery Rate <0.01. These top candidates represent a pool of retina-enriched proteins, several of which are associated with retinal biology and/or defects (e.g., Aldh1a1, Ank2, Ank3, Dcn, Dync2h1, Egfr, Ephb2, Fbln5, Fbn2, Hras, Igf2bp1, Msi1, Rbp1, Rlbp1, Tenm3, Yap1, etc.), indicating the effectiveness of this approach. Importantly, in silico WB-subtraction also identified several new high-priority candidates with potential regulatory function in retina development. Finally, proteins exhibiting expression or enriched-expression in the retina are made accessible in a user-friendly manner at iSyTE (https://research.bioinformatics.udel.edu/iSyTE/), to allow effective visualization of this information and facilitate eye gene discovery.
Collapse
Affiliation(s)
- Sandeep Aryal
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA
| | - Hongzhan Huang
- Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE 19713 USA
| | - Ashok P. Reddy
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR 97239, USA
| | - Phillip A. Wilmarth
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR 97239, USA
| | - Larry L. David
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA
- Center for Bioinformatics & Computational Biology, University of Delaware, Newark, DE 19713 USA
| |
Collapse
|
10
|
Naef V, Meschini MC, Tessa A, Morani F, Corsinovi D, Ogi A, Marchese M, Ori M, Santorelli FM, Doccini S. Converging Role for REEP1/SPG31 in Oxidative Stress. Int J Mol Sci 2023; 24:ijms24043527. [PMID: 36834939 PMCID: PMC9959426 DOI: 10.3390/ijms24043527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Mutations in the receptor expression-enhancing protein 1 gene (REEP1) are associated with hereditary spastic paraplegia type 31 (SPG31), a neurological disorder characterized by length-dependent degeneration of upper motor neuron axons. Mitochondrial dysfunctions have been observed in patients harboring pathogenic variants in REEP1, suggesting a key role of bioenergetics in disease-related manifestations. Nevertheless, the regulation of mitochondrial function in SPG31 remains unclear. To elucidate the pathophysiology underlying REEP1 deficiency, we analyzed in vitro the impact of two different mutations on mitochondrial metabolism. Together with mitochondrial morphology abnormalities, loss-of-REEP1 expression highlighted a reduced ATP production with increased susceptibility to oxidative stress. Furthermore, to translate these findings from in vitro to preclinical models, we knocked down REEP1 in zebrafish. Zebrafish larvae showed a significant defect in motor axon outgrowth leading to motor impairment, mitochondrial dysfunction, and reactive oxygen species accumulation. Protective antioxidant agents such as resveratrol rescued free radical overproduction and ameliorated the SPG31 phenotype both in vitro and in vivo. Together, our findings offer new opportunities to counteract neurodegeneration in SPG31.
Collapse
Affiliation(s)
- Valentina Naef
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Maria C. Meschini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Alessandra Tessa
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Federica Morani
- Department of Biology, University of Pisa, 56126 Pisa, Italy
| | - Debora Corsinovi
- Department of Biology, University of Pisa, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Asahi Ogi
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Maria Marchese
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Michela Ori
- Department of Biology, University of Pisa, 56126 Pisa, Italy
| | - Filippo M. Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
- Correspondence: ; Tel.: +39-050-886-311
| |
Collapse
|
11
|
Lust K, Maynard A, Gomes T, Fleck JS, Camp JG, Tanaka EM, Treutlein B. Single-cell analyses of axolotl telencephalon organization, neurogenesis, and regeneration. Science 2022; 377:eabp9262. [PMID: 36048956 DOI: 10.1126/science.abp9262] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Salamanders are tetrapod models to study brain organization and regeneration; however, the identity and evolutionary conservation of brain cell types are largely unknown. We delineated the cell populations in the axolotl telencephalon during homeostasis and regeneration using single-cell genomic profiling. We identified glutamatergic neurons with similarities to amniote neurons of hippocampus, dorsal and lateral cortex, and conserved γ-aminobutyric acid-releasing (GABAergic) neuron classes. We inferred transcriptional dynamics and gene regulatory relationships of postembryonic, region-specific neurogenesis and unraveled conserved differentiation signatures. After brain injury, ependymoglia activate an injury-specific state before reestablishing lost neuron populations and axonal connections. Together, our analyses yield insights into the organization, evolution, and regeneration of a tetrapod nervous system.
Collapse
Affiliation(s)
- Katharina Lust
- Research Institute of Molecular Pathology, Vienna Biocenter (VBC), Campus Vienna Biocenter, 1030 Vienna, Austria
| | - Ashley Maynard
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Tomás Gomes
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Jonas Simon Fleck
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - J Gray Camp
- Roche Institute for Translational Bioengineering (ITB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.,University of Basel, 4001 Basel, Switzerland
| | - Elly M Tanaka
- Research Institute of Molecular Pathology, Vienna Biocenter (VBC), Campus Vienna Biocenter, 1030 Vienna, Austria
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| |
Collapse
|
12
|
Jiang Z, Sun Z, Hu J, Li D, Xu X, Li M, Feng Z, Zeng S, Mao H, Hu C. Grass Carp Mex3A Promotes Ubiquitination and Degradation of RIG-I to Inhibit Innate Immune Response. Front Immunol 2022; 13:909315. [PMID: 35865536 PMCID: PMC9295999 DOI: 10.3389/fimmu.2022.909315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/03/2022] [Indexed: 11/23/2022] Open
Abstract
As one of the Mex3 family members, Mex3A is crucial in cell proliferation, migration, and apoptosis in mammals. In this study, a novel gene homologous to mammalian Mex3A (named CiMex3A, MW368974) was cloned and identified in grass carp, which is 1,521 bp in length encoding a putative polypeptide of 506 amino acids. In CIK cells, CiMex3A is upregulated after stimulation with LPS, Z-DNA, and especially with intracellular poly(I:C). CiMex3A overexpression reduces the expressions of IFN1, ISG15, and pro-inflammatory factors IL8 and TNFα; likewise, Mex3A inhibits IRF3 phosphorylation upon treatment with poly(I:C). A screening test to identify potential targets suggested that CiMex3A interacts with RIG-I exclusively. Co-localization analysis showed that Mex3A and RIG-I are simultaneously located in the endoplasmic reticulum, while they rarely appear in the endosome, mitochondria, or lysosome after exposure to poly(I:C). However, RIG-I is mainly located in the early endosome and then transferred to the late endosome following stimulation with poly(I:C). Moreover, we investigated the molecular mechanism underlying CiMex3A-mediated suppression of RIG-I ubiquitination. The results demonstrated that Mex3A truncation mutant (deletion in the RING domain) can still interact physically with RIG-I, but fail to degrade it, suggesting that Mex3A also acts as a RING-type E3 ubiquitin ligase. Taken together, this study showed that grass carp Mex3A can interact with RIG-I in the endoplasmic reticulum following poly(I:C) stimulation, and then Mex3A facilitates the ubiquitination and degradation of RIG-I to inhibit IRF3-mediated innate antiviral immune response.
Collapse
Affiliation(s)
- Zeyin Jiang
- School of Life Science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, China
| | - Zhichao Sun
- School of Life Science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, China
- Human Aging Research Institute, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Jihuan Hu
- School of Life Science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, China
| | - Dongming Li
- School of Basic Medical Sciences, Fuzhou Medical University, Fuzhou, China
| | - Xiaowen Xu
- School of Life Science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, China
| | - Meifeng Li
- School of Life Science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, China
| | - Zhiqing Feng
- School of Life Science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, China
| | - Shanshan Zeng
- School of Life Science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, China
| | - Huiling Mao
- School of Life Science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, China
| | - Chengyu Hu
- School of Life Science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, China
- *Correspondence: Chengyu Hu,
| |
Collapse
|
13
|
MEX3A promotes nasopharyngeal carcinoma progression via the miR-3163/SCIN axis by regulating NF-κB signaling pathway. Cell Death Dis 2022; 13:420. [PMID: 35490173 PMCID: PMC9056523 DOI: 10.1038/s41419-022-04871-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 11/08/2022]
Abstract
AbstractMex-3 RNA Binding Family Member A (MEX3A) is an RNA-binding protein that plays complex and diverse roles in the development of various malignancies. However, its role and mechanism in nasopharyngeal carcinoma (NPC) remain undefined and were therefore evaluated in this study. By analyzing Gene Expression Omnibus data and using tissue microarrays, we found that MEX3A is significantly upregulated in NPC and negatively associated with prognosis. Notably, MEX3A depletion led to decreased cell proliferation, invasion, and migration, but increased apoptosis in NPC cells in vitro, while inhibiting tumor growth in vivo. Using whole-transcript expression arrays and bioinformatic analysis, we identified scinderin (SCIN) and miR-3163 as potential downstream targets of MEX3A in NPC. The regulatory mechanisms of MEX3A, SCIN and miR-3163 were further investigated using rescue experiments. Importantly, SCIN depletion and miR-3163 inhibition reversed and rescued the oncogenic effects of MEX3A, respectively. Moreover, NF-κB signaling inhibition reversed the oncogenic effects of both SCIN and MEX3A. In summary, our results demonstrate that MEX3A may promote NPC development and progression via the miR-3163/SCIN axis by regulating NF-κB signaling, thus providing a potential target for NPC treatment.
Collapse
|
14
|
Salamon I, Rasin MR. Evolution of the Neocortex Through RNA-Binding Proteins and Post-transcriptional Regulation. Front Neurosci 2022; 15:803107. [PMID: 35082597 PMCID: PMC8784817 DOI: 10.3389/fnins.2021.803107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
The human neocortex is undoubtedly considered a supreme accomplishment in mammalian evolution. It features a prenatally established six-layered structure which remains plastic to the myriad of changes throughout an organism’s lifetime. A fundamental feature of neocortical evolution and development is the abundance and diversity of the progenitor cell population and their neuronal and glial progeny. These evolutionary upgrades are partially enabled due to the progenitors’ higher proliferative capacity, compartmentalization of proliferative regions, and specification of neuronal temporal identities. The driving force of these processes may be explained by temporal molecular patterning, by which progenitors have intrinsic capacity to change their competence as neocortical neurogenesis proceeds. Thus, neurogenesis can be conceptualized along two timescales of progenitors’ capacity to (1) self-renew or differentiate into basal progenitors (BPs) or neurons or (2) specify their fate into distinct neuronal and glial subtypes which participate in the formation of six-layers. Neocortical development then proceeds through sequential phases of proliferation, differentiation, neuronal migration, and maturation. Temporal molecular patterning, therefore, relies on the precise regulation of spatiotemporal gene expression. An extensive transcriptional regulatory network is accompanied by post-transcriptional regulation that is frequently mediated by the regulatory interplay between RNA-binding proteins (RBPs). RBPs exhibit important roles in every step of mRNA life cycle in any system, from splicing, polyadenylation, editing, transport, stability, localization, to translation (protein synthesis). Here, we underscore the importance of RBP functions at multiple time-restricted steps of early neurogenesis, starting from the cell fate transition of transcriptionally primed cortical progenitors. A particular emphasis will be placed on RBPs with mostly conserved but also divergent evolutionary functions in neural progenitors across different species. RBPs, when considered in the context of the fascinating process of neocortical development, deserve to be main protagonists in the story of the evolution and development of the neocortex.
Collapse
|
15
|
Zhou X, Li S, Ma T, Zeng J, Li H, Liu X, Li F, Jiang B, Zhao M, Liu Z, Qin Y. MEX3A knockdown inhibits the tumorigenesis of colorectal cancer via modulating CDK2 expression. Exp Ther Med 2021; 22:1343. [PMID: 34630697 PMCID: PMC8495542 DOI: 10.3892/etm.2021.10778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is a malignant tumor of the gastrointestinal tract and a leading cause of cancer-associated mortality worldwide. Mex-3 RNA binding family member A (MEX3A) promotes the progression of multiple types of cancer, including ovarian and cervical cancer. However, to the best of our knowledge, the role of MEX3A in CRC is not completely understood. Therefore, the present study aimed to investigate the function of MEX3A in CRC. The mRNA and protein expression levels of MEX3A in CRC cells were analyzed using reverse transcription-quantitative PCR and western blotting, respectively. Cell Counting Kit-8 assays were used to measure cell viability. Cell apoptosis and cell cycle distribution were detected via flow cytometry, and CRC cell invasion was analyzed by performing Transwell assays. Moreover, the mitochondrial membrane potential in CRC cells was measured via JC-1 staining. The results of the present study revealed that the expression levels of MEX3A were upregulated in CRC tissues compared with adjacent healthy tissues. MEX3A knockdown notably inhibited CRC cell viability, and induced apoptosis and mitochondrial injury. In addition, MEX3A knockdown markedly induced G1 phase cell cycle arrest in CRC cells via downregulating CDK2 expression. In conclusion, the findings of the present study suggested that MEX3A knockdown may inhibit the tumorigenesis of CRC cells by regulating CDK2 expression. Therefore, MEX3A may serve as a novel target for CRC treatment.
Collapse
Affiliation(s)
- Xin Zhou
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Shaojie Li
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Tiexiang Ma
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Jian Zeng
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Huanyu Li
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Xiang Liu
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Feng Li
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Bin Jiang
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Ming Zhao
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Zhuo Liu
- Department of General Surgery, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Yiyu Qin
- Clinical Medical College, Follow-up Research Center, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu 224005, P.R. China
| |
Collapse
|
16
|
Albarqi MMY, Ryder SP. The endogenous mex-3 3´UTR is required for germline repression and contributes to optimal fecundity in C. elegans. PLoS Genet 2021; 17:e1009775. [PMID: 34424904 PMCID: PMC8412283 DOI: 10.1371/journal.pgen.1009775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 09/02/2021] [Accepted: 08/11/2021] [Indexed: 11/18/2022] Open
Abstract
RNA regulation is essential to successful reproduction. Messenger RNAs delivered from parent to progeny govern early embryonic development. RNA-binding proteins (RBPs) are the key effectors of this process, regulating the translation and stability of parental transcripts to control cell fate specification events prior to zygotic gene activation. The KH-domain RBP MEX-3 is conserved from nematode to human. It was first discovered in Caenorhabditis elegans, where it is essential for anterior cell fate and embryo viability. Here, we show that loss of the endogenous mex-3 3´UTR disrupts its germline expression pattern. An allelic series of 3´UTR deletion variants identify repressing regions of the UTR and demonstrate that repression is not precisely coupled to reproductive success. We also show that several RBPs regulate mex-3 mRNA through its 3´UTR to define its unique germline spatiotemporal expression pattern. Additionally, we find that both poly(A) tail length control and the translation initiation factor IFE-3 contribute to its expression pattern. Together, our results establish the importance of the mex-3 3´UTR to reproductive health and its expression in the germline. Our results suggest that additional mechanisms control MEX-3 function when 3´UTR regulation is compromised. In sexually reproducing organisms, germ cells undergo meiosis and differentiate to form oocytes or sperm. Coordination of this process requires a gene regulatory program that acts while the genome is undergoing chromatin condensation. As such, RNA regulatory pathways are an important contributor. The germline of the nematode Caenorhabditis elegans is a suitable model system to study germ cell differentiation. Several RNA-binding proteins (RBPs) coordinate each transition in the germline such as the transition from mitosis to meiosis. MEX-3 is a conserved RNA-binding protein found in most animals including humans. In C. elegans, MEX-3 displays a highly restricted pattern of expression. Here, we define the importance of the 3´UTR in regulating MEX-3 expression pattern in vivo and characterize the RNA-binding proteins involved in this regulation. Our results show that deleting various mex-3 3´UTR regions alter the pattern of expression in the germline in various ways. These mutations also reduced—but did not eliminate—reproductive capacity. Finally, we demonstrate that multiple post-transcriptional mechanisms control MEX-3 levels in different domains of the germline. Our data suggest that coordination of MEX-3 activity requires multiple layers of regulation to ensure reproductive robustness.
Collapse
Affiliation(s)
- Mennatallah M. Y. Albarqi
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Sean P. Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|