1
|
Druta A, Bouhmala R, Ragdi T, Luna M, Bañobre-López M, Masaguer CF, Amorín M, Barbosa S, Taboada P, Coelho A. Developing Heterogeneous Porous 3D-Printed SiO 2-Pd-K 2SiO 3 Monolithic Catalyst via Surface MOF Growth and Pyrolysis for the Synthesis of Antitumoral Isatins. Pharmaceutics 2025; 17:505. [PMID: 40284500 PMCID: PMC12030608 DOI: 10.3390/pharmaceutics17040505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: The isatin nucleus is a privileged scaffold in drug discovery, particularly due to its proven relevance in anticancer research. Developing reusable heterogeneous 3D catalysts for drug synthesis represents a critical challenge in both industrial and academic contexts. This multi and interdisciplinary work aimed to design and synthesize a novel 3D-printed silica-based porous catalyst functionalized with palladium, evaluate its catalytic performance in isatin drug synthesis, and assess the antiproliferative activity of the resulting compounds against tumor cell lines such as HeLa, MCF-7, and MDA-MB231. Methods: The novel multifaceted approach to synthesizing this heterogeneous catalyst involved the surface growth of a metal-organic framework (ZIF-8) on 3D-printed silica support, followed by potassium silicate coating and pyrolysis. Results: After detailed physicochemical characterization, the catalyst was tested in challenging "double" palladium-catalyzed cross-coupling reactions (Suzuki, Stille, and Heck), demonstrating robustness, reusability, and high efficiency in producing bis-1,5-aryl, alkynyl, and alkenyl-isatin derivatives. Importantly, no leaching of palladium species was detected during the catalytic cycles, further underscoring the stability of the system. These isatin-based compounds exhibited remarkable cytotoxicity, with selective molecules achieving nanomolar potency against MCF-7 cells, surpassing reference drugs such as doxorubicin and sunitinib. Conclusions: This study not only introduces a novel strategy for fabricating porous heterogeneous catalysts from sintered surfaces but also highlights new biomolecules with promising applications in cancer research.
Collapse
Affiliation(s)
- Alexandrina Druta
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.D.); (R.B.); (T.R.); (C.F.M.); (M.A.)
- Colloids and Polymers Physics Group, Department of Physics of Particles, Faculty of Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.L.); (S.B.)
| | - Rania Bouhmala
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.D.); (R.B.); (T.R.); (C.F.M.); (M.A.)
| | - Teqwa Ragdi
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.D.); (R.B.); (T.R.); (C.F.M.); (M.A.)
| | - Mariangel Luna
- Colloids and Polymers Physics Group, Department of Physics of Particles, Faculty of Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.L.); (S.B.)
- Institute of Materials-USC (IMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel Bañobre-López
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal;
| | - Christian F. Masaguer
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.D.); (R.B.); (T.R.); (C.F.M.); (M.A.)
| | - Manuel Amorín
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.D.); (R.B.); (T.R.); (C.F.M.); (M.A.)
| | - Silvia Barbosa
- Colloids and Polymers Physics Group, Department of Physics of Particles, Faculty of Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.L.); (S.B.)
- Institute of Materials-USC (IMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pablo Taboada
- Colloids and Polymers Physics Group, Department of Physics of Particles, Faculty of Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.L.); (S.B.)
- Institute of Materials-USC (IMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Alberto Coelho
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (A.D.); (R.B.); (T.R.); (C.F.M.); (M.A.)
- Colloids and Polymers Physics Group, Department of Physics of Particles, Faculty of Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.L.); (S.B.)
- Institute of Materials-USC (IMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
2
|
Mehanna LE, Boyd JD, Walker CG, Osborne AR, Grady ME, Berron BJ. Functional assessment of migration and adhesion to quantify cancer cell aggression. SOFT MATTER 2025; 21:2946-2957. [PMID: 40151848 DOI: 10.1039/d4sm01351d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
During epithelial-to-mesenchymal transition (EMT), cancer cells lose their cell-cell adhesion junctions as they become more metastatic, altering cell motility and focal adhesion disassembly associated with increased detachment from the primary tumor and a migratory response into nearby tissue and vasculature. Current in vitro strategies characterizing a cell's metastatic potential heavily favor quantifying the presence of cell adhesion biomarkers through biochemical analysis; however, mechanical cues such as adhesion and motility directly relate to cell metastatic potential without needing to first identify a cell specific biomarker for a particular type of cancer. This paper presents a comprehensive comparison of two functional metrics of cancer aggression, wound closure migration velocity and cell detachment from a culture surface, for three pairs of epithelial cancer cell lines (breast, endometrium, tongue tissue origins). It was found that one functional metric alone was not sufficient to categorize the cancer cell lines; instead, both metrics were necessary to identify functional trends and accurately place cells on the spectrum of metastasis. On average, cell lines with low metastatic potential (MCF-7, Ishikawa, and Cal-27) were more aggressive through wound closure migration compared to loss of cell adhesion. On the other hand, cell lines with high metastatic potential (MDA-MB-231, KLE, and SCC-25) were on average more aggressive through loss of cell adhesion compared to wound closure migration. This trend was true independent of the tissue type where the cells originated, indicating that there is a relationship between metastatic potential and the predominate type of cancer aggression. Our work presents one of the first combined studies relating cell metastatic potential to functional migration and adhesion metrics across cancer cell lines from selected tissue origins, without needing to identify tissue-specific biomarkers to achieve success. Using functional metrics provides powerful clinical relevancy for future predictive tools of cancer metastasis.
Collapse
Affiliation(s)
- Lauren E Mehanna
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY 40506, USA.
| | - James D Boyd
- Department of Mechanical and Aerospace Engineering, University of Kentucky, 151 Ralph G. Anderson Building, Lexington, KY 40506, USA.
| | - Chloe G Walker
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY 40506, USA.
| | - Adrianna R Osborne
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY 40506, USA.
| | - Martha E Grady
- Department of Mechanical and Aerospace Engineering, University of Kentucky, 151 Ralph G. Anderson Building, Lexington, KY 40506, USA.
| | - Brad J Berron
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, KY 40506, USA.
| |
Collapse
|
3
|
Magar RT, Pham VTT, Poudel PB, Bridget AF, Sohng JK. A new peucemycin derivative and impacts of peuR and bldA on peucemycin biosynthesis in Streptomyces peucetius. Appl Microbiol Biotechnol 2024; 108:107. [PMID: 38217253 PMCID: PMC10786969 DOI: 10.1007/s00253-023-12923-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/05/2023] [Accepted: 10/30/2023] [Indexed: 01/15/2024]
Abstract
Streptomyces peucetius ATCC 27952 is known to produce a variety of secondary metabolites, including two important antitumor anthracyclines: daunorubicin and doxorubicin. Identification of peucemycin and 25-hydroxy peucemycin (peucemycin A), as well as their biosynthetic pathway, has expanded its biosynthetic potential. In this study, we isolated a new peucemycin derivative and identified it as 19-hydroxy peucemycin (peucemycin B). Its antibacterial activity was lower than those of peucemycin and peucemycin A. On the other hand, this newly identified peucemycin derivative had higher anticancer activity than the other two compounds for MKN45, NCI-H1650, and MDA-MB-231 cancer cell lines with IC50 values of 76.97 µM, 99.68 µM, and 135.2 µM, respectively. Peucemycin biosynthetic gene cluster revealed the presence of a SARP regulator named PeuR whose role was unknown. The presence of the TTA codon in the peuR and the absence of global regulator BldA in S. peucetius reduced its ability to regulate the peucemycin biosynthetic gene cluster. Hence, different mutants harboring these genes were prepared. S. peucetius bldA25 harboring bldA produced 1.75 times and 1.77 times more peucemycin A (11.8 mg/L) and peucemycin B (21.2 mg/L), respectively, than the wild type. On the other hand, S. peucetius R25 harboring peuR produced 1.86 and 1.79 times more peucemycin A (12.5 mg/L) and peucemycin B (21.5 mg/L), respectively, than the wild type. Finally, strain S. peucetius bldAR25 carrying bldA and peuR produced roughly 3.52 and 2.63 times more peucemycin A (23.8 mg/L) and peucemycin B (31.5 mg/L), respectively, than the wild type. KEY POINTS: • This study identifies a new peucemycin derivative, 19-hydroxy peucemycin (peucemycin B). • The SARP regulator (PeuR) acts as a positive regulator of the peucemycin biosynthetic gene cluster. • The overexpression of peuR and heterologous expression of bldA increase the production of peucemycin derivatives.
Collapse
Affiliation(s)
- Rubin Thapa Magar
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-Ro 221, Tangjeong-Myeon, Asan-Si, 31460, Chungnam, Korea
| | - Van Thuy Thi Pham
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-Ro 221, Tangjeong-Myeon, Asan-Si, 31460, Chungnam, Korea
| | - Purna Bahadur Poudel
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-Ro 221, Tangjeong-Myeon, Asan-Si, 31460, Chungnam, Korea
| | - Adzemye Fovennso Bridget
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-Ro 221, Tangjeong-Myeon, Asan-Si, 31460, Chungnam, Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-Ro 221, Tangjeong-Myeon, Asan-Si, 31460, Chungnam, Korea.
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sun Moon-Ro 221, Tangjeong-Myeon, Asan-Si, 31460, Chungnam, Korea.
| |
Collapse
|
4
|
Helvacioglu S, Charehsaz M, Bankoglu EE, Stopper H, Aydin A. The ameliorative effect of rosmarinic acid and epigallocatechin gallate against doxorubicin-induced genotoxicity. Drug Chem Toxicol 2024; 47:1087-1099. [PMID: 38529831 DOI: 10.1080/01480545.2024.2332790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/14/2024] [Indexed: 03/27/2024]
Abstract
Doxorubicin (Dox), an effective anticancer agent, is known for its genotoxic effects on normal cells. Phenolic compounds, renowned for their antitumor, antioxidant, and antigenotoxic properties, have gained prominence in recent years. This study investigates the individual and combined protective effects of rosmarinic acid (RA) and epigallocatechin gallate (EGCG) against Dox-induced genotoxicity using various in vitro test systems. The synergistic/antagonistic interaction of these combinations on Dox's chemotherapeutic effect is explored in breast cancer cell lines. Both RA and EGCG significantly mitigate Dox-induced genotoxicity in comet, micronucleus, and Ames assays. While Dox exhibits higher selectivity against MCF-7 cells, EGCG and RA show greater selectivity against MDA-MB-231 cells. The coefficient of drug interaction reveals a synergistic effect when RA or EGCG is combined with Dox in breast cancer cells. In conclusion, both EGCG and RA effectively reduce Dox-induced genetic damage and enhance Dox's cell viability-reducing effect in breast cancer cells.
Collapse
Affiliation(s)
- Sinem Helvacioglu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, İstinye University, Istanbul, Turkey
| | - Mohammad Charehsaz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Ahmet Aydin
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
5
|
Benyettou F, Khair M, Prakasam T, Varghese S, Matouk Z, Alkaabi M, Pena-Sánchez P, Boitet M, AbdulHalim R, Sharma SK, Ghemrawi R, Thomas S, Whelan J, Pasricha R, Jagannathan R, Gándara F, Trabolsi A. cRGD-Peptide Modified Covalent Organic Frameworks for Precision Chemotherapy in Triple-Negative Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56676-56695. [PMID: 39267454 PMCID: PMC11503616 DOI: 10.1021/acsami.4c10812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
This study presents the use of nanoscale covalent organic frameworks (nCOFs) conjugated with tumor-targeting peptides for the targeted therapy of triple-negative breast cancer (TNBC). While peptides have previously been used for targeted delivery, their conjugation with COFs represents an innovative approach in this field. In particular, we have developed alkyne-functionalized nCOFs chemically modified with cyclic RGD peptides (Alkyn-nCOF-cRGD). This configuration is designed to specifically target αvβ3 integrins that are overexpressed in TNBC cells. These nCOFs exhibit excellent biocompatibility and are engineered to selectively disintegrate under acidic conditions, allowing for precise and localized drug release in tumor environment. Doxorubicin, a chemotherapeutic agent, has been encapsulated in these nCOFs with high loading efficiency. The therapeutic potential of Alkyn-nCOF-cRGD has been demonstrated in vitro and in vivo models. It shows significantly improved drug uptake and targeted cell death in TNBC, highlighting the efficacy of receptor-mediated endocytosis and pH-controlled drug release. This strategy leverages the unique properties of nCOFs with targeted drug delivery to achieve significant advances in personalized cancer therapy and set a new standard for precision chemotherapeutic delivery.
Collapse
Affiliation(s)
- Farah Benyettou
- Chemistry
Program, New York University Abu Dhabi (NYUAD), Abu Dhabi 129188, United Arab Emirates
| | - Mostafa Khair
- Core Technology
Platforms, New York University Abu Dhabi, 129188 Abu Dhabi, United Arab Emirates
| | - Thirumurugan Prakasam
- Chemistry
Program, New York University Abu Dhabi (NYUAD), Abu Dhabi 129188, United Arab Emirates
| | - Sabu Varghese
- Core Technology
Platforms, New York University Abu Dhabi, 129188 Abu Dhabi, United Arab Emirates
| | - Zineb Matouk
- Technology
Innovative Institute, P.O. Box 9639, Abu Dhabi 9639, United Arab Emirates
| | - Maryam Alkaabi
- Chemistry
Program, New York University Abu Dhabi (NYUAD), Abu Dhabi 129188, United Arab Emirates
| | - Pilar Pena-Sánchez
- Instituto
de Ciencia de Materiales de Madrid-CSIC, C. Sor Juana Inés de La Cruz 3, Madrid 28049, Spain
| | - Maylis Boitet
- Core Technology
Platforms, New York University Abu Dhabi, 129188 Abu Dhabi, United Arab Emirates
| | - Rasha AbdulHalim
- Chemistry
Program, New York University Abu Dhabi (NYUAD), Abu Dhabi 129188, United Arab Emirates
| | - Sudhir Kumar Sharma
- Engineering
Division, New York University Abu Dhabi, 129188 Abu Dhabi, United Arab Emirates
| | - Rose Ghemrawi
- College
of Pharmacy, Al Ain University, P.O. Box 112612, Abu Dhabi 112612, United Arab Emirates
- AAU
Health and Biomedical Research Center, Al
Ain University, P.O. Box 112612, Abu Dhabi 112612, United Arab Emirates
| | - Sneha Thomas
- Core Technology
Platforms, New York University Abu Dhabi, 129188 Abu Dhabi, United Arab Emirates
| | - Jamie Whelan
- Chemistry
Program, New York University Abu Dhabi (NYUAD), Abu Dhabi 129188, United Arab Emirates
| | - Renu Pasricha
- Core Technology
Platforms, New York University Abu Dhabi, 129188 Abu Dhabi, United Arab Emirates
| | - Ramesh Jagannathan
- Engineering
Division, New York University Abu Dhabi, 129188 Abu Dhabi, United Arab Emirates
| | - Felipe Gándara
- Instituto
de Ciencia de Materiales de Madrid-CSIC, C. Sor Juana Inés de La Cruz 3, Madrid 28049, Spain
| | - Ali Trabolsi
- Chemistry
Program, New York University Abu Dhabi (NYUAD), Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|
6
|
Huang P, Zhang X, Prabhu JS, Pandey V. Therapeutic vulnerabilities in triple negative breast cancer: Stem-like traits explored within molecular classification. Biomed Pharmacother 2024; 174:116584. [PMID: 38613998 DOI: 10.1016/j.biopha.2024.116584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024] Open
Abstract
Triple Negative Breast Cancer (TNBC) is the most aggressive type of breast cancer (BC). Despite advances in the clinical management of TNBC, recurrence-related mortality remains a challenge. The stem-like phenotype of TNBC plays a significant role in the persistence of minimal disease residue after therapy. Individuals exhibiting stem-like characteristics are particularly prone to inducing malignant relapse accompanied by strong resistance. Therefore, stem-like traits have been broadly proposed as therapeutic vulnerabilities to treat TNBC and reduce recurrence. However, heterogeneity within TNBC often generally restricts the stability of the therapeutic efficacy. To understand the heterogeneity and manage TNBC more precisely, multiple TNBC subtyping categories have been reported, providing the basis for profile-according therapeutic regimens. To provide more insight into targeting stem-like traits to ablate TNBC and reduce recurrence in the context of heterogeneity, this paper reviewed the molecular subtyping of TNBC, identified the consensus subtypes with distinct stem-like phenotypes, characterized the stemness hierarchy of TNBC, outlined the biological models for stem-like TNBC subtypes, summarized the therapeutic vulnerabilities in stem-like traits of the subtypes, and proposed potential therapeutic regimens targeting stem-like characteristics to improve TNBC prognosis.
Collapse
Affiliation(s)
- Peng Huang
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, India
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
7
|
Gayan S, Teli A, Sonawane A, Dey T. Impact of Chemotherapeutic Stress Depends on The Nature of Breast Cancer Spheroid and Induce Behavioral Plasticity to Resistant Population. Adv Biol (Weinh) 2024; 8:e2300271. [PMID: 38063815 DOI: 10.1002/adbi.202300271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/20/2023] [Indexed: 04/15/2024]
Abstract
Cellular or tumor dormancy, identified recently as one of the main reasons behind post-therapy recurrence, can be caused by diverse reasons. Chemotherapy has recently been recognized as one of such reasons. However, in-depth studies of chemotherapy-induced dormancy are lacking due to the absence of an in vitro human-relevant model tailor-made for such a scenario. This report utilized multicellular breast cancer spheroid to create a primary platform for establishing a chemotherapy-induced dormancy model. It is observed that extreme chemotherapeutic stress affects invasive and non-invasive spheroids differently. Non-invasive spheroids exhibit more resilience and maintain viability and migrational ability, while invasive spheroids display heightened susceptibility and improved tumorigenic capacity. Heterogenous spheroids exhibit increased tumorigenic capacity while show minimal survival ability. Further probing of chemotherapeutically dormant spheroids is needed to understand the molecular mechanism and identify dormancy-related markers to achieve therapeutic success in the future.
Collapse
Affiliation(s)
- Sukanya Gayan
- Department of Biotechnology (merged with Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Abhishek Teli
- Department of Biotechnology (merged with Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Akshay Sonawane
- Department of Biotechnology (merged with Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| | - Tuli Dey
- Department of Biotechnology (merged with Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune, 411007, India
| |
Collapse
|
8
|
Cavanagh RJ, Monteiro PF, Moloney C, Travanut A, Mehradnia F, Taresco V, Rahman R, Martin SG, Grabowska AM, Ashford MB, Alexander C. Free drug and ROS-responsive nanoparticle delivery of synergistic doxorubicin and olaparib combinations to triple negative breast cancer models. Biomater Sci 2024; 12:1822-1840. [PMID: 38407276 DOI: 10.1039/d3bm01931d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Combinations of the topoisomerase II inhibitor doxorubicin and the poly (ADP-ribose) polymerase inhibitor olaparib offer potential drug-drug synergy for the treatment of triple negative breast cancers (TNBC). In this study we performed in vitro screening of combinations of these drugs, administered directly or encapsulated within polymer nanoparticles, in both 2D and in 3D spheroid models of breast cancer. A variety of assays were used to evaluate drug potency, and calculations of combination index (CI) values indicated that synergistic effects of drug combinations occurred in a molar-ratio dependent manner. It is suggested that the mechanisms of synergy were related to enhancement of DNA damage as shown by the level of double-strand DNA breaks, and mechanisms of antagonism associated with mitochondrial mediated cell survival, as indicated by reactive oxygen species (ROS) generation. Enhanced drug delivery and potency was observed with nanoparticle formulations, with a greater extent of doxorubicin localised to cell nuclei as evidenced by microscopy, and higher cytotoxicity at the same time points compared to free drugs. Together, the work presented identifies specific combinations of doxorubicin and olaparib which were most effective in a panel of TNBC cell lines, explores the mechanisms by which these combined agents might act, and shows that formulation of these drug combinations into polymeric nanoparticles at specific ratios conserves synergistic action and enhanced potency in vitro compared to the free drugs.
Collapse
Affiliation(s)
| | - Patrícia F Monteiro
- School of Pharmacy, University of Nottingham, NG7 2RD, UK.
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Cara Moloney
- School of Pharmacy, University of Nottingham, NG7 2RD, UK.
- School of Medicine, BioDiscovery Institute, University of Nottingham, NG7 2RD, UK
| | | | | | | | - Ruman Rahman
- School of Medicine, BioDiscovery Institute, University of Nottingham, NG7 2RD, UK
| | - Stewart G Martin
- School of Medicine, BioDiscovery Institute, University of Nottingham, NG7 2RD, UK
| | - Anna M Grabowska
- School of Medicine, BioDiscovery Institute, University of Nottingham, NG7 2RD, UK
| | - Marianne B Ashford
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | | |
Collapse
|
9
|
BharathwajChetty B, Sajeev A, Vishwa R, Aswani BS, Alqahtani MS, Abbas M, Kunnumakkara AB. Dynamic interplay of nuclear receptors in tumor cell plasticity and drug resistance: Shifting gears in malignant transformations and applications in cancer therapeutics. Cancer Metastasis Rev 2024; 43:321-362. [PMID: 38517618 DOI: 10.1007/s10555-024-10171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/19/2024] [Indexed: 03/24/2024]
Abstract
Recent advances have brought forth the complex interplay between tumor cell plasticity and its consequential impact on drug resistance and tumor recurrence, both of which are critical determinants of neoplastic progression and therapeutic efficacy. Various forms of tumor cell plasticity, instrumental in facilitating neoplastic cells to develop drug resistance, include epithelial-mesenchymal transition (EMT) alternatively termed epithelial-mesenchymal plasticity, the acquisition of cancer stem cell (CSC) attributes, and transdifferentiation into diverse cell lineages. Nuclear receptors (NRs) are a superfamily of transcription factors (TFs) that play an essential role in regulating a multitude of cellular processes, including cell proliferation, differentiation, and apoptosis. NRs have been implicated to play a critical role in modulating gene expression associated with tumor cell plasticity and drug resistance. This review aims to provide a comprehensive overview of the current understanding of how NRs regulate these key aspects of cancer biology. We discuss the diverse mechanisms through which NRs influence tumor cell plasticity, including EMT, stemness, and metastasis. Further, we explore the intricate relationship between NRs and drug resistance, highlighting the impact of NR signaling on chemotherapy, radiotherapy and targeted therapies. We also discuss the emerging therapeutic strategies targeting NRs to overcome tumor cell plasticity and drug resistance. This review also provides valuable insights into the current clinical trials that involve agonists or antagonists of NRs modulating various aspects of tumor cell plasticity, thereby delineating the potential of NRs as therapeutic targets for improved cancer treatment outcomes.
Collapse
Affiliation(s)
- Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
10
|
Zhang B, Du X, Fan Y, Qu G, Pang LK, Zhao R, Yao W. DLX2 promotes osteosarcoma epithelial-mesenchymal transition and doxorubicin resistance by enhancing HOXC8-CDH2 axis. iScience 2023; 26:108272. [PMID: 38026218 PMCID: PMC10651674 DOI: 10.1016/j.isci.2023.108272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/13/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Metastasis and doxorubicin resistance are challenges in the clinical diagnosis and treatment of osteosarcoma, the mechanisms underlying these phenomena remain unclear. In this study, we found that DLX2 is highly expressed in metastatic osteosarcoma and is closely related to clinical prognosis. Knockdown of DLX2 inhibited tumor proliferation and migration in vitro and inhibited tumor growth in vivo. Mechanistically, we found that DLX2 enhanced the repression of CDH2 transcription by binding to HOXC8, thereby promoting the epithelial-mesenchymal transition in osteosarcoma cells. Through subsequent exploration, we found that targeting DLX2/HOXC8 signaling significantly restores the sensitivity of osteosarcoma cells to doxorubicin. In conclusion, our findings demonstrate that DLX2 may enhance the transcriptional regulation of CDH2 through interacting with HOXC8, which in turn promotes epithelial-mesenchymal transition and doxorubicin resistance in osteosarcoma. These findings hold great potential for clinical application and may guide the development of novel targeted therapies for osteosarcoma.
Collapse
Affiliation(s)
- Boya Zhang
- Department of Bone and Soft Tissue Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xinhui Du
- Department of Bone and Soft Tissue Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Yichao Fan
- Department of Bone and Soft Tissue Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Guoxin Qu
- Department of Bone and Soft Tissue Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Lon Kai Pang
- Baylor College of Medicine, Houston, TX 77030, USA
| | - Ruiying Zhao
- Department of Intergrative Biology & Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Weitao Yao
- Department of Bone and Soft Tissue Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| |
Collapse
|
11
|
Ahmed Z, LoGiudice K, Mays G, Schorr A, Rowey R, Yang H, Trivedi S, Srivastava V. Increasing Chemotherapeutic Efficacy Using pH-Modulating and Doxorubicin-Releasing Injectable Chitosan-Poly(ethylene glycol) Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45626-45639. [PMID: 37729014 DOI: 10.1021/acsami.3c09733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Modulation of pH is crucial to maintaining the chemical homeostasis of biological environments. The irregular metabolic pathways exhibited by cancer cells result in the production of acidic byproducts that are excreted and accumulate in the extracellular tumor microenvironment, reducing the pH. As a consequence of the lower pH in tumors, cancer cells increase the expression of metastatic phenotypes and chemotherapeutic resistance. A significant limitation in current cancer therapies is the inability to locally deliver chemotherapeutics, leading to significant damage to healthy cells in systemic administration. To overcome these challenges, we present an injectable chitosan-poly(ethylene glycol) hydrogel that is dual-loaded with doxorubicin and sodium bicarbonate providing alkaline buffering of extracellular acidity and simultaneous chemotherapeutic delivery to increase chemotherapeutic efficacy. We conducted in vitro studies of weak base chemotherapeutic and alkaline buffer release from the hydrogel. The release of doxorubicin from hydrogels increased in a low-pH environment and was dependent on the encapsulated sodium bicarbonate concentration. We investigated the influence of pH on the doxorubicin efficacy and viability of MCF-7 and MDA-MB-231 breast cancer cell lines. The results show a 2- to 3-fold increase in IC50 values from neutral pH to low pH, showing decreased cancer cell viability at neutral pH as compared to acidic pH. The IC50 results were shown to correlate with a decrease in intracellular uptake of doxorubicin at low pH. The proposed hydrogels were confirmed to be nontoxic to healthy MCF-10A mammary epithelial cells. Rheological studies were performed to verify that the dual-loaded hydrogels were injectable. The mechanical and release properties of the hydrogels were maintained after extended storage. The chemotherapeutic activity of doxorubicin was evaluated in the presence of the proposed pH-regulating hydrogels. The findings suggest a promising nontoxic, biodegradable hydrogel buffer delivery system that can achieve two simultaneous important goals of local acidosis neutralization and chemotherapeutic release.
Collapse
Affiliation(s)
- Zahra Ahmed
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Kevin LoGiudice
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Gavin Mays
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Angelina Schorr
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Rachel Rowey
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Haisong Yang
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Shruti Trivedi
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Vikas Srivastava
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
12
|
Mahapatra M, Mohapatra P, Pakeeraiah K, Bandaru RK, Ahmad I, Mal S, Dandela R, Sahoo SK, Patel H, Paidesetty SK. In-vitro anticancer evaluation of newly designed and characterized tri/tetra-substituted imidazole congeners- maternal embryonic leucine zipper kinase inhibitors: Molecular docking and MD simulation approaches. Int J Biol Macromol 2023; 249:126084. [PMID: 37532192 DOI: 10.1016/j.ijbiomac.2023.126084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Our cascading attempt to develop new potent molecules now involves designing a series of imidazole derivatives and synthesizing two sets of 2,4,5- tri-substituted (4a-4d) and 1,2,4,5-tetra-substituted (6a-6d) imidazole by the principle of Debus-Radziszewski multicomponent synthesis reaction. The structures of the obtained compounds were confirmed by 1H/13C NMR, FT-IR, elemental analysis, purity and the retention time was analyzed by HPLC. Based upon the binding affinity in the molecular docking studies, we have synthesized different imidazole derivatives from which compound 6c have been found to show more anti-proliferative activity by inducing apoptosis at a higher rate than the other compounds corroborating the in-silico prediction. The structure and crystallinity of compound 4d have been confirmed by single XRD analysis. The synthesized molecules were screened for their in vitro anti-cancer properties in triple negative breast cancer cell line (MDA-MB-231), pancreatic cancer cell lines (MIA PaCa-2) and oral squamous cell carcinoma cell line (H357) and results indicated that all the compounds inhibited the cell proliferation in a concentration-dependent manner at different time points. The compounds 4b and 6d were found to be effective against the S. aureus bacterial strain whereas only compound 4d fairly inhibited the fungal strain of T. rubrum with a MIC 12.5 μg/mL. Molecular docking study reveals good interaction of the synthesized compounds with known target MELK involved in oncogenesis having high binding profiles. The lead compound 6c was further analyzed by the detailed molecular dynamics study to establish the stability of the ligand-enzyme complex.
Collapse
Affiliation(s)
- Monalisa Mahapatra
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India
| | | | - Kakarla Pakeeraiah
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India
| | - Ravi Kumar Bandaru
- Institute of Chemical Technology-Indian Oil Campus, Bhubaneswar, Odisha 751024, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule 424002, Maharashtra, India; Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India
| | - Suvadeep Mal
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India
| | - Rambabu Dandela
- Institute of Chemical Technology-Indian Oil Campus, Bhubaneswar, Odisha 751024, India
| | | | - Harun Patel
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule 424002, Maharashtra, India
| | - Sudhir Kumar Paidesetty
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India.
| |
Collapse
|
13
|
Li C, Zheng L, Xu G, Yuan Q, Di Z, Yang Y, Dong X, Hou J, Wu G. Exploration of epithelial-mesenchymal transition-related lncRNA signature and drug sensitivity in breast cancer. Front Endocrinol (Lausanne) 2023; 14:1154741. [PMID: 37538794 PMCID: PMC10396438 DOI: 10.3389/fendo.2023.1154741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Background Breast cancer (BRCA) has become the most diagnosed cancer worldwide for female and seriously endanger female health. The epithelial-mesenchymal transition (EMT) process is associated with metastasis and drug resistance in BRCA patients. However, the prognostic value of EMT-related lncRNA in BRCA still needs to be revealed. The aim of this study is to construct an EMT-related lncRNA (ERL) signature with accuracy predictive ability for the prognosis of BRCA patients. Methods RNA-seq expression data and Clinical characteristics obtained from the TCGA (The Cancer Genome Atlas) were used in the study. First, we identified the EMT-related lncRNA by the Pearson correlation analysis. An EMT-related lncRNAs prognostic risk signature was constructed using univariate Cox regression and Lasso-penalized Cox regression analyses. The model's performance was validated using Kaplan-Meier (KM) survival analysis, ROC curve and C-index. Finally, a nomogram was constructed for clinical practice in evaluating the patients with BRCA and validated by calibration curve and decision curve analysis (DCA). We also evaluated the drug sensitivity of signature lncRNA and the tumor immune cell infiltration in breast cancer. Results We constructed a 10-lncRNA risk score signature based on the lncRNAs associated with the EMT process. We could assign BRCA patients to the high- and low-risk group according to the median risk score. The prognostic risk signature showed excellent accuracy and demonstrated sufficient independence from other clinical characteristics. The immune cell infiltration analysis showed that the prognostic risk signature was related to the infiltration of the immune cell subtype. Drug sensitivity analysis proved ERLs signature could effectively predict the sensitivity of patients to common chemotherapy drugs in BRCA and provide guidance for chemotherapy drugs for high-risk and low-risk patients. Conclusion Our ERL signature and nomogram have excellent prognostic value and could become reliable tools for clinical guidance.
Collapse
Affiliation(s)
- Chengxin Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lewei Zheng
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gaoran Xu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qianqian Yuan
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ziyang Di
- Department of Gastrointestinal Surgery and Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yalong Yang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xingxing Dong
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jinxuan Hou
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Zappe K, Kopic A, Scheichel A, Schier AK, Schmidt LE, Borutzki Y, Miedl H, Schreiber M, Mendrina T, Pirker C, Pfeiler G, Hacker S, Haslik W, Pils D, Bileck A, Gerner C, Meier-Menches S, Heffeter P, Cichna-Markl M. Aberrant DNA Methylation, Expression, and Occurrence of Transcript Variants of the ABC Transporter ABCA7 in Breast Cancer. Cells 2023; 12:1462. [PMID: 37296582 PMCID: PMC10252461 DOI: 10.3390/cells12111462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
The ABC transporter ABCA7 has been found to be aberrantly expressed in a variety of cancer types, including breast cancer. We searched for specific epigenetic and genetic alterations and alternative splicing variants of ABCA7 in breast cancer and investigated whether these alterations are associated with ABCA7 expression. By analyzing tumor tissues from breast cancer patients, we found CpGs at the exon 5-intron 5 boundary aberrantly methylated in a molecular subtype-specific manner. The detection of altered DNA methylation in tumor-adjacent tissues suggests epigenetic field cancerization. In breast cancer cell lines, DNA methylation levels of CpGs in promoter-exon 1, intron 1, and at the exon 5-intron 5 boundary were not correlated with ABCA7 mRNA levels. By qPCR involving intron-specific and intron-flanking primers, we identified intron-containing ABCA7 mRNA transcripts. The occurrence of intron-containing transcripts was neither molecular subtype-specific nor directly correlated with DNA methylation at the respective exon-intron boundaries. Treatment of breast cancer cell lines MCF-7, BT-474, SK-BR3, and MDA-MB-231 with doxorubicin or paclitaxel for 72 h resulted in altered ABCA7 intron levels. Shotgun proteomics revealed that an increase in intron-containing transcripts was associated with significant dysregulation of splicing factors linked to alternative splicing.
Collapse
Affiliation(s)
- Katja Zappe
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Antonio Kopic
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Alexandra Scheichel
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Ann-Katrin Schier
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Lukas Emanuel Schmidt
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Yasmin Borutzki
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Heidi Miedl
- Department of Obstetrics and Gynecology and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Schreiber
- Department of Obstetrics and Gynecology and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Theresa Mendrina
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Christine Pirker
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Georg Pfeiler
- Division of Gynecology and Gynecological Oncology, Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria
| | - Stefan Hacker
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Werner Haslik
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Dietmar Pils
- Division of Visceral Surgery, Department of General Surgery and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, 1090 Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, 1090 Vienna, Austria
| | - Samuel Meier-Menches
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, 1090 Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Margit Cichna-Markl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
15
|
Zhang X, Xiang S, Zhang Y, Liu S, Lei G, Hines S, Wang N, Lin H. In vitro study to identify ligand-independent function of estrogen receptor-α in suppressing DNA damage-induced chondrocyte senescence. FASEB J 2023; 37:e22746. [PMID: 36622202 PMCID: PMC10369926 DOI: 10.1096/fj.202201228r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/29/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023]
Abstract
In osteoarthritis (OA), chondrocytes undergo many pathological alternations that are linked with cellular senescence. However, the exact pathways that lead to the generation of a senescence-like phenotype in OA chondrocytes are not clear. Previously, we found that loss of estrogen receptor-α (ERα) was associated with an increased senescence level in human chondrocytes. Since DNA damage is a common cause of cellular senescence, we aimed to study the relationship among ERα levels, DNA damage, and senescence in chondrocytes. We first examined the levels of ERα, representative markers of DNA damage and senescence in normal and OA cartilage harvested from male and female human donors, as well as from male mice. The influence of DNA damage on ERα levels was studied by treating human chondrocytes with doxorubicin (DOX), which is an often-used DNA-damaging agent. Next, we tested the potential of overexpressing ERα in reducing DNA damage and senescence levels. Lastly, we explored the interaction between ERα and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Results indicated that the OA chondrocytes contained DNA damage and displayed senescence features, which were accompanied by significantly reduced ERα levels. Overexpression of ERα reduced the levels of DNA damage and senescence in DOX-treated normal chondrocytes and OA chondrocytes. Moreover, DOX-induced the activation of NF-κB pathway, which was partially reversed by overexpressing ERα. Taken together, our results demonstrated the critical role of ERα in maintaining the health of chondrocytes by inhibiting DNA damage and senescence. This study also suggests that maintaining the ERα level may represent a new avenue to prevent and treat OA.
Collapse
Affiliation(s)
- Xiurui Zhang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shiqi Xiang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yiqian Zhang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Guanghua Lei
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sophie Hines
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ning Wang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
16
|
Wang J. Tripterine and miR-184 show synergy to suppress breast cancer progression. Biochem Biophys Res Commun 2021; 561:19-25. [PMID: 34000513 DOI: 10.1016/j.bbrc.2021.04.108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND The anti-cancer activities of tripterine in human cells offer promising therapeutic solutions to patients living with cancer. However, the effects of tripterine on breast cancer (BC) have not been closely examined. This study was to investigate the underlying biological pathway through which tripterine and miR-184 influence BC progression. METHODS Two human BC cell lines (MCF-7 and BT-474) were cultured in this study. Different concentrations of tripterine (0, 5, 10 and 15 μM) were dissolved in dimethyl sulfoxide (DMSO) and then added to the cells. The expression of miR-184 was measured using qRT-PCR. The inhibitory impact of tripterine and miR-184 on BC development was assessed by CCK-8, BrdU, transwell, and wound healing assays. Western blot assay was also performed to analyze Bax and Bcl-2 protein expression of BC cells. RESULTS Findings indicated that tripterine suppressed BC cells' viability, proliferation, migration, invasion capacity and Bcl-2 protein expression, but it induced BC cells' Bax protein expression. It was also found miR-184 expression was high in the BC cell lines treated with tripterine and that miR-184 overexpression reduced the viability, proliferation, and invasion abilities of BC cells under tripterine treatment. Interference with miR-184 neutralized the effects of tripterine on BC cell viability, proliferation and invasion. CONCLUSION This research suggested that by interacting with miR-184, tripterine could restrain the progression of BC. This knowledge could be instrumental in developing highly effective treatment solutions for BC.
Collapse
Affiliation(s)
- Jinjun Wang
- Department of Acupuncture Rheumatology, Wuhan Hospital of Traditional Chinese Medicine, No. 49, Lihuangpi Road, Jiang'an District, Wuhan, 430010, Hubei, China.
| |
Collapse
|