1
|
Grossini E, Venkatesan S, Ola Pour MM. Mitochondrial Dysfunction in Endothelial Cells: A Key Driver of Organ Disorders and Aging. Antioxidants (Basel) 2025; 14:372. [PMID: 40298614 PMCID: PMC12024085 DOI: 10.3390/antiox14040372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
Mitochondria are of great importance in cell biology since they are major sites of adenosine triphosphate (ATP) production and are widely involved in different cellular pathways involved in the response to stress. During ATP production, reactive oxygen species (ROS) can be produced. While a small amount of ROS may be important for the regulation of physiological processes, at elevated levels they can turn into harmful agents leading to cellular damage. From a pathological perspective, it could be particularly interesting to focus on mitochondrial function in endothelial cells since they may be involved in the development of aging and in the onset of different diseases, including renal, cardio-metabolic, liver and neurodegenerative ones. However, to date, there are no surveys which address the above issues. To fill this gap, it may be valuable to collect recent findings about the role of mitochondria in the regulation of endothelial function, not only to increase knowledge about it but also for clinical applications. Here, we overview the most recent knowledge about the above issues in the view of characterizing the role of mitochondria in endothelial cells as an innovative potential target for the prevention of aging, as well as the treatment of the above pathological conditions.
Collapse
Affiliation(s)
- Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy; (S.V.); (M.M.O.P.)
| | | | | |
Collapse
|
2
|
Watson WD, Arvidsson PM, Miller JJJ, Lewis AJ, Rider OJ. A Mitochondrial Basis for Heart Failure Progression. Cardiovasc Drugs Ther 2024; 38:1161-1171. [PMID: 38878138 PMCID: PMC11680631 DOI: 10.1007/s10557-024-07582-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 12/29/2024]
Abstract
In health, the human heart is able to match ATP supply and demand perfectly. It requires 6 kg of ATP per day to satisfy demands of external work (mechanical force generation) and internal work (ion movements and basal metabolism). The heart is able to link supply with demand via direct responses to ADP and AMP concentrations but calcium concentrations within myocytes play a key role, signalling both inotropy, chronotropy and matched increases in ATP production. Calcium/calmodulin-dependent protein kinase (CaMKII) is a key adapter to increased workload, facilitating a greater and more rapid calcium concentration change. In the failing heart, this is dysfunctional and ATP supply is impaired. This review aims to examine the mechanisms and pathologies that link increased energy demand to this disrupted situation. We examine the roles of calcium loading, oxidative stress, mitochondrial structural abnormalities and damage-associated molecular patterns.
Collapse
Affiliation(s)
- William D Watson
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK.
- Oxford Centre for Magnetic Resonance Research, University of Oxford, Oxford, UK.
| | - Per M Arvidsson
- Oxford Centre for Magnetic Resonance Research, University of Oxford, Oxford, UK
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Clinical Physiology, Skåne University Hospital, Lund, Sweden
| | - Jack J J Miller
- Oxford Centre for Magnetic Resonance Research, University of Oxford, Oxford, UK
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Andrew J Lewis
- Oxford Centre for Magnetic Resonance Research, University of Oxford, Oxford, UK
| | - Oliver J Rider
- Oxford Centre for Magnetic Resonance Research, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Zheng X, Wang T, Gong J, Yang P, Zhang Y, Zhang Y, Cao N, Zhou K, Li Y, Hua Y, Zhang D, Gu Z, Li Y. Biogenic derived nanoparticles modulate mitochondrial function in cardiomyocytes. MATERIALS HORIZONS 2024; 11:4998-5016. [PMID: 39082084 DOI: 10.1039/d4mh00552j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Preservation of mitochondrial functionality is essential for heart hemostasis and cardiovascular diseases treatment. However, the current nanomedicines including liposomes, polymers and inorganic nanomaterials are severely hindered by poor stability, high manufacturing costs and potential biotoxicity. In this research, we present novel polyphenolic nanoparticles (NPs) derived from naturally occurring pomegranate peel (PP, labelled as PPP NPs), which exhibit potent antioxidative and anti-inflammatory properties, serving as a modulator of mitochondrial function. PPP NPs have been identified to improve survival rates in models of mitochondrial depletion through enhancement of cardiomyocyte proliferation and the reduction of DNA damage. Moreover, PPP NPs can effectively inhibit the production of reactive oxygen species and inflammatory mediators in lipopolysaccharide (LPS)-induced mitochondrial damage. Utilizing human engineered heart tissue and mice models, PPP NPs were found to significantly improve contractile function and alleviate inflammation activities after LPS treatment. Mechanically, PPP NPs regulated inflammatory responses via a m6A dependent manner, as determined using RNA-seq and MeRIP-seq analyses. Collectively, these insights underscore the potential of PPP NPs as a novel therapeutic approach for mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xiaolan Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital Sichuan University Chengdu, Sichuan 610041, China.
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University, Chengdu 610065, China.
| | - Jixing Gong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science Hubei University, Wuhan 430062, China.
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China
| | - Peng Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University, Chengdu 610065, China.
| | - Yulin Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital Sichuan University Chengdu, Sichuan 610041, China.
| | - Yue Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital Sichuan University Chengdu, Sichuan 610041, China.
| | - Nan Cao
- Advanced Medical Technology Center, Zhongshan School of Medicine and the First Affiliated Hospital, Sun Yat-Sen University, Guangdong 510080, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital Sichuan University Chengdu, Sichuan 610041, China.
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University, Chengdu 610065, China.
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital Sichuan University Chengdu, Sichuan 610041, China.
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science Hubei University, Wuhan 430062, China.
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University, Chengdu 610065, China.
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital Sichuan University Chengdu, Sichuan 610041, China.
| |
Collapse
|
4
|
Jun S, Song MH, Choi SC, Noh JM, Kim KS, Park JH, Yoon DE, Kim K, Kim M, Hwang SW, Lim DS. FGF4 and ascorbic acid enhance the maturation of induced cardiomyocytes by activating JAK2-STAT3 signaling. Exp Mol Med 2024; 56:2231-2245. [PMID: 39349833 PMCID: PMC11541553 DOI: 10.1038/s12276-024-01321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 10/03/2024] Open
Abstract
Direct cardiac reprogramming represents a novel therapeutic strategy to convert non-cardiac cells such as fibroblasts into cardiomyocytes (CMs). This process involves essential transcription factors, such as Mef2c, Gata4, Tbx5 (MGT), MESP1, and MYOCD (MGTMM). However, the small molecules responsible for inducing immature induced CMs (iCMs) and the signaling mechanisms driving their maturation remain elusive. Our study explored the effects of various small molecules on iCM induction and discovered that the combination of FGF4 and ascorbic acid (FA) enhances CM markers, exhibits organized sarcomere and T-tubule structures, and improves cardiac function. Transcriptome analysis emphasized the importance of ECM-integrin-focal adhesions and the upregulation of the JAK2-STAT3 and TGFB signaling pathways in FA-treated iCMs. Notably, JAK2-STAT3 knockdown affected TGFB signaling and the ECM and downregulated mature CM markers in FA-treated iCMs. Our findings underscore the critical role of the JAK2-STAT3 signaling pathway in activating TGFB signaling and ECM synthesis in directly reprogrammed CMs. Schematic showing FA enhances direct cardiac reprogramming and JAK-STAT3 signaling pathways underlying cardiomyocyte maturation.
Collapse
Affiliation(s)
- Seongmin Jun
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Myeong-Hwa Song
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Seung-Cheol Choi
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
- R&D Center for Companion Diagnostic, SOL Bio Corporation, Seoul, Republic of Korea
| | - Ji-Min Noh
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyung Seob Kim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jae Hyoung Park
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Da Eun Yoon
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Minseok Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sun Wook Hwang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Do-Sun Lim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Njenga LW, Mbugua SN, Odhiambo RA, Onani MO. Correction: Addressing the gaps in homeostatic mechanisms of copper and copper dithiocarbamate complexes in cancer therapy: a shift from classical platinum-drug mechanisms. Dalton Trans 2024; 53:12391-12394. [PMID: 38989691 DOI: 10.1039/d3dt90193a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Correction for 'Addressing the gaps in homeostatic mechanisms of copper and copper dithiocarbamate complexes in cancer therapy: a shift from classical platinum-drug mechanisms' by Lydia W. Njenga et al., Dalton Trans., 2023, 52, 5823-5847, https://doi.org/10.1039/D3DT00366C.
Collapse
Affiliation(s)
- Lydia W Njenga
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Simon N Mbugua
- Department of Chemistry, Kisii University, P.O. Box 408-40200, Kisii, Kenya
| | - Ruth A Odhiambo
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Martin O Onani
- Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Belville, 7535, South Africa
| |
Collapse
|
6
|
Dong Z, Han W, Jiang P, Hao L, Fu X. Regulation of mitochondrial network architecture and function in mesenchymal stem cells by micropatterned surfaces. Regen Biomater 2024; 11:rbae052. [PMID: 38854681 PMCID: PMC11162196 DOI: 10.1093/rb/rbae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/04/2024] [Accepted: 04/25/2024] [Indexed: 06/11/2024] Open
Abstract
Mitochondrial network architecture, which is closely related to mitochondrial function, is mechanically sensitive and regulated by multiple stimuli. However, the effects of microtopographic cues on mitochondria remain poorly defined. Herein, polycaprolactone (PCL) surfaces were used as models to investigate how micropatterns regulate mitochondrial network architecture and function in rat adipose-derived stem cells (rASCs). It was found that large pit (LP)-induced rASCs to form larger and more complex mitochondrial networks. Consistently, the expression of key genes related to mitochondrial dynamics revealed that mitochondrial fusion (MFN1 and MFN2) and midzone fission (DRP1 and MFF) were increased in rASCs on LP. In contrast, the middle pit (MP)-enhanced mitochondrial biogenesis, as evidenced by the larger mitochondrial area and higher expression of PGC-1. Both LP and MP promoted ATP production in rASCs. It is likely that LP increased ATP levels through modulating mitochondrial network architecture while MP stimulated mitochondria biogenesis to do so. Our study clarified the regulation of micropatterned surfaces on mitochondria, highlighting the potential of LP and MP as a simple platform to stimulate mitochondria and the subsequent cellular function of MSCs.
Collapse
Affiliation(s)
- Zixuan Dong
- The Second Affiliated Hospital, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 511442, China
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Weiju Han
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Panyu Jiang
- The Second Affiliated Hospital, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 511442, China
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Lijing Hao
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiaoling Fu
- National Engineering Research Center for Tissue Restoration and Reconstruction and Innovation Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
7
|
Chen Z, Li M, Chen P, Tai A, Li J, Bassonga EL, Gao J, Liu D, Wood D, Kennedy BF, Zheng Q, Zheng MH. Mechanical overload-induced release of extracellular mitochondrial particles from tendon cells leads to inflammation in tendinopathy. Exp Mol Med 2024; 56:583-599. [PMID: 38424192 PMCID: PMC10985099 DOI: 10.1038/s12276-024-01183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 03/02/2024] Open
Abstract
Tendinopathy is one of the most common musculoskeletal diseases, and mechanical overload is considered its primary cause. However, the underlying mechanism through which mechanical overload induces tendinopathy has not been determined. In this study, we identified for the first time that tendon cells can release extracellular mitochondria (ExtraMito) particles, a subtype of medium extracellular particles (mEPs), into the environment through a process regulated by mechanical loading. RNA sequencing systematically revealed that oxygen-related reactions, extracellular particles, and inflammation were present in diseased human tendons, suggesting that these factors play a role in the pathogenesis of tendinopathy. We simulated the disease condition by imposing a 9% strain overload on three-dimensional mouse tendon constructs in our cyclic uniaxial stretching bioreactor. The three-dimensional mouse tendon constructs under normal loading with 6% strain exhibited an extended mitochondrial network, as observed through live-cell confocal laser scanning microscopy. In contrast, mechanical overload led to a fragmented mitochondrial network. Our microscopic and immunoblot results demonstrated that mechanical loading induced tendon cells to release ExtraMito particles. Furthermore, we showed that mEPs released from tendon cells overloaded with a 9% strain (mEP9%) induced macrophage chemotaxis and increased the production of proinflammatory cytokines, including IL-6, CXCL1, and IL-18, from macrophages compared to mEP0%, mEP3%, and mEP6%. Partial depletion of the ExtraMito particles from mEP9% by magnetic-activated cell sorting significantly reduced macrophage chemotaxis. N-acetyl-L-cysteine treatment preserved the mitochondrial network in overloaded tendon cells, diminishing overload-induced macrophage chemotaxis toward mEP9%. These findings revealed a novel mechanism of tendinopathy; in an overloaded environment, ExtraMito particles convey mechanical response signals from tendon cells to the immune microenvironment, culminating in tendinopathy.
Collapse
Affiliation(s)
- Ziming Chen
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Mengyuan Li
- Department of Joint Osteopathy and Traumatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong, China
| | - Peilin Chen
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Nedlands, WA, 6009, Australia
- School of Medicine, Monash University, Clayton, VIC, VIC 3800, Australia
| | - Andrew Tai
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Jiayue Li
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Nedlands, WA, 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Melbourne, VIC, Australia
| | - Euphemie Landao Bassonga
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Nedlands, WA, 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Junjie Gao
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Nedlands, WA, 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, 200233, China
| | - Delin Liu
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Nedlands, WA, 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - David Wood
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Brendan F Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- Department of Electrical, Electronic and Computer Engineering, School of Engineering, The University of Western Australia, Nedlands, WA, 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Melbourne, VIC, Australia
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100, Torun, Poland
| | - Qiujian Zheng
- Department of Joint Osteopathy and Traumatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong, China.
| | - Ming H Zheng
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Nedlands, WA, 6009, Australia.
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.
| |
Collapse
|
8
|
Kiseleva DG, Kirichenko TV, Markina YV, Cherednichenko VR, Gugueva EA, Markin AM. Mechanisms of Myocardial Edema Development in CVD Pathophysiology. Biomedicines 2024; 12:465. [PMID: 38398066 PMCID: PMC10887157 DOI: 10.3390/biomedicines12020465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024] Open
Abstract
Myocardial edema is the excess accumulation of fluid in the myocardial interstitium or cardiac cells that develops due to changes in capillary permeability, loss of glycocalyx charge, imbalance in lymphatic drainage, or a combination of these factors. Today it is believed that this condition is not only a complication of cardiovascular diseases, but in itself causes aggravation of the disease and increases the risks of adverse outcomes. The study of molecular, genetic, and mechanical changes in the myocardium during edema may contribute to the development of new approaches to the diagnosis and treatment of this condition. This review was conducted to describe the main mechanisms of myocardial edema development at the molecular and cellular levels and to identify promising targets for the regulation of this condition based on articles cited in Pubmed up to January 2024.
Collapse
Affiliation(s)
- Diana G. Kiseleva
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 119991 Moscow, Russia (V.R.C.)
| | - Tatiana V. Kirichenko
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 119991 Moscow, Russia (V.R.C.)
- Chazov National Medical Research Center of Cardiology, Ac. Chazov Str. 15A, 121552 Moscow, Russia
| | - Yuliya V. Markina
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 119991 Moscow, Russia (V.R.C.)
| | - Vadim R. Cherednichenko
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 119991 Moscow, Russia (V.R.C.)
| | - Ekaterina A. Gugueva
- N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia;
| | - Alexander M. Markin
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 119991 Moscow, Russia (V.R.C.)
- Medical Institute, Peoples’ Friendship University of Russia Named after Patrice Lumumba (RUDN University), 117198 Moscow, Russia
| |
Collapse
|
9
|
Boovarahan SR, Balu K, Prem P, Sivakumar B, Kurian GA. DNA hypomethylation by fisetin preserves mitochondria functional genes and contributes to the protection of I/R rat heart. Funct Integr Genomics 2023; 23:325. [PMID: 37880513 DOI: 10.1007/s10142-023-01257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Myocardial I/R can alter the expression of different sets of cardiac genes that negatively influence the I/R outcome via epigenetic modifications. Fisetin is known to be cardioprotective against I/R, but its underlying epigenetic mode of action is not known and is addressed in the present study. Male Wistar rats were subjected to I/R by using the Langendorff perfusion system. Fisetin (20 mg/kg; i.p.) was administered before I/R induction, followed by the measurement of cardiac injury, hemodynamics, physiological indices, the differential expression of genes that regulate DNA methylation, and the function of mitochondria were performed. Fisetin administered I/R rat heart significantly reduced the global DNA hypermethylation and infarct size with an improved physiological recovery, measured via RPP (81%) and LVDP (82%) from the I/R control. Additionally, we noted decreased expression of the DNMT1 gene by 35% and increased expression of the TET1, TET2, and TET3 genes in fisetin-treated I/R rat hearts. Molecular docking analysis data reveals that the fisetin inhibits DNMT1 at the substrate binding site with minimum binding energy (- 8.2 kcal/mol) compared to the DNMT1 inhibitor, 5-azacytidine. Moreover, fisetin-treated I/R heart reversed the expression of the I/R-linked declined expression of bioenergetics genes (MT-ND1, MT-ND2, MT-ND4, MT-Cyt B, MT-COX1, MT-COX2, MT-ATP6), mitochondrial fission gene (Fis1), replication control genes PGC-1α, POLG, and TFAM to near-normal level. Based on the above findings, we demonstrated that fisetin possesses the ability to modulate the expression of different mitochondrial genes via influencing the global DNA methylation in cardiac tissue, which contributes significantly to the improved contractile function and thereby renders cardioprotection against I/R.
Collapse
Affiliation(s)
- Sri Rahavi Boovarahan
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Kirankumar Balu
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Priyanka Prem
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Bhavana Sivakumar
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Gino A Kurian
- Vascular Biology Lab, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India.
| |
Collapse
|
10
|
Mohan UP, Pichiah PBT, Arunachalam S. Adriamycin downregulates the expression of KLF4 in cardiomyocytes in vitro and contributes to impaired cardiac energy metabolism in Adriamycin-induced cardiomyopathy. 3 Biotech 2023; 13:162. [PMID: 37152000 PMCID: PMC10160296 DOI: 10.1007/s13205-023-03584-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/23/2023] [Indexed: 05/09/2023] Open
Abstract
Adriamycin is a well-known anthracycline chemotherapeutic agent widely used in treating a variety of malignancies. However, Adriamycin's clinical use is limited due to its adverse side-effects, most importantly cardiomyopathy. Adriamycin-induced cardiotoxicity reportedly includes mitochondrial dysfunction. We hypothesize that modulation of KLF4, a key regulator of cardiac mitochondrial homeostasis might play a role in the development of Adriamycin-induced cardiomyopathy. Therefore, in the current work, we evaluated the interaction of Adriamycin with KLF4 and its subsequent downstream targets. Molecular docking revealed that Adriamycin interacts strongly with KLF4 at residues Thr 448, Arg 452, Ser 444 falls within C2H2 motif which is the active site. Quantitative real-time PCR also revealed that KLF4 is downregulated by Adriamycin in cardiomyocytes in vitro. The expression of KLF4 is downregulated in a dose-dependent manner, with a 0.12 ± 0.09-fold (p ≤ 0.05, n = 3) downregulation at a low dosage and 0.21 ± 0.02-fold (p ≤ 0.05, n = 3) downregulation at high dosage. Deficiency of KLF4 leads to an impairment of PPARγ that consequently supresses the proteins/enzymes involved in the fatty acid metabolism. Adriamycin-mediated suppression of KLF4 also affected the expression of PPARα in vitro. PPARα dysfunction is likely to cause defects in β-oxidation which ultimately results in impaired ATP synthesis. Cardiac cells are thus forced to switch over the substrate from free fatty acid to glucose. Moreover, Adriamycin elevates the expression of PPARβ due to downregulation of KLF4 leads to increased myocardial glucose utilization. Thus, a change in substrate preference affects the flexibility of metabolic network culminating in diminished energy production and other regulatory activities, altogether contributing to the development of cardiomyopathy. Thus, we conclude that the effect of Adriamycin on KLF4 disrupts mitochondrial homeostasis and lipid/glucose homeostasis resulting in a reduction of ATP synthesis which ultimately results in dilated cardiomyopathy.
Collapse
Affiliation(s)
- Uma Priya Mohan
- Centre for Cardiovascular and Adverse Drug Reactions, Department of Biotechnology, School of Bio, Chemical and Processing Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Virudhunagar Dt., Tamilnadu, 626126 India
| | - P. B. Tirupathi Pichiah
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024 India
| | - Sankarganesh Arunachalam
- Centre for Cardiovascular and Adverse Drug Reactions, Department of Biotechnology, School of Bio, Chemical and Processing Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Virudhunagar Dt., Tamilnadu, 626126 India
| |
Collapse
|
11
|
Gineste C, Youhanna S, Vorrink SU, Henriksson S, Hernández A, Cheng AJ, Chaillou T, Buttgereit A, Schneidereit D, Friedrich O, Hultenby K, Bruton JD, Ivarsson N, Sandblad L, Lauschke VM, Westerblad H. Enzymatically dissociated muscle fibers display rapid dedifferentiation and impaired mitochondrial calcium control. iScience 2022; 25:105654. [PMID: 36479146 PMCID: PMC9720020 DOI: 10.1016/j.isci.2022.105654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/19/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Cells rapidly lose their physiological phenotype upon disruption of their extracellular matrix (ECM)-intracellular cytoskeleton interactions. By comparing adult mouse skeletal muscle fibers, isolated either by mechanical dissection or by collagenase-induced ECM digestion, we investigated acute effects of ECM disruption on cellular and mitochondrial morphology, transcriptomic signatures, and Ca2+ handling. RNA-sequencing showed striking differences in gene expression patterns between the two isolation methods with enzymatically dissociated fibers resembling myopathic phenotypes. Mitochondrial appearance was grossly similar in the two groups, but 3D electron microscopy revealed shorter and less branched mitochondria following enzymatic dissociation. Repeated contractions resulted in a prolonged mitochondrial Ca2+ accumulation in enzymatically dissociated fibers, which was partially prevented by cyclophilin inhibitors. Of importance, muscle fibers of mice with severe mitochondrial myopathy show pathognomonic mitochondrial Ca2+ accumulation during repeated contractions and this accumulation was concealed with enzymatic dissociation, making this an ambiguous method in studies of native intracellular Ca2+ fluxes.
Collapse
Affiliation(s)
- Charlotte Gineste
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sabine U. Vorrink
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sara Henriksson
- Umeå Core Facility for Electron Microscopy, Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Andrés Hernández
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Arthur J. Cheng
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Thomas Chaillou
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Andreas Buttgereit
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Dominik Schneidereit
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Kjell Hultenby
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Huddinge, Sweden
| | - Joseph D. Bruton
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Niklas Ivarsson
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Linda Sandblad
- Umeå Core Facility for Electron Microscopy, Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
12
|
Komaragiri Y, Panhwar MH, Fregin B, Jagirdar G, Wolke C, Spiegler S, Otto O. Mechanical characterization of isolated mitochondria under conditions of oxidative stress. BIOMICROFLUIDICS 2022; 16:064101. [PMID: 36406339 PMCID: PMC9674388 DOI: 10.1063/5.0111581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Mechanical properties have been proven to be a pivotal parameter to enhance our understanding of living systems. While research during the last decades focused on cells and tissues, little is known about the role of organelle mechanics in cell function. Here, mitochondria are of specific interest due to their involvement in numerous physiological and pathological processes, e.g., in the production and homeostasis of reactive oxygen species (ROS). Using real-time fluorescence and deformability cytometry, we present a microfluidic technology that is capable to determine the mechanical properties of individual mitochondria at a throughput exceeding 100 organelles per second. Our data on several thousands of viable mitochondria isolated from rat C6 glial cells yield a homogenous population with a median deformation that scales with the applied hydrodynamic stress. In two proof-of-principle studies, we investigated the impact of exogenously and endogenously produced ROS on mitochondria mechanics. Exposing C6 cells to hydrogen peroxide (H2O2) triggers superoxide production and leads to a reduction in mitochondria size while deformation is increased. In a second study, we focused on the knockout of tafazzin, which has been associated with impaired remodeling of the mitochondrial membrane and elevated levels of ROS. Interestingly, our results reveal the same mechanical alterations as observed after the exposure to H2O2, which points to a unified biophysical mechanism of how mitochondria respond to the presence of oxidative stress. In summary, we introduce high-throughput mechanical phenotyping into the field of organelle biology with potential applications for understanding sub-cellular dynamics that have not been accessible before.
Collapse
Affiliation(s)
| | | | | | - Gayatri Jagirdar
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Strasse, 17475 Greifswald, Germany
| | - Carmen Wolke
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Strasse, 17475 Greifswald, Germany
| | | | - Oliver Otto
- Author to whom correspondence should be addressed:
| |
Collapse
|
13
|
Yue P, Zhang Y, Liu L, Zhou K, Xia S, Peng M, Yan H, Tang X, Chen Z, Zhang D, Guo J, Pu WT, Guo Y, Hua Y, Li Y. Yap1 modulates cardiomyocyte hypertrophy via impaired mitochondrial biogenesis in response to chronic mechanical stress overload. Am J Cancer Res 2022; 12:7009-7031. [PMID: 36276651 PMCID: PMC9576622 DOI: 10.7150/thno.74563] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/23/2022] [Indexed: 12/04/2022] Open
Abstract
Rationale: Chronic pressure overload is a major trigger of cardiac pathological hypertrophy that eventually leads to heart disease and heart failure. Understanding the mechanisms governing hypertrophy is the key to develop therapeutic strategies for heart diseases. Methods: We built chronic pressure overload mice model by abdominal aortic constriction (AAC) to explore the features of Yes-associated protein 1 (YAP1). Then AAV-cTNT-Cre was applied to Yap1F/F mice to induce mosaic depletion of YAP1. Myh6CreERT2; H11CAG-LSL-YAP1 mice were involved to establish YAP1 overexpression model by Tomaxifen injection. ATAC-seq and bioChIP-seq were used to explore the potential targets of YAP1, which were verified by a series of luciferase reporter assays. Dnm1l and Mfn1 were re-expressed in AAC mice by AAV-cTNT-Dnm1l and AAV-cTNT-Mfn1. Finally, Verteprofin was used to inhibit YAP1 to rescue cardiac hypertrophy. Results: We found that pathological hypertrophy was accompanied with the activation of YAP1. Cardiomyocyte-specific deletion of Yap1 attenuated AAC-induced hypertrophy. Overexpression of YAP1 was sufficient to phenocopy AAC-induced hypertrophy. YAP1 activation resulted in the perturbation of mitochondria ultrastructure and function, which was associated with the repression of mitochondria dynamics regulators Dnm1l and Mfn1. Mitochondrial-related genes Dnm1l and Mfn1, are significantly targeted by TEAD1/YAP complex. Overexpression of Dnm1l and Mfn1 synergistically rescued YAP1-induced mitochondrial damages and cardiac hypertrophy. Pharmacological repression of YAP1 by verteporfin attenuated mitochondrial damages and pathological hypertrophy in AAC-treated mice. Interestingly, YAP1-induced mitochondria damages also led to increased reactive oxidative species, DNA damages, and the suppression of cardiomyocyte proliferation. Conclusion: Together, these data uncovered YAP signaling as a therapeutic target for pressure overload-induced heart diseases and cautioned the efforts to induce cardiomyocyte regeneration by activating YAP.
Collapse
Affiliation(s)
- Peng Yue
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yue Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lei Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shutao Xia
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, Hubei 430062, China
| | - Mou Peng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hualin Yan
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhan Chen
- Peking University Health Science Center, School of Basic Medical Sciences, The Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, Hubei 430062, China
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115 USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138 USA
| | - Yuxuan Guo
- Peking University Health Science Center, School of Basic Medical Sciences, The Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
14
|
Tortorella I, Argentati C, Emiliani C, Morena F, Martino S. Biochemical Pathways of Cellular Mechanosensing/Mechanotransduction and Their Role in Neurodegenerative Diseases Pathogenesis. Cells 2022; 11:3093. [PMID: 36231055 PMCID: PMC9563116 DOI: 10.3390/cells11193093] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 12/11/2022] Open
Abstract
In this review, we shed light on recent advances regarding the characterization of biochemical pathways of cellular mechanosensing and mechanotransduction with particular attention to their role in neurodegenerative disease pathogenesis. While the mechanistic components of these pathways are mostly uncovered today, the crosstalk between mechanical forces and soluble intracellular signaling is still not fully elucidated. Here, we recapitulate the general concepts of mechanobiology and the mechanisms that govern the mechanosensing and mechanotransduction processes, and we examine the crosstalk between mechanical stimuli and intracellular biochemical response, highlighting their effect on cellular organelles' homeostasis and dysfunction. In particular, we discuss the current knowledge about the translation of mechanosignaling into biochemical signaling, focusing on those diseases that encompass metabolic accumulation of mutant proteins and have as primary characteristics the formation of pathological intracellular aggregates, such as Alzheimer's Disease, Huntington's Disease, Amyotrophic Lateral Sclerosis and Parkinson's Disease. Overall, recent findings elucidate how mechanosensing and mechanotransduction pathways may be crucial to understand the pathogenic mechanisms underlying neurodegenerative diseases and emphasize the importance of these pathways for identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Ilaria Tortorella
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Chiara Argentati
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza CEMIN (Materiali Innovativi Nanostrutturali per Applicazioni Chimica Fisiche e Biomediche), University of Perugia, 06123 Perugia, Italy
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
- Centro di Eccellenza CEMIN (Materiali Innovativi Nanostrutturali per Applicazioni Chimica Fisiche e Biomediche), University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
15
|
The Role of Mitochondrial Quality Control in Anthracycline-Induced Cardiotoxicity: From Bench to Bedside. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3659278. [PMID: 36187332 PMCID: PMC9519345 DOI: 10.1155/2022/3659278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
Cardiotoxicity is the major side effect of anthracyclines (doxorubicin, daunorubicin, epirubicin, and idarubicin), though being the most commonly used chemotherapy drugs and the mainstay of therapy in solid and hematological neoplasms. Advances in the field of cardio-oncology have expanded our understanding of the molecular mechanisms underlying anthracycline-induced cardiotoxicity (AIC). AIC has a complex pathogenesis that includes a variety of aspects such as oxidative stress, autophagy, and inflammation. Emerging evidence has strongly suggested that the loss of mitochondrial quality control (MQC) plays an important role in the progression of AIC. Mitochondria are vital organelles in the cardiomyocytes that serve as the key regulators of reactive oxygen species (ROS) production, energy metabolism, cell death, and calcium buffering. However, as mitochondria are susceptible to damage, the MQC system, including mitochondrial dynamics (fusion/fission), mitophagy, mitochondrial biogenesis, and mitochondrial protein quality control, appears to be crucial in maintaining mitochondrial homeostasis. In this review, we summarize current evidence on the role of MQC in the pathogenesis of AIC and highlight the therapeutic potential of restoring the cardiomyocyte MQC system in the prevention and intervention of AIC.
Collapse
|
16
|
Cai C, Wu F, He J, Zhang Y, Shi N, Peng X, Ou Q, Li Z, Jiang X, Zhong J, Tan Y. Mitochondrial quality control in diabetic cardiomyopathy: from molecular mechanisms to therapeutic strategies. Int J Biol Sci 2022; 18:5276-5290. [PMID: 36147470 PMCID: PMC9461654 DOI: 10.7150/ijbs.75402] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/18/2022] [Indexed: 11/05/2022] Open
Abstract
In diabetic cardiomyopathy (DCM), a major diabetic complication, the myocardium is structurally and functionally altered without evidence of coronary artery disease, hypertension or valvular disease. Although numerous anti-diabetic drugs have been applied clinically, specific medicines to prevent DCM progression are unavailable, so the prognosis of DCM remains poor. Mitochondrial ATP production maintains the energetic requirements of cardiomyocytes, whereas mitochondrial dysfunction can induce or aggravate DCM by promoting oxidative stress, dysregulated calcium homeostasis, metabolic reprogramming, abnormal intracellular signaling and mitochondrial apoptosis in cardiomyocytes. In response to mitochondrial dysfunction, the mitochondrial quality control (MQC) system (including mitochondrial fission, fusion, and mitophagy) is activated to repair damaged mitochondria. Physiological mitochondrial fission fragments the network to isolate damaged mitochondria. Mitophagy then allows dysfunctional mitochondria to be engulfed by autophagosomes and degraded in lysosomes. However, abnormal MQC results in excessive mitochondrial fission, impaired mitochondrial fusion and delayed mitophagy, causing fragmented mitochondria to accumulate in cardiomyocytes. In this review, we summarize the molecular mechanisms of MQC and discuss how pathological MQC contributes to DCM development. We then present promising therapeutic approaches to improve MQC and prevent DCM progression.
Collapse
Affiliation(s)
- Chen Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Feng Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jing He
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yaoyuan Zhang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Nengxian Shi
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaojie Peng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qing Ou
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ziying Li
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaoqing Jiang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiankai Zhong
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528308, Guangdong, China
| | - Ying Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Critical Care Medicine, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
17
|
Cyclic Stretching Induces Maturation of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes through Nuclear-Mechanotransduction. Tissue Eng Regen Med 2022; 19:781-792. [PMID: 35258794 PMCID: PMC9294081 DOI: 10.1007/s13770-021-00427-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 11/22/2021] [Accepted: 12/21/2021] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND During cardiogenesis, cardiac cells receive various stimuli, such as biomechanical and chemical cues, from the surrounding microenvironment, and these signals induce the maturation of heart cells. Mechanical force, especially tensile force in the heart, is one of the key stimuli that induce cardiomyocyte (CM) maturation through mechanotransduction, a process through which physical cues are transformed into biological responses. However, the effects and mechanisms of tensile force on cell maturation are poorly studied. METHODS In this study, we developed a cyclic stretch system that mimics the mechanical environment of the heart by loading tensile force to human-induced pluripotent stem cell (hiPSC)-derived CMs. hiPSC-CMs cultured with the cyclic stretch system analyzed morphological change, immunofluorescent staining, expression of maturation markers in mRNA, and beating properties compared to static cultures. RESULTS hiPSC-CMs cultured with the cyclic stretch system showed increased cell alignment, sarcomere length and expression of maturation markers in mRNA, such as TNNI3, MYL2 and TTN, compared to static cultures. Especially, the expression of genes related to nuclear mechanotransduction, such as Yap1, Lamin A/C, plectin, and desmin, was increased in the cyclically stretched hiPSC-CMs. Furthermore, the volume of the nucleus was increased by as much as 120% in the cyclic stretch group. CONCLUSION These results revealed that nuclear mechanotransduction induced by tensile force is involved in CM maturation. Together, these findings provide novel evidence suggesting that nuclear mechanotransduction induced by tensile force is involved in the regulation of cardiac maturation.
Collapse
|
18
|
Lin C, Zheng X, Lin S, Zhang Y, Wu J, Li Y. Mechanotransduction Regulates the Interplays Between Alveolar Epithelial and Vascular Endothelial Cells in Lung. Front Physiol 2022; 13:818394. [PMID: 35250619 PMCID: PMC8895143 DOI: 10.3389/fphys.2022.818394] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/28/2022] [Indexed: 12/22/2022] Open
Abstract
Mechanical stress plays a critical role among development, functional maturation, and pathogenesis of pulmonary tissues, especially for the alveolar epithelial cells and vascular endothelial cells located in the microenvironment established with vascular network and bronchial-alveolar network. Alveolar epithelial cells are mainly loaded by cyclic strain and air pressure tension. While vascular endothelial cells are exposed to shear stress and cyclic strain. Currently, the emerging evidences demonstrated that non-physiological mechanical forces would lead to several pulmonary diseases, including pulmonary hypertension, fibrosis, and ventilation induced lung injury. Furthermore, a series of intracellular signaling had been identified to be involved in mechanotransduction and participated in regulating the physiological homeostasis and pathophysiological process. Besides, the communications between alveolar epithelium and vascular endothelium under non-physiological stress contribute to the remodeling of the pulmonary micro-environment in collaboration, including hypoxia induced injuries, endothelial permeability impairment, extracellular matrix stiffness elevation, metabolic alternation, and inflammation activation. In this review, we aim to summarize the current understandings of mechanotransduction on the relation between mechanical forces acting on the lung and biological response in mechanical overloading related diseases. We also would like to emphasize the interplays between alveolar epithelium and vascular endothelium, providing new insights into pulmonary diseases pathogenesis, and potential targets for therapy.
Collapse
Affiliation(s)
- Chuyang Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaolan Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Sha Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yue Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jinlin Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Morsink M, Severino P, Luna-Ceron E, Hussain MA, Sobahi N, Shin SR. Effects of electrically conductive nano-biomaterials on regulating cardiomyocyte behavior for cardiac repair and regeneration. Acta Biomater 2022; 139:141-156. [PMID: 34818579 PMCID: PMC11041526 DOI: 10.1016/j.actbio.2021.11.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023]
Abstract
Myocardial infarction (MI) represents one of the most prevalent cardiovascular diseases, with a highly relevant and impactful role in public health. Despite the therapeutic advances of the last decades, MI still begets extensive death rates around the world. The pathophysiology of the disease correlates with cardiomyocyte necrosis, caused by an imbalance in the demand of oxygen to cardiac tissues, resulting from obstruction of the coronary flow. To alleviate the severe effects of MI, the use of various biomaterials exhibit vast potential in cardiac repair and regeneration, acting as native extracellular matrices. These hydrogels have been combined with nano sized or functional materials which possess unique electrical, mechanical, and topographical properties that play important roles in regulating phenotypes and the contractile function of cardiomyocytes even in adverse microenvironments. These nano-biomaterials' differential properties have led to substantial healing on in vivo cardiac injury models by promoting fibrotic scar reduction, hemodynamic function preservation, and benign cardiac remodeling. In this review, we discuss the interplay of the unique physical properties of electrically conductive nano-biomaterials, are able to manipulate the phenotypes and the electrophysiological behavior of cardiomyocytes in vitro, and can enhance heart regeneration in vivo. Consequently, the understanding of the decisive roles of the nano-biomaterials discussed in this review could be useful for designing novel nano-biomaterials in future research for cardiac tissue engineering and regeneration. STATEMENT OF SIGNIFICANCE: This study introduced and deciphered the understanding of the role of multimodal cues in recent advances of electrically conductive nano-biomaterials on cardiac tissue engineering. Compared with other review papers, which mainly describe these studies based on various types of electrically conductive nano-biomaterials, in this review paper we mainly discussed the interplay of the unique physical properties (electrical conductivity, mechanical properties, and topography) of electrically conductive nano-biomaterials, which would allow them to manipulate phenotypes and the electrophysiological behavior of cardiomyocytes in vitro and to enhance heart regeneration in vivo. Consequently, understanding the decisive roles of the nano-biomaterials discussed in the review could help design novel nano-biomaterials in future research for cardiac tissue engineering and regeneration.
Collapse
Affiliation(s)
- Margaretha Morsink
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, United States of America; Translational Liver Research, Department of Medical Cell BioPhysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, Netherlands; Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, Netherlands
| | - Patrícia Severino
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, United States of America; University of Tiradentes (Unit), Biotechnological Postgraduate Program. Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil; Institute of Technology and Research (ITP), Nanomedicine and Nanotechnology Laboratory (LNMed), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil; Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, United States of America
| | - Eder Luna-Ceron
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, United States of America
| | - Mohammad A Hussain
- Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| | - Nebras Sobahi
- Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, United States of America.
| |
Collapse
|
20
|
Liu L, Yue P, Zhang Y, Hua Y, Bi W, Yan H, Liao H, Li J, Zhou K, Li Y. Non-cell-autonomous manner of AAV administration to attenuate cardiomyocyte hypertrophy by targeting paracrine signaling on ECM to reduce viral dosage. Signal Transduct Target Ther 2022; 7:2. [PMID: 34980885 PMCID: PMC8724271 DOI: 10.1038/s41392-021-00715-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 02/05/2023] Open
Affiliation(s)
- Lei Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peng Yue
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yimin Hua
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenwei Bi
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, Jülich, Germany
| | - Hualin Yan
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongyu Liao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiawen Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kaiyu Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
21
|
Jiang M, Xie X, Cao F, Wang Y. Mitochondrial Metabolism in Myocardial Remodeling and Mechanical Unloading: Implications for Ischemic Heart Disease. Front Cardiovasc Med 2021; 8:789267. [PMID: 34957264 PMCID: PMC8695728 DOI: 10.3389/fcvm.2021.789267] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Ischemic heart disease refers to myocardial degeneration, necrosis, and fibrosis caused by coronary artery disease. It can lead to severe left ventricular dysfunction (LVEF ≤ 35–40%) and is a major cause of heart failure (HF). In each contraction, myocardium is subjected to a variety of mechanical forces, such as stretch, afterload, and shear stress, and these mechanical stresses are clinically associated with myocardial remodeling and, eventually, cardiac outcomes. Mitochondria produce 90% of ATP in the heart and participate in metabolic pathways that regulate the balance of glucose and fatty acid oxidative phosphorylation. However, altered energetics and metabolic reprogramming are proved to aggravate HF development and progression by disturbing substrate utilization. This review briefly summarizes the current insights into the adaptations of cardiomyocytes to mechanical stimuli and underlying mechanisms in ischemic heart disease, with focusing on mitochondrial metabolism. We also discuss how mechanical circulatory support (MCS) alters myocardial energy metabolism and affects the detrimental metabolic adaptations of the dysfunctional myocardium.
Collapse
Affiliation(s)
- Min Jiang
- Department of Cardiology, National Clinical Research Center for Geriatric Disease, The Second Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.,College of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xiaoye Xie
- Department of Cardiology, National Clinical Research Center for Geriatric Disease, The Second Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China.,Department of Cadre Ward, The 960 Hospital of Chinese People's Liberation Army, Jinan, China
| | - Feng Cao
- Department of Cardiology, National Clinical Research Center for Geriatric Disease, The Second Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yabin Wang
- Department of Cardiology, National Clinical Research Center for Geriatric Disease, The Second Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
22
|
Wang Y, Xu M, Yue P, Zhang D, Tong J, Li Y. Novel Insights Into the Potential Mechanisms of N6-Methyladenosine RNA Modification on Sepsis-Induced Cardiovascular Dysfunction: An Update Summary on Direct and Indirect Evidences. Front Cell Dev Biol 2021; 9:772921. [PMID: 34869371 PMCID: PMC8633316 DOI: 10.3389/fcell.2021.772921] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a host’s dysfunctional response to infection. As is known to all, septic heart disease occurs because pathogens invading the blood stimulate the activation of endothelial cells, causing a large number of white blood cells to accumulate and trigger an immune response. However, in severe sepsis, the hematopoietic system is inhibited, and there will also be a decline in white blood cells, at which time the autoimmune system will also be suppressed. During the immune response, a large number of inflammatory factors are released into cells to participate in the inflammatory process, which ultimately damages cardiac myocytes and leads to impaired cardiac function. N6-methyladenosine (m6A) is a common RNA modification in mRNA and non-coding RNA that affects RNA splicing, translation, stability, and epigenetic effects of some non-coding RNAs. A large number of emerging evidences demonstrated m6A modification had been involved in multiple biological processes, especially for sepsis and immune disorders. Unfortunately, there are limited results provided to analyze the association between m6A modification and sepsis-induced cardiovascular dysfunction (SICD). In this review, we firstly summarized current evidences on how m6A mediates the pathophysiological process in cardiac development and cardiomyopathy to emphasize the importance of RNA methylation in maintaining heart biogenesis and homeostasis. Then, we clarified the participants of m6A modification in extended inflammatory responses and immune system activation, which are the dominant and initial changes secondary to sepsis attack. After that, we deeply analyzed the top causes of SICD and identified the activation of inflammatory cytokines, endothelial cell dysfunction, and mitochondrial failure. Thus, the highlight of this review is that we systematically collected all the related potential mechanisms between m6A modification and SICD causes. Although there is lack of direct evidences on SICD, indirect evidences had been demonstrated case by case on every particular molecular mechanism and signal transduction, which require further explorations into the potential links among the listed mechanisms. This provides novel insights into the understanding of SICD.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Miaomiao Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Peng Yue
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Jiyu Tong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Carlos-Oliveira M, Lozano-Juan F, Occhetta P, Visone R, Rasponi M. Current strategies of mechanical stimulation for maturation of cardiac microtissues. Biophys Rev 2021; 13:717-727. [PMID: 34765047 PMCID: PMC8555032 DOI: 10.1007/s12551-021-00841-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
The most advanced in vitro cardiac models are today based on the use of induced pluripotent stem cells (iPSCs); however, the maturation of cardiomyocytes (CMs) has not yet been fully achieved. Therefore, there is a rising need to move towards models capable of promoting an adult-like cardiomyocytes phenotype. Many strategies have been applied such as co-culture of cardiomyocytes, with fibroblasts and endothelial cells, or conditioning them through biochemical factors and physical stimulations. Here, we focus on mechanical stimulation as it aims to mimic the different mechanical forces that heart receives during its development and the post-natal period. We describe the current strategies and the mechanical properties necessary to promote a positive response in cardiac tissues from different cell sources, distinguishing between passive stimulation, which includes stiffness, topography and static stress and active stimulation, encompassing cyclic strain, compression or perfusion. We also highlight how mechanical stimulation is applied in disease modelling.
Collapse
Affiliation(s)
- Maria Carlos-Oliveira
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy
| | - Ferran Lozano-Juan
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy.,BiomimX S.r.l., Via G. Durando 38/A, 20158 Milano, Italy
| | - Paola Occhetta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy
| | - Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy
| |
Collapse
|
24
|
Disease Modeling of Mitochondrial Cardiomyopathy Using Patient-Specific Induced Pluripotent Stem Cells. BIOLOGY 2021; 10:biology10100981. [PMID: 34681080 PMCID: PMC8533352 DOI: 10.3390/biology10100981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022]
Abstract
Mitochondrial cardiomyopathy (MCM) is characterized as an oxidative phosphorylation disorder of the heart. More than 100 genetic variants in nuclear or mitochondrial DNA have been associated with MCM. However, the underlying molecular mechanisms linking genetic variants to MCM are not fully understood due to the lack of appropriate cellular and animal models. Patient-specific induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iPSC-CMs) provide an attractive experimental platform for modeling cardiovascular diseases and predicting drug efficacy to such diseases. Here we introduce the pathological and therapeutic studies of MCM using iPSC-CMs and discuss the questions and latest strategies for research using iPSC-CMs.
Collapse
|
25
|
Early JO, Fagan LE, Curtis AM, Kennedy OD. Mitochondria in Injury, Inflammation and Disease of Articular Skeletal Joints. Front Immunol 2021; 12:695257. [PMID: 34539627 PMCID: PMC8448207 DOI: 10.3389/fimmu.2021.695257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is an important biological response to tissue damage caused by injury, with a crucial role in initiating and controlling the healing process. However, dysregulation of the process can also be a major contributor to tissue damage. Related to this, although mitochondria are typically thought of in terms of energy production, it has recently become clear that these important organelles also orchestrate the inflammatory response via multiple mechanisms. Dysregulated inflammation is a well-recognised problem in skeletal joint diseases, such as rheumatoid arthritis. Interestingly osteoarthritis (OA), despite traditionally being known as a ‘non-inflammatory arthritis’, now appears to involve an element of chronic inflammation. OA is considered an umbrella term for a family of diseases stemming from a range of aetiologies (age, obesity etc.), but all with a common presentation. One particular OA sub-set called Post-Traumatic OA (PTOA) results from acute mechanical injury to the joint. Whether the initial mechanical tissue damage, or the subsequent inflammatory response drives disease, is currently unclear. In the former case; mechanobiological properties of cells/tissues in the joint are a crucial consideration. Many such cell-types have been shown to be exquisitely sensitive to their mechanical environment, which can alter their mitochondrial and cellular function. For example, in bone and cartilage cells fluid-flow induced shear stresses can modulate cytoskeletal dynamics and gene expression profiles. More recently, immune cells were shown to be highly sensitive to hydrostatic pressure. In each of these cases mitochondria were central to these responses. In terms of acute inflammation, mitochondria may have a pivotal role in linking joint tissue injury with chronic disease. These processes could involve the immune cells recruited to the joint, native/resident joint cells that have been damaged, or both. Taken together, these observations suggest that mitochondria are likely to play an important role in linking acute joint tissue injury, inflammation, and long-term chronic joint degeneration - and that the process involves mechanobiological factors. In this review, we will explore the links between mechanobiology, mitochondrial function, inflammation/tissue-damage in joint injury and disease. We will also explore some emerging mitochondrial therapeutics and their potential for application in PTOA.
Collapse
Affiliation(s)
- James Orman Early
- Department of Anatomy and Regenerative Medicine and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Lauren E Fagan
- Department of Anatomy and Regenerative Medicine and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Annie M Curtis
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Oran D Kennedy
- Department of Anatomy and Regenerative Medicine and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
26
|
Selman M, Pardo A. Fibroageing: An ageing pathological feature driven by dysregulated extracellular matrix-cell mechanobiology. Ageing Res Rev 2021; 70:101393. [PMID: 34139337 DOI: 10.1016/j.arr.2021.101393] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
Ageing is a multifactorial biological process leading to a progressive decline of physiological functions. The process of ageing includes numerous changes in the cells and the interactions between cell-cell and cell-microenvironment remaining as a critical risk factor for the development of chronic degenerative diseases. Systemic inflammation, known as inflammageing, increases as a consequence of ageing contributing to age-related morbidities. But also, persistent and uncontrolled activation of fibrotic pathways, with excessive accumulation of extracellular matrix (ECM) and organ dysfunction is markedly more frequent in the elderly. In this context, we introduce here the concept of Fibroageing, that is, the propensity to develop tissue fibrosis associated with ageing, and propose that ECM is a key player underlying this process. During ageing, molecules of the ECM become damaged through many modifications including glycation, crosslinking, and accumulation, leading to matrix stiffness which intensifies ageing-associated alterations. We provide a framework with some mechanistic hypotheses proposing that stiff ECM, in addition to the well-known activation of fibrotic positive feedback loops, affect several of the hallmarks of ageing, such as cell senescence and mitochondrial dysfunction, and in this context, is a key mechanism and a driver thread of Fibroageing.
Collapse
|
27
|
Jiang X, Wu D, Jiang Z, Ling W, Qian G. Protective Effect of Nicorandil on Cardiac Microvascular Injury: Role of Mitochondrial Integrity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4665632. [PMID: 34285763 PMCID: PMC8275446 DOI: 10.1155/2021/4665632] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/28/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023]
Abstract
A major shortcoming of postischemic therapy for myocardial infarction is the no-reflow phenomenon due to impaired cardiac microvascular function including microcirculatory barrier function, loss of endothelial activity, local inflammatory cell accumulation, and increased oxidative stress. Consequently, inadequate reperfusion of the microcirculation causes secondary ischemia, aggravating the myocardial reperfusion injury. ATP-sensitive potassium ion (KATP) channels regulate the coronary blood flow and protect cardiomyocytes from ischemia-reperfusion injury. Studies in animal models of myocardial ischemia-reperfusion have illustrated that the opening of mitochondrial KATP (mito-KATP) channels alleviates endothelial dysfunction and reduces myocardial necrosis. By contrast, blocking mito-KATP channels aggravates microvascular necrosis and no-reflow phenomenon following ischemia-reperfusion injury. Nicorandil, as an antianginal drug, has been used for ischemic preconditioning (IPC) due to its mito-KATP channel-opening effect, thereby limiting infarct size and subsequent severe ischemic insult. In this review, we analyze the protective actions of nicorandil against microcirculation reperfusion injury with a focus on improving mitochondrial integrity. In addition, we discuss the function of mitochondria in the pathogenesis of myocardial ischemia.
Collapse
Affiliation(s)
- Xiaosi Jiang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Dan Wu
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zichao Jiang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Weiwei Ling
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Geng Qian
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|