1
|
Johansson KB, Zimmerman MS, Dmytrenko IV, Gao F, Link DC. Idasanutlin and navitoclax induce synergistic apoptotic cell death in T-cell acute lymphoblastic leukemia. Leukemia 2023; 37:2356-2366. [PMID: 37838759 PMCID: PMC10681904 DOI: 10.1038/s41375-023-02057-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy in which activating mutations in the Notch pathway are thought to contribute to transformation, in part, by activating c-Myc. Increased c-Myc expression induces oncogenic stress that can trigger apoptosis through the MDM2-p53 tumor suppressor pathway. Since the great majority of T-ALL cases carry inactivating mutations upstream in this pathway but maintain wildtype MDM2 and TP53, we hypothesized that T-ALL would be selectively sensitive to MDM2 inhibition. Treatment with idasanutlin, an MDM2 inhibitor, induced only modest apoptosis in T-ALL cells but upregulated the pro-apoptotic BH3 domain genes BAX and BBC3, prompting us to evaluate the combination of idasanutlin with BH3 mimetics. Combination treatment with idasanutlin and navitoclax, a potent Bcl-2/Bcl-xL inhibitor, induces more consistent and potent synergistic killing of T-ALL PDX lines in vitro than venetoclax, a Bcl-2 specific inhibitor. Moreover, a marked synergic response to combination treatment with idasanutlin and navitoclax was seen in vivo in all four T-ALL xenografts tested, with a significant increase in overall survival in the combination treatment group. Collectively, these preclinical data show that the combination of idasanutlin and navitoclax is highly active in T-ALL and may merit consideration in the clinical setting.
Collapse
Affiliation(s)
- Kimberly B Johansson
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan S Zimmerman
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Iryna V Dmytrenko
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Feng Gao
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel C Link
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Habibi-Kavashkohie MR, Scorza T, Oubaha M. Senescent Cells: Dual Implications on the Retinal Vascular System. Cells 2023; 12:2341. [PMID: 37830555 PMCID: PMC10571659 DOI: 10.3390/cells12192341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Cellular senescence, a state of permanent cell cycle arrest in response to endogenous and exogenous stimuli, triggers a series of gradual alterations in structure, metabolism, and function, as well as inflammatory gene expression that nurtures a low-grade proinflammatory milieu in human tissue. A growing body of evidence indicates an accumulation of senescent neurons and blood vessels in response to stress and aging in the retina. Prolonged accumulation of senescent cells and long-term activation of stress signaling responses may lead to multiple chronic diseases, tissue dysfunction, and age-related pathologies by exposing neighboring cells to the heightened pathological senescence-associated secretory phenotype (SASP). However, the ultimate impacts of cellular senescence on the retinal vasculopathies and retinal vascular development remain ill-defined. In this review, we first summarize the molecular players and fundamental mechanisms driving cellular senescence, as well as the beneficial implications of senescent cells in driving vital physiological processes such as embryogenesis, wound healing, and tissue regeneration. Then, the dual implications of senescent cells on the growth, hemostasis, and remodeling of retinal blood vessels are described to document how senescent cells contribute to both retinal vascular development and the severity of proliferative retinopathies. Finally, we discuss the two main senotherapeutic strategies-senolytics and senomorphics-that are being considered to safely interfere with the detrimental effects of cellular senescence.
Collapse
Affiliation(s)
- Mohammad Reza Habibi-Kavashkohie
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), Montréal, QC H2L 2C4, Canada; (M.R.H.-K.); (T.S.)
- The Center of Excellence in Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H3G 1E8, Canada
| | - Tatiana Scorza
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), Montréal, QC H2L 2C4, Canada; (M.R.H.-K.); (T.S.)
- The Center of Excellence in Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H3G 1E8, Canada
| | - Malika Oubaha
- Department of Biological Sciences, Université du Québec à Montréal (UQAM), Montréal, QC H2L 2C4, Canada; (M.R.H.-K.); (T.S.)
- The Center of Excellence in Research on Orphan Diseases, Courtois Foundation (CERMO-FC), Montreal, QC H3G 1E8, Canada
| |
Collapse
|
3
|
Washausen S, Knabe W. Patterns of senescence and apoptosis during development of branchial arches, epibranchial placodes, and pharyngeal pouches. Dev Dyn 2023; 252:1189-1223. [PMID: 37345578 DOI: 10.1002/dvdy.637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/27/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Many developmental processes are coregulated by apoptosis and senescence. However, there is a lack of data on the development of branchial arches, epibranchial placodes, and pharyngeal pouches, which harbor epibranchial signaling centers. RESULTS Using immunohistochemical, histochemical, and 3D reconstruction methods, we show that in mice, senescence and apoptosis together may contribute to the invagination of the branchial clefts and the deepening of the cervical sinus floor, in antagonism to the proliferation acting in the evaginating branchial arches. The concomitant apoptotic elimination of lateral line rudiments occurs in the absence of senescence. In the epibranchial placodes, senescence and apoptosis appear to (1) support invagination or at least indentation by immobilizing the margins of the centrally proliferating pit, (2) coregulate the number and fate of Pax8+ precursors, (3) progressively narrow neuroblast delamination sites, and (4) contribute to placode regression. Putative epibranchial signaling centers in the pharyngeal pouches are likely deactivated by rostral senescence and caudal apoptosis. CONCLUSIONS Our results reveal a plethora of novel patterns of apoptosis and senescence, some overlapping, some complementary, whose functional contributions to the development of the branchial region, including the epibranchial placodes and their signaling centers, can now be tested experimentally.
Collapse
Affiliation(s)
- Stefan Washausen
- Prosektur Anatomie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Wolfgang Knabe
- Prosektur Anatomie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
4
|
de Mera-Rodríguez JA, Álvarez-Hernán G, Gañán Y, Solana-Fajardo J, Martín-Partido G, Rodríguez-León J, Francisco-Morcillo J. Markers of senescence are often associated with neuronal differentiation in the developing sensory systems. Histol Histopathol 2023; 38:493-502. [PMID: 36412998 DOI: 10.14670/hh-18-549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
It has been shown that senescent cells accumulate in transient structures of the embryo that normally degenerate during tissue development. A collection of biomarkers is generally accepted to define senescence in embryonic tissues. The histochemical detection of β-galactosidase activity at pH 6.0 (β-gal-pH6) is the most widely used assay for cellular senescence. Immunohistochemical detection of common mediators of senescence which block cell cycle progression, including p16, p21, p63, p15 or p27, has also been used to characterize senescent cells in the embryo. However, the reliability of this techniques has been discussed in recent publications because non-senescent cells are also labelled during development. Indeed, increased levels of senescent markers promote differentiation over apoptosis in developing neurons, suggesting that machinery used for the establishment of cellular senescence is also involved in neuronal maturation. Notably, it has recently been argued that a comparable state of cellular senescence might be adopted by terminally differentiated neurons. The developing sensory systems provide excellent models for studying if canonical markers of senescence are associated with terminal neuronal differentiation.
Collapse
Affiliation(s)
- José Antonio de Mera-Rodríguez
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Guadalupe Álvarez-Hernán
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Yolanda Gañán
- Área de Anatomía y Embriología Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Jorge Solana-Fajardo
- Servicio de Oftalmología, Complejo Hospitalario Universitario de Badajoz, Badajoz, Spain
| | - Gervasio Martín-Partido
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Joaquín Rodríguez-León
- Área de Anatomía y Embriología Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain.
| |
Collapse
|
5
|
Stoica SI, Onose G, Pitica IM, Neagu AI, Ion G, Matei L, Dragu LD, Radu LE, Chivu-Economescu M, Necula LG, Anghelescu A, Diaconu CC, Munteanu C, Bleotu C. Molecular Aspects of Hypoxic Stress Effects in Chronic Ethanol Exposure of Neuronal Cells. Curr Issues Mol Biol 2023; 45:1655-1680. [PMID: 36826052 PMCID: PMC9955714 DOI: 10.3390/cimb45020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/01/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
Experimental models of a clinical, pathophysiological context are used to understand molecular mechanisms and develop novel therapies. Previous studies revealed better outcomes for spinal cord injury chronic ethanol-consuming patients. This study evaluated cellular and molecular changes in a model mimicking spinal cord injury (hypoxic stress induced by treatment with deferoxamine or cobalt chloride) in chronic ethanol-consuming patients (ethanol-exposed neural cultures (SK-N-SH)) in order to explain the clinical paradigm of better outcomes for spinal cord injury chronic ethanol-consuming patients. The results show that long-term ethanol exposure has a cytotoxic effect, inducing apoptosis. At 24 h after the induction of hypoxic stress (by deferoxamine or cobalt chloride treatments), reduced ROS in long-term ethanol-exposed SK-N-SH cells was observed, which might be due to an adaptation to stressful conditions. In addition, the HIF-1α protein level was increased after hypoxic treatment of long-term ethanol-exposed cells, inducing fluctuations in its target metabolic enzymes proportionally with treatment intensity. The wound healing assay demonstrated that the cells recovered after stress conditions, showing that the ethanol-exposed cells that passed the acute step had the same proliferation profile as the cells unexposed to ethanol. Deferoxamine-treated cells displayed higher proliferative activity than the control cells in the proliferation-migration assay, emphasizing the neuroprotective effect. Cells have overcome the critical point of the alcohol-induced traumatic impact and adapted to ethanol (a chronic phenomenon), sustaining the regeneration process. However, further experiments are needed to ensure recovery efficiency is more effective in chronic ethanol exposure.
Collapse
Affiliation(s)
- Simona Isabelle Stoica
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
| | - Gelu Onose
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
| | - Ioana Madalina Pitica
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania
| | - Ana Iulia Neagu
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania
| | - Gabriela Ion
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania
| | - Lilia Matei
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania
| | - Laura Denisa Dragu
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania
| | - Lacramioara-Elena Radu
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania
| | | | - Laura Georgiana Necula
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania
| | - Aurelian Anghelescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
| | | | - Constantin Munteanu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
- Grigore T. Popa University of Medicine and Pharmacy of Iași, 700454 Iași, Romania
- Romanian Academy of Scientists, 54 Spl. Independenței Str., District 5, 050085 Bucharest, Romania
| | - Coralia Bleotu
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania
- Romanian Academy of Scientists, 54 Spl. Independenței Str., District 5, 050085 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor Str., District 5, 060101 Bucharest, Romania
| |
Collapse
|
6
|
Ayala-Guerrero L, Claudio-Galeana S, Furlan-Magaril M, Castro-Obregón S. Chromatin Structure from Development to Ageing. Subcell Biochem 2023; 102:7-51. [PMID: 36600128 DOI: 10.1007/978-3-031-21410-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nuclear structure influences genome architecture, which contributes to determine patterns of gene expression. Global changes in chromatin dynamics are essential during development and differentiation, and are one of the hallmarks of ageing. This chapter describes the molecular dynamics of chromatin structure that occur during development and ageing. In the first part, we introduce general information about the nuclear lamina, the chromatin structure, and the 3D organization of the genome. Next, we detail the molecular hallmarks found during development and ageing, including the role of DNA and histone modifications, 3D genome dynamics, and changes in the nuclear lamina. Within the chapter we discuss the implications that genome structure has on the mechanisms that drive development and ageing, and the physiological consequences when these mechanisms fail.
Collapse
Affiliation(s)
- Lorelei Ayala-Guerrero
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico
| | - Sherlyn Claudio-Galeana
- Departamento de Genética Molecular, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico
| | - Mayra Furlan-Magaril
- Departamento de Genética Molecular, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico.
| | - Susana Castro-Obregón
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico.
| |
Collapse
|
7
|
Safwan-Zaiter H, Wagner N, Wagner KD. P16INK4A-More Than a Senescence Marker. Life (Basel) 2022; 12:1332. [PMID: 36143369 PMCID: PMC9501954 DOI: 10.3390/life12091332] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Aging is a biological feature that is characterized by gradual degeneration of function in cells, tissues, organs, or an intact organism due to the accumulation of environmental factors and stresses with time. Several factors have been attributed to aging such as oxidative stress and augmented production or exposure to reactive oxygen species, inflammatory cytokines production, telomere shortening, DNA damage, and, importantly, the deposit of senescent cells. These are irreversibly mitotically inactive, yet metabolically active cells. The reason underlying their senescence lies within the extrinsic and the intrinsic arms. The extrinsic arm is mainly characterized by the expression and the secretory profile known as the senescence-associated secretory phenotype (SASP). The intrinsic arm results from the impact of several genes meant to regulate the cell cycle, such as tumor suppressor genes. P16INK4A is a tumor suppressor and cell cycle regulator that has been linked to aging and senescence. Extensive research has revealed that p16 expression is significantly increased in senescent cells, as well as during natural aging or age-related pathologies. Based on this fact, p16 is considered as a specific biomarker for detecting senescent cells and aging. Other studies have found that p16 is not only a senescence marker, but also a protein with many functions outside of senescence and aging. In this paper, we discuss and shed light on several studies that show the different functions of p16 and provide insights in its role in several biological processes besides senescence and aging.
Collapse
Affiliation(s)
| | - Nicole Wagner
- CNRS, INSERM, iBV, Université Côte d’Azur, 06107 Nice, France
| | | |
Collapse
|
8
|
Ring NAR, Valdivieso K, Grillari J, Redl H, Ogrodnik M. The role of senescence in cellular plasticity: Lessons from regeneration and development and implications for age-related diseases. Dev Cell 2022; 57:1083-1101. [PMID: 35472291 DOI: 10.1016/j.devcel.2022.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/15/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022]
Abstract
Senescence is a cellular state which involves cell cycle arrest and a proinflammatory phenotype, and it has traditionally been associated with cellular and organismal aging. However, increasing evidence suggests key roles in tissue growth and regrowth, especially during development and regeneration. Conversely, cellular plasticity-the capacity of cells to undergo identity change, including differentiation and dedifferentiation-is associated with development and regeneration but is now being investigated in the context of age-related diseases such as Alzheimer disease. Here, we discuss the paradox of the role for cellular senescence in cellular plasticity: senescence can act as a cell-autonomous barrier and a paracrine driver of plasticity. We provide a conceptual framework for integrating recent data and use the interplay between cellular senescence and plasticity to provide insight into age-related diseases. Finally, we argue that age-related diseases can be better deciphered when senescence is recognized as a core mechanism of regeneration and development.
Collapse
Affiliation(s)
- Nadja Anneliese Ruth Ring
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Karla Valdivieso
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Mikolaj Ogrodnik
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
9
|
Senotherapeutics in Cancer and HIV. Cells 2022; 11:cells11071222. [PMID: 35406785 PMCID: PMC8997781 DOI: 10.3390/cells11071222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022] Open
Abstract
Cellular senescence is a stress-response mechanism that contributes to homeostasis maintenance, playing a beneficial role during embryogenesis and in normal adult organisms. In contrast, chronic senescence activation may be responsible for other events such as age-related disorders, HIV and cancer development. Cellular senescence activation can be triggered by different insults. Regardless of the inducer, there are several phenotypes generally shared among senescent cells: cell division arrest, an aberrant shape, increased size, high granularity because of increased numbers of lysosomes and vacuoles, apoptosis resistance, defective metabolism and some chromatin alterations. Senescent cells constitute an important area for research due to their contributions to the pathogenesis of different diseases such as frailty, sarcopenia and aging-related diseases, including cancer and HIV infection, which show an accelerated aging. Hence, a new pharmacological category of treatments called senotherapeutics is under development. This group includes senolytic drugs that selectively attack senescent cells and senostatic drugs that suppress SASP factor delivery, inhibiting senescent cell development. These new drugs can have positive therapeutic effects on aging-related disorders and act in cancer as antitumor drugs, avoiding the undesired effects of senescent cells such as those from SASP. Here, we review senotherapeutics and how they might affect cancer and HIV disease, two very different aging-related diseases, and review some compounds acting as senolytics in clinical trials.
Collapse
|
10
|
Dynamic Spatiotemporal Expression Pattern of the Senescence-Associated Factor p16Ink4a in Development and Aging. Cells 2022; 11:cells11030541. [PMID: 35159350 PMCID: PMC8833900 DOI: 10.3390/cells11030541] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023] Open
Abstract
A plethora of factors have been attributed to underly aging, including oxidative stress, telomere shortening and cellular senescence. Several studies have shown a significant role of the cyclin-dependent kinase inhibitor p16ink4a in senescence and aging. However, its expression in development has been less well documented. Therefore, to further clarify a potential role of p16 in development and aging, we conducted a developmental expression study of p16, as well as of p19ARF and p21, and investigated their expression on the RNA level in brain, heart, liver, and kidney of mice at embryonic, postnatal, adult, and old ages. P16 expression was further assessed on the protein level by immunohistochemistry. Expression of p16 was highly dynamic in all organs in embryonic and postnatal stages and increased dramatically in old mice. Expression of p19 and p21 was less variable and increased to a moderate extent at old age. In addition, we observed a predominant expression of p16 mRNA and protein in liver endothelial cells versus non-endothelial cells of old mice, which suggests a functional role specifically in liver endothelium of old subjects. Thus, p16 dynamic spatiotemporal expression might implicate p16 in developmental and physiological processes in addition to its well-known function in the build-up of senescence.
Collapse
|
11
|
de Mera-Rodríguez JA, Álvarez-Hernán G, Gañán Y, Santos-Almeida A, Martín-Partido G, Rodríguez-León J, Francisco-Morcillo J. Endogenous pH 6.0 β-Galactosidase Activity Is Linked to Neuronal Differentiation in the Olfactory Epithelium. Cells 2022; 11:cells11020298. [PMID: 35053414 PMCID: PMC8774403 DOI: 10.3390/cells11020298] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
The histochemical detection of β-galactosidase enzymatic activity at pH 6.0 (β-gal-pH6) is a widely used biomarker of cellular senescence in aging tissues. This histochemical assay also detects the presence of programmed cell senescence during specific time windows in degenerating structures of vertebrate embryos. However, it has recently been shown that this enzymatic activity is also enhanced in subpopulations of differentiating neurons in the developing central nervous system in vertebrates. The present study addressed the histochemical detection of β-gal-pH6 enzymatic activity in the developing postnatal olfactory epithelium in the mouse. This activity was detected in the intermediate layer of the olfactory epithelium. As development progressed, the band of β-gal-pH6 labeling in this layer increased in width. Immunohistochemistry and lectin histochemistry showed the β-gal-pH6 staining to be strongly correlated with the immunolabeling of the olfactory marker protein (OMP) that identifies mature olfactory sensory neurons. The cell somata of a subpopulation of differentiated olfactory neurons that were recognized with the Dolichos biflorus agglutinin (DBA) were always located inside this band of β-gal-pH6 staining. However, the β-gal-pH6 histochemical signal was always absent from the apical region where the cytokeratin-8 positive supporting cells were located. Furthermore, no β-gal-pH6 staining was found in the basal region of the olfactory epithelium where PCNA/pHisH3 immunoreactive proliferating progenitor cells, GAP43 positive immature neurons, and cytokeratin-5 positive horizontal basal cells were located. Therefore, β-gal-pH6 seems to be linked to neuronal differentiation and cannot be regarded as a biomarker of cellular senescence during olfactory epithelium development in mice.
Collapse
Affiliation(s)
- José Antonio de Mera-Rodríguez
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (J.A.d.M.-R.); (G.Á.-H.); (A.S.-A.); (G.M.-P.)
| | - Guadalupe Álvarez-Hernán
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (J.A.d.M.-R.); (G.Á.-H.); (A.S.-A.); (G.M.-P.)
| | - Yolanda Gañán
- Área de Anatomía y Embriología Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006 Badajoz, Spain;
| | - Ana Santos-Almeida
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (J.A.d.M.-R.); (G.Á.-H.); (A.S.-A.); (G.M.-P.)
| | - Gervasio Martín-Partido
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (J.A.d.M.-R.); (G.Á.-H.); (A.S.-A.); (G.M.-P.)
| | - Joaquín Rodríguez-León
- Área de Anatomía y Embriología Humana, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006 Badajoz, Spain;
- Correspondence: (J.R.-L.); (J.F.-M.)
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Departamento de Anatomía, Biología Celular y Zoología, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; (J.A.d.M.-R.); (G.Á.-H.); (A.S.-A.); (G.M.-P.)
- Correspondence: (J.R.-L.); (J.F.-M.)
| |
Collapse
|
12
|
Ruhland MK, Alspach E. Senescence and Immunoregulation in the Tumor Microenvironment. Front Cell Dev Biol 2021; 9:754069. [PMID: 34692707 PMCID: PMC8529213 DOI: 10.3389/fcell.2021.754069] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/15/2021] [Indexed: 01/10/2023] Open
Abstract
Immunotherapies have revolutionized cancer treatment, but despite the many lives that have been extended by these therapies many patients do not respond for reasons that are not well understood. The tumor microenvironment (TME) is comprised of heterogeneous cells that regulate tumor immune responses and likely influence immunotherapy response. Senescent (e.g., aged) stroma within the TME, and its expression of the senescence-associated secretory phenotype induces chronic inflammation that encourages tumor development and disease progression. Senescent environments also regulate the function of immune cells in ways that are decidedly protumorigenic. Here we discuss recent developments in senescence biology and the immunoregulatory functions of senescent stroma. Understanding the multitude of cell types present in the TME, including senescent stroma, will aid in the development of combinatorial therapeutic strategies to increase immunotherapy efficacy.
Collapse
Affiliation(s)
- Megan K. Ruhland
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - Elise Alspach
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|