1
|
Fatfat Z, Hussein M, Fatfat M, Gali-Muhtasib H. Omics technologies as powerful approaches to unravel colorectal cancer complexity and improve its management. Mol Cells 2025; 48:100200. [PMID: 40024318 PMCID: PMC11976254 DOI: 10.1016/j.mocell.2025.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/31/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025] Open
Abstract
Colorectal cancer (CRC) continues to rank among the deadliest and most prevalent cancers worldwide, necessitating an innovative and comprehensive approach that addresses this serious health challenge at various stages, from screening and diagnosis to treatment and prognosis. As CRC research progresses, the adoption of an omics-centered approach holds transformative potential to revolutionize the management of this disease. Advances in omics technologies encompassing genomics, transcriptomics, proteomics, metabolomics, and epigenomics allow to unravel the oncogenic alterations at these levels, elucidating the intricacies and the heterogeneous nature of CRC. By providing a comprehensive molecular landscape of CRC, omics technologies enable the discovery of potential biomarkers for early non-invasive detection of CRC, definition of CRC subtypes, prediction of its staging, prognosis, and overall survival of CRC patients. They also allow the identification of potential therapeutic targets, prediction of drug response, tracking treatment efficacy, detection of residual disease and cancer relapse, and deciphering the mechanisms of drug resistance. Moreover, they allow the distinction of non-metastatic CRC patients from metastatic ones as well as the stratification of metastatic risk. Importantly, omics technologies open up new opportunities to establish molecular-based criteria to guide the selection of effective treatment paving the way for the personalization of therapy for CRC patients. This review consolidates current knowledge on the omics-based preclinical discoveries in CRC research emphasizing the significant potential of these technologies to improve CRC screening, diagnosis, and prognosis and promote the implementation of personalized medicine to ultimately reduce CRC prevalence and mortality.
Collapse
Affiliation(s)
- Zaynab Fatfat
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Marwa Hussein
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Maamoun Fatfat
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | | |
Collapse
|
2
|
Klausner MS, Greenberg CA, Noruzi KA, Tiwari RK, Geliebter J. The Role of M6A LncRNA Modification in Papillary Thyroid Cancer. Int J Mol Sci 2025; 26:2833. [PMID: 40243425 PMCID: PMC11988855 DOI: 10.3390/ijms26072833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 04/18/2025] Open
Abstract
Thyroid Cancer (TC) is the most common endocrine cancer, of which papillary thyroid cancer (PTC), a well-differentiated type of TC, accounts for 80-90%. Long non-coding RNAs (lncRNAs), which comprise non-protein-coding segments of the genome, have been found to play a crucial role in various biological processes, including cancer development. The activity of lncRNAs is modified through epigenetic modifications, with N6-Methyladenosine (m6A) modifications implicated in the progression of several malignancies. The activity of m6A is further regulated by modifying enzymes classified as "readers", writers", and "erasers", of which specific enzymes have been found to play a role in various aspects of PTC. Recent research has highlighted the significance of m6A modification in regulating the expression and function of lncRNAs associated with PTC pathogenesis. Dysregulation of this process implicates tumor proliferation, invasion, and metastasis, with subsequent impact on prognosis. Therefore, understanding the interplay between m6A modification and lncRNAs provides valuable insights into the molecular mechanisms underlying PTC progression. This narrative review aims to explore the established role of several prominent m6A modifying enzymes and lncRNAs on cancer pathogenesis and seeks to clarify the function of these enzymes in PTC pathogenesis.
Collapse
Affiliation(s)
| | - Caylee A. Greenberg
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA; (M.S.K.)
| | - Kaleb A. Noruzi
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA; (M.S.K.)
| | - Raj K. Tiwari
- Department of Pathology, Microbiology, and Immunology, and Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| | - Jan Geliebter
- Department of Pathology, Microbiology, and Immunology, and Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
3
|
Rajendran L, Sapisochin G, Cattral M. The role of living donor liver transplantation in colorectal cancer liver metastases. Curr Opin Organ Transplant 2025; 30:12-20. [PMID: 39607024 DOI: 10.1097/mot.0000000000001188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
PURPOSE OF REVIEW Despite technical and therapeutic advances, only 20-40% of patients with colorectal liver metastases (CRLM) have resectable disease. Historically, the remaining patients with unresectable, liver-only CRLM would receive palliative chemotherapy, with a median survival of 8 months. RECENT FINDINGS Liver transplantation has emerged as a viable option for selected patients with CRLM. This advancement stems from improved understanding of tumour genomics and biology and better patient selection criteria. The results of recent prospective clinical trials have further ignited enthusiasm for liver transplantation as a viable therapeutic option. Living donor liver transplantation (LDLT) offers several advantages over deceased donor liver transplantation (DDLT) for this disease, including reduced wait-time and optimized timing and coordination of oncologic therapy. On-going LDLT clinical trials have demonstrated favourable outcomes as compared with other liver transplantation indications. However, there is no established consensus or standardization in the implementation of LDLT for CRLM, beyond trials and centre-specific protocols. SUMMARY LDLT is an excellent therapeutic option in highly selected patients with CRLM. Refining prognostic factors and selection criteria will help to further optimize the utility and broaden the acceptance and implementation of LDLT for patients with CRLM.
Collapse
Affiliation(s)
- Luckshi Rajendran
- Division of General Surgery, Department of Surgery, University of Toronto
- Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Gonzalo Sapisochin
- Division of General Surgery, Department of Surgery, University of Toronto
- Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Mark Cattral
- Division of General Surgery, Department of Surgery, University of Toronto
- Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Čeri A, Somborac-Bačura A, Fabijanec M, Hulina-Tomašković A, Matusina M, Detel D, Verbanac D, Barišić K. Establishment of liquid biopsy procedure for the analysis of circulating cell free DNA, exosomes, RNA and proteins in colorectal cancer and adenoma patients. Sci Rep 2024; 14:26925. [PMID: 39506031 PMCID: PMC11541997 DOI: 10.1038/s41598-024-78497-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024] Open
Abstract
Liquid biopsy has an underexplored diagnostic potential in colorectal cancer (CRC). Sufficient quantity and quality of its elements (circulating cell-free DNA (ccfDNA), exosomes and exosomal RNA) are essential for accurate results. The present study aims to establish the optimal protocol for handling liquid biopsy samples. Samples were obtained by collecting peripheral blood from colorectal adenoma patients in CellSave tubes. Plasma was separated within six hours using differential centrifugation and aliquots stored at - 20/- 80 °C until further processing. Three methods for isolation of ccfDNA, and two combinations of kits for isolation of exosomes and exosomal RNA were tested. The quality and quantity of ccfDNA isolates were evaluated. Exosomes were characterised by determining size, concentration, and total and specific protein content. Expression of chosen microRNAs, miR-19a-3p and miR-92-3p, which have been implicated in CRC progression, were determined. The vacuum-column-based kit showed the highest quantities of isolated ccfDNA (P-value < 0.001). Kits for exosome isolation significantly differed in size (P-value = 0.016), concentration (P-value = 0.016) and protein content (P-value = 0.016). There was no significant difference in expressions of miR-19a-3p (P-value = 0.219) and miR-92a-3p (P-value = 0.094) between the two isolation kits. The new, adapted protocol described, enables simultaneous analysis of multiple elements when investigating potential biomarkers of CRC.
Collapse
Affiliation(s)
- Andrea Čeri
- Department of Medical Biochemistry and Haematology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, 10000, Croatia.
| | - Anita Somborac-Bačura
- Department of Medical Biochemistry and Haematology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, 10000, Croatia
| | - Marija Fabijanec
- Centre for Applied Medical Biochemistry, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, 10000, Croatia
| | - Andrea Hulina-Tomašković
- Department of Medical Biochemistry and Haematology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, 10000, Croatia
| | - Marko Matusina
- Department of Medical Biochemistry and Haematology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, 10000, Croatia
| | - Dijana Detel
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, University of Rijeka Faculty of Medicine, Rijeka, 51000, Croatia
| | - Donatella Verbanac
- Department of Medical Biochemistry and Haematology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, 10000, Croatia
| | - Karmela Barišić
- Department of Medical Biochemistry and Haematology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, 10000, Croatia
| |
Collapse
|
5
|
Kalantari L, Hajjafari A, Goleij P, Rezaee A, Amirlou P, Farsad S, Foroozand H, Arefnezhad R, Rezaei-Tazangi F, Jahani S, Yazdani T, Nazari A. Umbilical cord mesenchymal stem cells: A powerful fighter against colon cancer? Tissue Cell 2024; 90:102523. [PMID: 39154502 DOI: 10.1016/j.tice.2024.102523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Colon cancer (CC) stands as one of the most common malignancies related to the gastrointestinal system, whose increasing incidence and death rates have been reported all over the world. Standard treatments for fighting cancers like CC comprise surgical approaches, chemotherapy, and radiotherapy, which are suggested by clinicians according to patients' conditions and disease stages. However, patients who utilize these modalities may suffer from serious side effects and adverse outcomes, for example, toxicity and tumor recurrence, as well as a low 5-year survival rate. The present shreds of evidence showed that mesenchymal stem cells (MSCs) can have a suitable capacity for treating different health problems, especially neoplasms. These multipotent stem cells can be isolated from several sources, such as the umbilical cord, bone marrow, adipose tissue, and placenta. Among these mesenchymal sources, umbilical cord-MSCs have gathered much attention in scientific societies due to their advantages (e.g., low immunogenicity, lack of ethical problems, and easy collection). These days, the efficacy of umbilical cord-MSCs and umbilical cord-MSCs-based strategies, such as conditioned medium, extracellular vesicles, and exosomes, on CC have been explored, and promising findings have been stated. Therefore, in this review, we aimed to summarize and debate evidence regarding the effects of UC-MSCs and their related products on CC with a focus on molecular and cellular mechanisms involved in its treatment and pathogenesis of this malignant tumor.
Collapse
Affiliation(s)
- Leila Kalantari
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ashkan Hajjafari
- Department of Pathobiology, Faculty of Veterinary Medicine Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Sana Institute of Higher Education, Sari, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parsa Amirlou
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Farsad
- Faculty of Basic Science, Islamic Azad University, Qom, Iran
| | - Hassan Foroozand
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Arefnezhad
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Coenzyme R Research Institute, Tehran, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Saleheh Jahani
- Pathology department, University of California, SanDiego, United States
| | - Taha Yazdani
- Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Nazari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Kalaei Z, Shekarchi AA, Hojjat-Farsangi M, Jalali P, Jadidi-Niaragh F. The prognostic and therapeutic potential of vimentin in colorectal cancer. Mol Biol Rep 2024; 51:1027. [PMID: 39347868 DOI: 10.1007/s11033-024-09965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Several cells and molecules in the tumor microenvironment have been introduced as effective factors in the prognosis and progression of colorectal cancer. As a key element of the intermediate filament family, vimentin is expressed by mesenchymal cells in a ubiquitous manner and contributes significantly to cellular integrity and stress resistance in colorectal cancer. Recent studies have shown that alterations in the expression patterns of intermediate filaments are significantly related to cancer progression, especially in phenotypes associated with cellular migration and invasion. In addition to its multiple biological roles, vimentin also has a substantial function in mediating the epithelial-mesenchymal transition. Therefore, evaluating vimentin as an effective factor involved in the prognosis of colorectal cancer and targeting it as a novel approach to cancer therapy have become one of the main goals of many researchers worldwide. In this article, we will review the various biological functions of vimentin, as well as its relationship with colorectal cancer with the aim of providing novel insights into its clinical importance in the prognosis and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Zahra Kalaei
- Department of Biology, Faculty of Natural Sciences, Tabriz University, Tabriz, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Venken T, Miller IS, Arijs I, Thomas V, Barat A, Betge J, Zhan T, Gaiser T, Ebert MP, O'Farrell AC, Prehn J, Klinger R, O'Connor DP, Moulton B, Murphy V, Serna G, Nuciforo PG, McDermott R, Bird B, Leonard G, Grogan L, Horgan A, Schulte N, Moehler M, Lambrechts D, Byrne AT. Analysis of cell free DNA to predict outcome to bevacizumab therapy in colorectal cancer patients. NPJ Genom Med 2024; 9:33. [PMID: 38811554 PMCID: PMC11137102 DOI: 10.1038/s41525-024-00415-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
To predict outcome to combination bevacizumab (BVZ) therapy, we employed cell-free DNA (cfDNA) to determine chromosomal instability (CIN), nucleosome footprints (NF) and methylation profiles in metastatic colorectal cancer (mCRC) patients. Low-coverage whole-genome sequencing (LC-WGS) was performed on matched tumor and plasma samples, collected from 74 mCRC patients from the AC-ANGIOPREDICT Phase II trial (NCT01822444), and analysed for CIN and NFs. A validation cohort of plasma samples from the University Medical Center Mannheim (UMM) was similarly profiled. 61 AC-ANGIOPREDICT plasma samples collected before and following BVZ treatment were selected for targeted methylation sequencing. Using cfDNA CIN profiles, AC-ANGIOPREDICT samples were subtyped with 92.3% accuracy into low and high CIN clusters, with good concordance observed between matched plasma and tumor. Improved survival was observed in CIN-high patients. Plasma-based CIN clustering was validated in the UMM cohort. Methylation profiling identified differences in CIN-low vs. CIN high (AUC = 0.87). Moreover, significant methylation score decreases following BVZ was associated with improved outcome (p = 0.013). Analysis of CIN, NFs and methylation profiles from cfDNA in plasma samples facilitates stratification into CIN clusters which inform patient response to treatment.
Collapse
Affiliation(s)
- Tom Venken
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Ian S Miller
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ingrid Arijs
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Valentina Thomas
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ana Barat
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Johannes Betge
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Junior Clinical Cooperation Unit Translational Gastrointestinal Oncology and Preclinical Models, German Cancer Research Center (DKFZ), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Tianzuo Zhan
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Timo Gaiser
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias P Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alice C O'Farrell
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jochen Prehn
- Centre for Systems Medicine, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Rut Klinger
- UCD Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Darran P O'Connor
- Department of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | - Garazi Serna
- Val d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Ray McDermott
- Cancer Trials Ireland, Dublin, Ireland
- Department of Medical Oncology, Tallaght University Hospital, Dublin, Ireland
- Department of Medical Oncology, St. Vincent's University Hospital, Dublin, Ireland
| | - Brian Bird
- Bon Secours Cork Cancer Centre, Bon Secours Hospital Cork, Cork, Ireland
| | | | - Liam Grogan
- Medical Oncology Department, Beaumont Hospital, Dublin, Ireland
| | - Anne Horgan
- Department of Medical Oncology, South East Cancer Center, University Hospital Waterford, Waterford, Ireland
| | - Nadine Schulte
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Markus Moehler
- Department of Medicine, Johannes-Gutenberg University Clinic, Mainz, Germany
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium.
- VIB Center for Cancer Biology, Leuven, Belgium.
| | - Annette T Byrne
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
8
|
Gonzalez T, Nie Q, Chaudhary LN, Basel D, Reddi HV. Methylation signatures as biomarkers for non-invasive early detection of breast cancer: A systematic review of the literature. Cancer Genet 2024; 282-283:1-8. [PMID: 38134587 DOI: 10.1016/j.cancergen.2023.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Early detection of breast cancer would help alleviate the burden of treatment for early-stage breast cancer and help patient prognosis. There is currently no established gene panel that utilizes the potential of DNA methylation as a molecular signature for the early detection of breast cancer. This systematic review aims to identify the optimal methylation biomarkers for a non-invasive liquid biopsy assay and the gaps in knowledge regarding biomarkers for early detection of breast cancer. METHODS Following the PRISMA-ScR method, Pubmed and Google Scholar was searched for publications related to methylation biomarkers in breast cancer over a five-year period. Eligible publications were mined for key data fields such as study aims, cohort demographics, types of breast cancer studied, technologies used, and outcomes. Data was analyzed to address the objectives of the review. RESULTS Literature search identified 112 studies of which based on eligibility criteria, 13 studies were included. 28 potential methylation gene targets were identified, of which 23 were methylated at the promoter region, 1 was methylated in the body of the gene and 4 were methylated at yet to be identified locations. CONCLUSIONS Our evaluation shows that at minimum APC, RASSFI, and FOXA1 genes would be a promising set of genes to start with for the early detection of breast cancer, based on the sensitivity and specificity outlined in the studies. Prospective studies are needed to optimize biomarkers for broader impact in early detection of breast cancer.
Collapse
Affiliation(s)
- Tessa Gonzalez
- Division of Precision Medicine and Cytogenetics, Department of Pathology, Medical College of Wisconsin, CT, USA
| | - Qian Nie
- Division of Precision Medicine and Cytogenetics, Department of Pathology, Medical College of Wisconsin, CT, USA
| | - Lubna N Chaudhary
- Division of Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, CT, USA
| | - Donald Basel
- Division of Genetics, Department of Pediatrics, Medical College of Wisconsin, CT, USA
| | - Honey V Reddi
- Division of Precision Medicine and Cytogenetics, Department of Pathology, Medical College of Wisconsin, CT, USA.
| |
Collapse
|
9
|
Bao-Caamano A, Costa-Fraga N, Cayrefourcq L, Rodriguez-Casanova A, Muinelo-Romay L, López-López R, Alix-Panabières C, Díaz-Lagares A. Epigenomic reprogramming of therapy-resistant circulating tumor cells in colon cancer. Front Cell Dev Biol 2023; 11:1291179. [PMID: 38188020 PMCID: PMC10771310 DOI: 10.3389/fcell.2023.1291179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Therapy resistance is a major challenge in colorectal cancer management. Epigenetic changes, such as DNA methylation, in tumor cells are involved in the development of acquired resistance during treatment. Here, we characterized the DNA methylation landscape of colon circulating tumor cells (CTCs) during cancer progression and therapy resistance development. To this aim, we used nine permanent CTC lines that were derived from peripheral blood samples of a patient with metastatic colon cancer collected before treatment initiation (CTC-MCC-41) and during treatment and cancer progression (CTC-MCC-41.4 and CTC-MCC-41.5 [A-G]). We analyzed the DNA methylome of these nine CTC lines using EPIC arrays and also assessed the association between DNA methylation and gene expression profiles. We confirmed DNA methylation and gene expression results by pyrosequencing and RT-qPCR, respectively. The global DNA methylation profiles were different in the pre-treatment CTC line and in CTC lines derived during therapy resistance development. These resistant CTC lines were characterized by a more hypomethylated profile compared with the pre-treatment CTC line. Most of the observed DNA methylation differences were localized at CpG-poor regions and some in CpG islands, shore regions and promoters. We identified a distinctive DNA methylation signature that clearly differentiated the pre-treatment CTC line from the others. Of note, the genes involved in this signature were associated with cancer-relevant pathways, including PI3K/AKT, MAPK, Wnt signaling and metabolism. We identified several epigenetically deregulated genes associated with therapy resistance in CTCs, such as AP2M1. Our results bring new knowledge on the epigenomic landscape of therapy-resistant CTCs, providing novel mechanisms of resistance as well as potential biomarkers and therapeutic targets for advanced CRC management.
Collapse
Affiliation(s)
- Aida Bao-Caamano
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Nicolás Costa-Fraga
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells–The Liquid Biopsy Lab, University Medical Center of Montpellier, Montpellier, France
- Centre for Ecological and Evolutionary Cancer Research, Maladies infectieuses et vecteurs: génétique, èvolution et contrôle, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Aitor Rodriguez-Casanova
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Roche-Chus Joint Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Laura Muinelo-Romay
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
| | - Rafael López-López
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Roche-Chus Joint Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells–The Liquid Biopsy Lab, University Medical Center of Montpellier, Montpellier, France
- Centre for Ecological and Evolutionary Cancer Research, Maladies infectieuses et vecteurs: génétique, èvolution et contrôle, University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Angel Díaz-Lagares
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
- Department of Clinical Analysis, University Hospital Complex of Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| |
Collapse
|
10
|
Brozos-Vázquez EM, Rodríguez-López C, Cortegoso-Mosquera A, López-Landrove S, Muinelo-Romay L, García-González J, López-López R, León-Mateos L. Immunotherapy in patients with brain metastasis: advances and challenges for the treatment and the application of circulating biomarkers. Front Immunol 2023; 14:1221113. [PMID: 38022574 PMCID: PMC10654987 DOI: 10.3389/fimmu.2023.1221113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
The central nervous system (CNS) is one of the most frequent metastatic sites of various cancers, including lung cancer, breast cancer and melanoma. The development of brain metastases requires a specific therapeutic approach and is associated with high mortality and morbidity in cancer patients. Advances in precision medicine and the introduction in recent years of new drugs, such as immunotherapy, have made it possible to improve the prognosis of these patients by improving survival and quality of life. New diagnostic techniques such as liquid biopsy allow real-time monitoring of tumor evolution, providing molecular information on prognostic and predictive biomarkers of response to treatment in blood or other fluids. In this review, we perform an exhaustive update of the clinical trials that demonstrate the utility of immunotherapy in patients with brain metastases and the potential of circulating biomarkers to improving the results of efficacy and toxicity in this subgroup of patients.
Collapse
Affiliation(s)
- E M Brozos-Vázquez
- Medical Oncology Department, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- Medical Oncology Department, Complexo Hospitalario Universitario de A Coruña, Santiago de Compostela, Spain
- ONCOMET, Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
- CIBERONC, Madrid, Spain
| | - C Rodríguez-López
- Medical Oncology Department, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- ONCOMET, Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
- CIBERONC, Madrid, Spain
| | - A Cortegoso-Mosquera
- Medical Oncology Department, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- ONCOMET, Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
- CIBERONC, Madrid, Spain
| | - S López-Landrove
- ONCOMET, Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
| | - L Muinelo-Romay
- ONCOMET, Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
- CIBERONC, Madrid, Spain
| | - J García-González
- Medical Oncology Department, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- ONCOMET, Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
- CIBERONC, Madrid, Spain
| | - R López-López
- Medical Oncology Department, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- ONCOMET, Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
- CIBERONC, Madrid, Spain
| | - L León-Mateos
- Medical Oncology Department, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- ONCOMET, Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
- CIBERONC, Madrid, Spain
| |
Collapse
|
11
|
Bao-Caamano A, Costa-Fraga N, Cayrefourcq L, Jácome MA, Rodriguez-Casanova A, Muinelo-Romay L, López-López R, Alix-Panabières C, Díaz-Lagares A. Epigenomic analysis reveals a unique DNA methylation program of metastasis-competent circulating tumor cells in colorectal cancer. Sci Rep 2023; 13:15401. [PMID: 37717096 PMCID: PMC10505142 DOI: 10.1038/s41598-023-42037-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023] Open
Abstract
Circulating tumor cells (CTCs) and epigenetic alterations are involved in the development of metastasis from solid tumors, such as colorectal cancer (CRC). The aim of this study was to characterize the DNA methylation profile of metastasis-competent CTCs in CRC. The DNA methylome of the human CRC-derived cell line CTC-MCC-41 was analyzed and compared with primary (HT29, Caco2, HCT116, RKO) and metastatic (SW620 and COLO205) CRC cells. The association between methylation and the transcriptional profile of CTC-MCC-41 was also evaluated. Differentially methylated CpGs were validated with pyrosequencing and qMSP. Compared to primary and metastatic CRC cells, the methylation profile of CTC-MCC-41 was globally different and characterized by a slight predominance of hypomethylated CpGs mainly distributed in CpG-poor regions. Promoter CpG islands and shore regions of CTC-MCC-41 displayed a unique methylation profile that was associated with the transcriptional program and relevant cancer pathways, mainly Wnt signaling. The epigenetic regulation of relevant genes in CTC-MCC-41 was validated. This study provides new insights into the epigenomic landscape of metastasis-competent CTCs, revealing biological information for metastasis development, as well as new potential biomarkers and therapeutic targets for CRC patients.
Collapse
Grants
- ISCIII and the European Regional Development Fund (FEDER), reference number PI18/00307. Juan Rodés, Instituto de Salud Carlos III (ISCIII) and Servizo Galego de Saúde (SERGAS), reference number JR17/00016
- PFIS, Instituto de Salud Carlos III (ISCIII) and Fondo Social Europeo, reference number FI19/00240
- Xunta de Galicia, reference number IN606A-2020/004
- Axencia Galega de Innovación (GAIN), Vicepresidencia Segunda e Consellería de Economía, Empresa e Innovación. Reference number IN853B 2018/03
- ISCIII and the European Regional Development Fund (FEDER), reference number PI18/00307. Instituto de Salud Carlos III (ISCII), reference number CP20/00129
- European Union Horizon 2020 Research and Innovation program under the Marie Skłodowska-Curie grant agreement No. 765492, The National Institute of Cancer (INCa, http://www.e-cancer.fr), SIRIC Montpellier Cancer Grant INCa_Inserm_DGOS_12553, and the ERA-NET TRANSCAN 2 JTC 2016 PROLIPSY, la Fondation ARC pour la Recherche sur le cancer and les Fonds de dotation AFER pour la recherche médicale
Collapse
Affiliation(s)
- Aida Bao-Caamano
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Nicolás Costa-Fraga
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells, University Medical Center of Montpellier, IURC, 641, Avenue du Doyen Gaston Giraud, 34093, Montpellier Cedex 5, France
- CREEC, MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
| | - María Amalia Jácome
- Department of Mathematics, MODES Group, CITIC, Faculty of Science, Universidade da Coruña, A Coruña, Spain
| | - Aitor Rodriguez-Casanova
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Roche-Chus Joint Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), 15706, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain
| | - Laura Muinelo-Romay
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain
| | - Rafael López-López
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain.
- Roche-Chus Joint Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), 15706, Santiago de Compostela, Spain.
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain.
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain.
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells, University Medical Center of Montpellier, IURC, 641, Avenue du Doyen Gaston Giraud, 34093, Montpellier Cedex 5, France.
- CREEC, MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France.
- European Liquid Biopsy Society (ELBS), Hamburg, Germany.
| | - Angel Díaz-Lagares
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain.
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain.
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain.
- Department of Clinical Analysis, University Hospital Complex of Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain.
| |
Collapse
|
12
|
Yaghoubi Naei V, Bordhan P, Mirakhorli F, Khorrami M, Shrestha J, Nazari H, Kulasinghe A, Ebrahimi Warkiani M. Advances in novel strategies for isolation, characterization, and analysis of CTCs and ctDNA. Ther Adv Med Oncol 2023; 15:17588359231192401. [PMID: 37692363 PMCID: PMC10486235 DOI: 10.1177/17588359231192401] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/19/2023] [Indexed: 09/12/2023] Open
Abstract
Over the past decade, the detection and analysis of liquid biopsy biomarkers such as circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) have advanced significantly. They have received recognition for their clinical usefulness in detecting cancer at an early stage, monitoring disease, and evaluating treatment response. The emergence of liquid biopsy has been a helpful development, as it offers a minimally invasive, rapid, real-time monitoring, and possible alternative to traditional tissue biopsies. In resource-limited settings, the ideal platform for liquid biopsy should not only extract more CTCs or ctDNA from a minimal sample volume but also accurately represent the molecular heterogeneity of the patient's disease. This review covers novel strategies and advancements in CTC and ctDNA-based liquid biopsy platforms, including microfluidic applications and comprehensive analysis of molecular complexity. We discuss these systems' operational principles and performance efficiencies, as well as future opportunities and challenges for their implementation in clinical settings. In addition, we emphasize the importance of integrated platforms that incorporate machine learning and artificial intelligence in accurate liquid biopsy detection systems, which can greatly improve cancer management and enable precision diagnostics.
Collapse
Affiliation(s)
- Vahid Yaghoubi Naei
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Pritam Bordhan
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
- Faculty of Science, Institute for Biomedical Materials & Devices, University of Technology Sydney, Australia
| | - Fatemeh Mirakhorli
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Motahare Khorrami
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jesus Shrestha
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Hojjatollah Nazari
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Arutha Kulasinghe
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, 1, Broadway, Ultimo New South Wales 2007, Australia
| |
Collapse
|
13
|
Kwon HJ, Shin SH, Kim HH, Min NY, Lim Y, Joo TW, Lee KJ, Jeong MS, Kim H, Yun SY, Kim Y, Park D, Joo J, Bae JS, Lee S, Jeong BH, Lee K, Lee H, Kim HK, Kim K, Um SW, An C, Lee MS. Advances in methylation analysis of liquid biopsy in early cancer detection of colorectal and lung cancer. Sci Rep 2023; 13:13502. [PMID: 37598236 PMCID: PMC10439900 DOI: 10.1038/s41598-023-40611-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023] Open
Abstract
Methylation patterns in cell-free DNA (cfDNA) have emerged as a promising genomic feature for detecting the presence of cancer and determining its origin. The purpose of this study was to evaluate the diagnostic performance of methylation-sensitive restriction enzyme digestion followed by sequencing (MRE-Seq) using cfDNA, and to investigate the cancer signal origin (CSO) of the cancer using a deep neural network (DNN) analyses for liquid biopsy of colorectal and lung cancer. We developed a selective MRE-Seq method with DNN learning-based prediction model using demethylated-sequence-depth patterns from 63,266 CpG sites using SacII enzyme digestion. A total of 191 patients with stage I-IV cancers (95 lung cancers and 96 colorectal cancers) and 126 noncancer participants were enrolled in this study. Our study showed an area under the receiver operating characteristic curve (AUC) of 0.978 with a sensitivity of 78.1% for colorectal cancer, and an AUC of 0.956 with a sensitivity of 66.3% for lung cancer, both at a specificity of 99.2%. For colorectal cancer, sensitivities for stages I-IV ranged from 76.2 to 83.3% while for lung cancer, sensitivities for stages I-IV ranged from 44.4 to 78.9%, both again at a specificity of 99.2%. The CSO model's true-positive rates were 94.4% and 89.9% for colorectal and lung cancers, respectively. The MRE-Seq was found to be a useful method for detecting global hypomethylation patterns in liquid biopsy samples and accurately diagnosing colorectal and lung cancers, as well as determining CSO of the cancer using DNN analysis.Trial registration: This trial was registered at ClinicalTrials.gov (registration number: NCT04253509) for lung cancer on 5 February 2020, https://clinicaltrials.gov/ct2/show/NCT04253509 . Colorectal cancer samples were retrospectively registered at CRIS (Clinical Research Information Service, registration number: KCT0008037) on 23 December 2022, https://cris.nih.go.kr , https://who.init/ictrp . Healthy control samples were retrospectively registered.
Collapse
Affiliation(s)
- Hyuk-Jung Kwon
- R&D Department, Eone-Diagnomics Genome Center, Inc., 143 Gaetbeol-Ro, Yeonsu-Gu, Incheon, 21999, Republic of Korea
| | - Sun Hye Shin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Hyun Ho Kim
- Department of Surgery, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 327 Sosa-Ro, Bucheon, 14647, Republic of Korea
| | - Na Young Min
- R&D Department, Eone-Diagnomics Genome Center, Inc., 143 Gaetbeol-Ro, Yeonsu-Gu, Incheon, 21999, Republic of Korea
| | - YuGyeong Lim
- R&D Department, Eone-Diagnomics Genome Center, Inc., 143 Gaetbeol-Ro, Yeonsu-Gu, Incheon, 21999, Republic of Korea
| | - Tae-Woon Joo
- R&D Department, Eone-Diagnomics Genome Center, Inc., 143 Gaetbeol-Ro, Yeonsu-Gu, Incheon, 21999, Republic of Korea
| | - Kyoung Joo Lee
- R&D Department, Eone-Diagnomics Genome Center, Inc., 143 Gaetbeol-Ro, Yeonsu-Gu, Incheon, 21999, Republic of Korea
| | - Min-Seon Jeong
- R&D Department, Eone-Diagnomics Genome Center, Inc., 143 Gaetbeol-Ro, Yeonsu-Gu, Incheon, 21999, Republic of Korea
| | - Hyojung Kim
- R&D Department, Eone-Diagnomics Genome Center, Inc., 143 Gaetbeol-Ro, Yeonsu-Gu, Incheon, 21999, Republic of Korea
| | - Seon-Young Yun
- R&D Department, Eone-Diagnomics Genome Center, Inc., 143 Gaetbeol-Ro, Yeonsu-Gu, Incheon, 21999, Republic of Korea
| | - YoonHee Kim
- R&D Department, Eone-Diagnomics Genome Center, Inc., 143 Gaetbeol-Ro, Yeonsu-Gu, Incheon, 21999, Republic of Korea
| | - Dabin Park
- R&D Department, Eone-Diagnomics Genome Center, Inc., 143 Gaetbeol-Ro, Yeonsu-Gu, Incheon, 21999, Republic of Korea
| | - Joungsu Joo
- R&D Department, Eone-Diagnomics Genome Center, Inc., 143 Gaetbeol-Ro, Yeonsu-Gu, Incheon, 21999, Republic of Korea
| | - Jin-Sik Bae
- R&D Department, Eone-Diagnomics Genome Center, Inc., 143 Gaetbeol-Ro, Yeonsu-Gu, Incheon, 21999, Republic of Korea
| | - Sunghoon Lee
- R&D Department, Eone-Diagnomics Genome Center, Inc., 143 Gaetbeol-Ro, Yeonsu-Gu, Incheon, 21999, Republic of Korea
| | - Byeong-Ho Jeong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Kyungjong Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Hayemin Lee
- Department of Surgery, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 327 Sosa-Ro, Bucheon, 14647, Republic of Korea
| | - Hong Kwan Kim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea
| | - Kyongchol Kim
- Gangnam Major Hospital, 452 Dogok-Ro, Gangnam-Gu, Seoul, 06279, Republic of Korea
| | - Sang-Won Um
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea.
| | - Changhyeok An
- Department of Surgery, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 327 Sosa-Ro, Bucheon, 14647, Republic of Korea.
| | - Min Seob Lee
- R&D Department, Eone-Diagnomics Genome Center, Inc., 143 Gaetbeol-Ro, Yeonsu-Gu, Incheon, 21999, Republic of Korea.
- Diagnomics, Inc., 5795 Kearny Villa Rd., San Diego, CA, 92123, USA.
| |
Collapse
|
14
|
Wehrle CJ, Raj R, Aykun N, Orabi D, Estfan B, Kamath S, Krishnamurthi S, Fujiki M, Hashimoto K, Quintini C, Kwon DCH, Diago-Uso T, Sasaki K, Aucejo FN. Liquid Biopsy by ctDNA in Liver Transplantation for Colorectal Cancer Liver Metastasis. J Gastrointest Surg 2023; 27:1498-1509. [PMID: 37273078 DOI: 10.1007/s11605-023-05723-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/20/2023] [Indexed: 06/06/2023]
Abstract
INTRODUCTION Colorectal cancer is a leading cause of cancer-related death worldwide. Metastatic liver disease develops in 50% of cases and drives patient outcomes. Although the ideal treatment for colorectal cancer liver metastases (CRLM) is resection, only a third of patients are suitable for this approach. Reports of liver transplantation in selected patients with unresectable CRLM have shown encouraging results compared to conventional forms of therapy. No study to date has examined the utility of liquid biopsy circulating tumor DNA (ctDNA) for evaluation of residual disease in this cohort of patients. We report a small series of liver transplantation in patients with CRLM in whom ctDNA was assessed peri-operatively. METHODS Five patients underwent liver transplantation for unresectable CRLM or liver failure following CRLM treatment from 2018 to 2022. Clinical data, cross-sectional imaging, and serum biomarkers including peri-operative ctDNA were reviewed from electronic medical records. RESULTS All patients are alive without radiologic evidence of disease at time of this publication. Median time of follow-up was 32 months (IQR 6.6-40 months). ctDNA was assessed before (4 patients) and after transplant (6 patients). One patient experienced a pulmonary recurrence that was resected, for whom pre-recurrence ctDNA was not available; the remaining patients have not experienced recurrence. Four patients are without evidence of ctDNA following transplant, and two demonstrate persistent ctDNA positivity post-transplant. Three of four patients with positive pre-transplant ctDNA remain ctDNA-negative post-transplant. CONCLUSIONS Liver transplantation for liver-confined unresectable CRLM is emerging as a valid surgical option in selected patients. The significance of liquid biopsy in this population remains elusive due to lack of data. The clearance of ctDNA after transplant in these patients with metastatic disease and despite their immunosuppression is notable. The significance and usefulness of liquid biopsy in patient selection, surveillance, and as an indication for treatment warrant further investigation.
Collapse
Affiliation(s)
- Chase J Wehrle
- Digestive Diseases and Surgery Institute, Department of Hepato-Pancreato-Biliary/Liver Transplant Surgery, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Roma Raj
- Digestive Diseases and Surgery Institute, Department of Hepato-Pancreato-Biliary/Liver Transplant Surgery, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Nihal Aykun
- Digestive Diseases and Surgery Institute, Department of Hepato-Pancreato-Biliary/Liver Transplant Surgery, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Danny Orabi
- Digestive Diseases and Surgery Institute, Department of Hepato-Pancreato-Biliary/Liver Transplant Surgery, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Bassam Estfan
- Department of Hematology and Oncology, Cleveland Clinic Foundation, Taussig Cancer Institute, Cleveland, OH, USA
| | - Suneel Kamath
- Department of Hematology and Oncology, Cleveland Clinic Foundation, Taussig Cancer Institute, Cleveland, OH, USA
| | - Smitha Krishnamurthi
- Department of Hematology and Oncology, Cleveland Clinic Foundation, Taussig Cancer Institute, Cleveland, OH, USA
| | - Masato Fujiki
- Digestive Diseases and Surgery Institute, Department of Hepato-Pancreato-Biliary/Liver Transplant Surgery, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Koji Hashimoto
- Digestive Diseases and Surgery Institute, Department of Hepato-Pancreato-Biliary/Liver Transplant Surgery, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Cristiano Quintini
- Digestive Diseases and Surgery Institute, Department of Hepato-Pancreato-Biliary/Liver Transplant Surgery, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - David Choon Hyuck Kwon
- Digestive Diseases and Surgery Institute, Department of Hepato-Pancreato-Biliary/Liver Transplant Surgery, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Teresa Diago-Uso
- Digestive Diseases and Surgery Institute, Department of Hepato-Pancreato-Biliary/Liver Transplant Surgery, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Kazunari Sasaki
- Department of Surgery - Abdominal Transplantation, Stanford Hospital and Clinics, Palo Alto, CA, 94035, USA
| | - Federico N Aucejo
- Digestive Diseases and Surgery Institute, Department of Hepato-Pancreato-Biliary/Liver Transplant Surgery, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
15
|
Costa PMDS, Sales SLA, Pinheiro DP, Pontes LQ, Maranhão SS, Pessoa CDÓ, Furtado GP, Furtado CLM. Epigenetic reprogramming in cancer: From diagnosis to treatment. Front Cell Dev Biol 2023; 11:1116805. [PMID: 36866275 PMCID: PMC9974167 DOI: 10.3389/fcell.2023.1116805] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Disruption of the epigenetic program of gene expression is a hallmark of cancer that initiates and propagates tumorigenesis. Altered DNA methylation, histone modifications and ncRNAs expression are a feature of cancer cells. The dynamic epigenetic changes during oncogenic transformation are related to tumor heterogeneity, unlimited self-renewal and multi-lineage differentiation. This stem cell-like state or the aberrant reprogramming of cancer stem cells is the major challenge in treatment and drug resistance. Given the reversible nature of epigenetic modifications, the ability to restore the cancer epigenome through the inhibition of the epigenetic modifiers is a promising therapy for cancer treatment, either as a monotherapy or in combination with other anticancer therapies, including immunotherapies. Herein, we highlighted the main epigenetic alterations, their potential as a biomarker for early diagnosis and the epigenetic therapies approved for cancer treatment.
Collapse
Affiliation(s)
- Pedro Mikael da Silva Costa
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil,Postgraduation Program in Biotechnology Northeastern Network of Biotechnology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Sarah Leyenne Alves Sales
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil,Postgraduation Program in Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Larissa Queiroz Pontes
- Oswaldo Cruz Foundation, FIOCRUZ-Ceará, Sector of Biotechnology, Eusebio, Ceará, Brazil,Postgraduation Program in Biotechnology and Natural Resources, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Sarah Sant’Anna Maranhão
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Claudia do Ó. Pessoa
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil,Postgraduation Program in Biotechnology Northeastern Network of Biotechnology, Federal University of Ceará, Fortaleza, Ceará, Brazil,Postgraduation Program in Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Gilvan Pessoa Furtado
- Oswaldo Cruz Foundation, FIOCRUZ-Ceará, Sector of Biotechnology, Eusebio, Ceará, Brazil,Postgraduation Program in Biotechnology and Natural Resources, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cristiana Libardi Miranda Furtado
- Drug Research and Development Center, Postgraduate Program in Translational Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil,Experimental Biology Center, University of Fortaleza, Fortaleza, Ceará, Brazil,*Correspondence: Cristiana Libardi Miranda Furtado,
| |
Collapse
|
16
|
Chen YN, Shih CY, Guo SL, Liu CY, Shen MH, Chang SC, Ku WC, Huang CC, Huang CJ. Potential prognostic and predictive value of UBE2N, IMPDH1, DYNC1LI1 and HRASLS2 in colorectal cancer stool specimens. Biomed Rep 2023; 18:22. [PMID: 36846616 PMCID: PMC9945078 DOI: 10.3892/br.2023.1604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/20/2022] [Indexed: 02/10/2023] Open
Abstract
Colorectal cancer (CRC) is the most common gastrointestinal malignancy worldwide. The poor specificity and sensitivity of the fecal occult blood test has prompted the development of CRC-related genetic markers for CRC screening and treatment. Gene expression profiles in stool specimens are effective, sensitive and clinically applicable. Herein, a novel advantage of using cells shed from the colon is presented for cost-effective CRC screening. Molecular panels were generated through a series of leave-one-out cross-validation and discriminant analyses. A logistic regression model following reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry was used to validate a specific panel for CRC prediction. The panel, consisting of ubiquitin-conjugating enzyme E2 N (UBE2N), inosine monophosphate dehydrogenase 1 (IMPDH1), dynein cytoplasmic 1 light intermediate chain 1 (DYNC1LI1) and phospholipase A and acyltransferase 2 (HRASLS2), accurately recognized patients with CRC and could thus be further investigated as a potential prognostic and predictive biomarker for CRC. UBE2N, IMPDH1 and DYNC1LI1 expression levels were upregulated and HRASLS2 expression was downregulated in CRC tissues. The predictive power of the panel was 96.6% [95% confidence interval (CI), 88.1-99.6%] sensitivity and 89.7% (95% CI, 72.6-97.8%) specificity at a predicted cut-off value at 0.540, suggesting that this four-gene panel testing of stool specimens can faithfully mirror the state of the colon. On the whole, the present study demonstrates that screening for CRC or cancer detection in stool specimens collected non-invasively does not require the inclusion of an excessive number of genes, and colonic defects can be identified via the detection of an aberrant protein in the mucosa or submucosa.
Collapse
Affiliation(s)
- Yu-Nung Chen
- Division of Colorectal Surgery, Department of Surgery, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Cheng-Yen Shih
- Division of Gastroenterology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei 22174, Taiwan, R.O.C
| | - Shu-Lin Guo
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C.,Department of Anesthesiology, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C,Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei 11490, Taiwan, R.O.C
| | - Chih-Yi Liu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C.,Division of Pathology, Sijhih Cathay General Hospital, New Taipei City 22174, Taiwan, R.O.C
| | - Ming-Hung Shen
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C.,Department of Surgery, Fu Jen Catholic University Hospital, New Taipei 24352, Taiwan, R.O.C.,PhD Program in Nutrition and Food Science, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C
| | - Shih-Chang Chang
- Division of Colorectal Surgery, Department of Surgery, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Wei-Chi Ku
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C
| | - Chi-Cheng Huang
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan, R.O.C.,Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 10090, Taiwan, R.O.C.,Correspondence to: Dr Chi-Cheng Huang, Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Road, Taipei 11217, Taiwan, R.O.C.
| | - Chi-Jung Huang
- Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C.,Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan, R.O.C.,Correspondence to: Dr Chi-Cheng Huang, Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Road, Taipei 11217, Taiwan, R.O.C.
| |
Collapse
|
17
|
Tomeva E, Krammer UDB, Switzeny OJ, Haslberger AG, Hippe B. Sex-Specific miRNA Differences in Liquid Biopsies from Subjects with Solid Tumors and Healthy Controls. EPIGENOMES 2023; 7:epigenomes7010002. [PMID: 36648863 PMCID: PMC9844450 DOI: 10.3390/epigenomes7010002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/22/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Dysregulation of epigenetic mechanisms has been recognized to play a crucial role in cancer development, but these mechanisms vary between sexes. Therefore, we focused on sex-specific differences in the context of cancer-based data from a recent study. A total of 12 cell-free DNA methylation targets in CpG-rich promoter regions and 48 miRNAs were analyzed by qPCR in plasma samples from 8 female and 7 male healthy controls as well as 48 female and 80 male subjects with solid tumors of the bladder, brain, colorectal region (CRC), lung, stomach, pancreas, and liver. Due to the small sample size in some groups and/or the non-balanced distribution of men and women, sex-specific differences were evaluated statistically only in healthy subjects, CRC, stomach or pancreas cancer patients, and all cancer subjects combined (n female/male-8/7, 14/14, 8/15, 6/6, 48/80, respectively). Several miRNAs with opposing expressions between the sexes were observed for healthy subjects (miR-17-5p, miR-26b-5p); CRC patients (miR-186-5p, miR-22-3p, miR-22-5p, miR-25-3p, miR-92a-3p, miR-16-5p); stomach cancer patients (miR-133a-3p, miR-22-5p); and all cancer patients combined (miR-126-3p, miR-21-5p, miR-92a-3p, miR-183-5p). Moreover, sex-specific correlations that were dependent on cancer stage were observed in women (miR-27a-3p) and men (miR-17-5p, miR-20a-5p). Our results indicate the complex and distinct role of epigenetic regulation, particularly miRNAs, depending not only on the health status but also on the sex of the patient. The same miRNAs could have diverse effects in different tissues and opposing effects between the biological sexes, which should be considered in biomarker research.
Collapse
Affiliation(s)
| | - Ulrike D. B. Krammer
- HealthBioCare GmbH, A-1090 Vienna, Austria
- Department of Nutritional Science, University of Vienna, A-1090 Vienna, Austria
| | | | | | - Berit Hippe
- HealthBioCare GmbH, A-1090 Vienna, Austria
- Department of Nutritional Science, University of Vienna, A-1090 Vienna, Austria
- Correspondence:
| |
Collapse
|
18
|
Galoș D, Gorzo A, Balacescu O, Sur D. Clinical Applications of Liquid Biopsy in Colorectal Cancer Screening: Current Challenges and Future Perspectives. Cells 2022; 11:3493. [PMID: 36359889 PMCID: PMC9657568 DOI: 10.3390/cells11213493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 08/13/2023] Open
Abstract
Colorectal cancer (CRC) represents the third most prevalent cancer worldwide and a leading cause of mortality among the population of western countries. However, CRC is frequently a preventable malignancy due to various screening tests being available. While failing to obtain real-time data, current screening methods (either endoscopic or stool-based tests) also require disagreeable preparation protocols and tissue sampling through invasive procedures, rendering adherence to CRC screening programs suboptimal. In this context, the necessity for novel, less invasive biomarkers able to identify and assess cancer at an early stage is evident. Liquid biopsy comes as a promising minimally invasive diagnostic tool, able to provide comprehensive information on tumor heterogeneity and dynamics during carcinogenesis. This review focuses on the potential use of circulating tumor cells (CTCs), circulating nucleic acids (CNAs) and extracellular vesicles as emerging liquid biopsy markers with clinical application in the setting of CRC screening. The review also examines the opportunity to implement liquid biopsy analysis during everyday practice and provides highlights on clinical trials researching blood tests designed for early cancer diagnosis. Additionally, the review explores potential applications of liquid biopsies in the era of immunotherapy.
Collapse
Affiliation(s)
- Diana Galoș
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania
| | - Alecsandra Gorzo
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania
| | - Daniel Sur
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania
- Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400012 Cluj-Napoca, Romania
| |
Collapse
|
19
|
Mauri G, Vitiello PP, Sogari A, Crisafulli G, Sartore-Bianchi A, Marsoni S, Siena S, Bardelli A. Liquid biopsies to monitor and direct cancer treatment in colorectal cancer. Br J Cancer 2022; 127:394-407. [PMID: 35264786 PMCID: PMC9346106 DOI: 10.1038/s41416-022-01769-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent and deadly cancers worldwide. Despite recent improvements in treatment and prevention, most of the current therapeutic options are weighted by side effects impacting patients' quality of life. Better patient selection towards systemic treatments represents an unmet clinical need. The recent multidisciplinary and molecular advancements in the treatment of CRC patients demand the identification of efficient biomarkers allowing to personalise patient care. Currently, core tumour biopsy specimens represent the gold-standard biological tissue to identify such biomarkers. However, technical feasibility, tumour heterogeneity and cancer evolution are major limitations of this single-snapshot approach. Genotyping circulating tumour DNA (ctDNA) has been addressed as potentially overcoming such limitations. Indeed, ctDNA has been retrospectively demonstrated capable of identifying minimal residual disease post-surgery and post-adjuvant treatment, as well as spotting druggable molecular alterations for tailoring treatments in metastatic disease. In this review, we summarise the available evidence on ctDNA applicability in CRC. Then, we review ongoing clinical trials assessing how liquid biopsy can be used interventionally to guide therapeutic choice in localised, locally advanced and metastatic CRC. Finally, we discuss how its widespread could transform CRC patients' management, dissecting its limitations while suggesting improvement strategies.
Collapse
Affiliation(s)
- Gianluca Mauri
- IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Pietro Paolo Vitiello
- Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy
- Department of Oncology, University of Torino, 10060, Candiolo, TO, Italy
| | - Alberto Sogari
- Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy
- Department of Oncology, University of Torino, 10060, Candiolo, TO, Italy
| | - Giovanni Crisafulli
- Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy
- Department of Oncology, University of Torino, 10060, Candiolo, TO, Italy
| | - Andrea Sartore-Bianchi
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | | | - Salvatore Siena
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
- Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, 20162, Milan, Italy
| | - Alberto Bardelli
- Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy.
- Department of Oncology, University of Torino, 10060, Candiolo, TO, Italy.
| |
Collapse
|
20
|
Ruiz-Bañobre J, Rodriguez-Casanova A, Costa-Fraga N, Bao-Caamano A, Alvarez-Castro A, Carreras-Presas M, Brozos-Vazquez E, Vidal-Insua Y, Vazquez-Rivera F, Candamio-Folgar S, Mosquera-Presedo M, Lago-Lestón RM, Muinelo-Romay L, Vázquez-Bueno JÁ, Sanz-Pamplona R, Moreno V, Goel A, Castillo L, Martin AC, Arroyo R, Esteller M, Crujeiras AB, López-López R, Díaz-Lagares A. Noninvasive early detection of colorectal cancer by hypermethylation of the LINC00473 promoter in plasma cell-free DNA. Clin Epigenetics 2022; 14:86. [PMID: 35810318 PMCID: PMC9271259 DOI: 10.1186/s13148-022-01302-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/17/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Current noninvasive assays have limitations in the early detection of colorectal cancer. We evaluated the clinical utility of promoter methylation of the long noncoding RNA LINC00473 as a noninvasive biomarker to detect colorectal cancer and associated precancerous lesions. METHODS We evaluated the epigenetic regulation of LINC00473 through promoter hypermethylation in colorectal cancer cell lines using bisulfite genomic sequencing and expression analyses. DNA methylation of LINC00473 was analyzed in primary colorectal tumors using 450K arrays and RNA-seq from The Cancer Genome Atlas (TCGA). Tissue-based findings were validated in several independent cohorts of colorectal cancer and advanced colorectal polyp patients by pyrosequencing. We explored the clinical utility of LINC00473 methylation for the early detection of colorectal cancer in plasma cell-free DNA by quantitative methylation-specific PCR and droplet digital PCR. RESULTS LINC00473 showed transcriptionally silencing due to promoter hypermethylation in colorectal cancer cell lines and primary tumors. Methylation of the LINC00473 promoter accurately detected primary colorectal tumors in two independent clinical cohorts, with areas under the receiver operating characteristic curves (AUCs) of 0.94 and 0.89. This biomarker also identified advanced colorectal polyps from two other tissue-based clinical cohorts with high diagnostic accuracy (AUCs of 0.99 and 0.78). Finally, methylation analysis of the LINC00473 promoter in plasma cell-free DNA accurately identified patients with colorectal cancer and advanced colorectal polyps (AUCs of 0.88 and 0.84, respectively), which was confirmed in an independent cohort of patients. CONCLUSIONS Hypermethylation of the LINC00473 promoter is a new promising biomarker for noninvasive early detection of colorectal cancer and related precancerous lesions.
Collapse
Affiliation(s)
- Juan Ruiz-Bañobre
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain
| | - Aitor Rodriguez-Casanova
- Cancer Epigenomics Laboratory, Epigenomics Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain
- Roche-Chus Joint Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), 15706, Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
| | - Nicolas Costa-Fraga
- Cancer Epigenomics Laboratory, Epigenomics Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
| | - Aida Bao-Caamano
- Cancer Epigenomics Laboratory, Epigenomics Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
| | - Ana Alvarez-Castro
- Department of Gastroenterology and Hepatology, University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain
| | - Martín Carreras-Presas
- Department of Gastroenterology and Hepatology, University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain
| | - Elena Brozos-Vazquez
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain
| | - Yolanda Vidal-Insua
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain
| | - Francisca Vazquez-Rivera
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain
| | - Sonia Candamio-Folgar
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain
| | - Manuel Mosquera-Presedo
- Cancer Epigenomics Laboratory, Epigenomics Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
| | - Ramón M Lago-Lestón
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Laura Muinelo-Romay
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - José Ángel Vázquez-Bueno
- Department of Pathology, Complejo Hospitalario Universitario de Ferrol (SERGAS), 15405, Ferrol, Spain
| | - Rebeca Sanz-Pamplona
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), 08907, Barcelona, Spain
- Colorectal Cancer Group, Bellvitge Biomedical Research Institute (IDIBELL), 08907, Barcelona, Spain
- Biomedical Research Centre Network for Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
| | - Víctor Moreno
- Unit of Biomarkers and Susceptibility, Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), 08907, Barcelona, Spain
- Colorectal Cancer Group, Bellvitge Biomedical Research Institute (IDIBELL), 08907, Barcelona, Spain
- Biomedical Research Centre Network for Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08907, Barcelona, Spain
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott and White Research Institute, Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | - Ana C Martin
- Advanced Marker Discovery (AMADIX), 47004, Valladolid, Spain
| | - Rocio Arroyo
- Advanced Marker Discovery (AMADIX), 47004, Valladolid, Spain
| | - Manel Esteller
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
- Institucio Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| | - Ana B Crujeiras
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de La Obesidad y Nutrición (CIBERobn), ISCIII, 28029, Madrid, Spain
| | - Rafael López-López
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain.
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain.
- Roche-Chus Joint Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), 15706, Santiago de Compostela, Spain.
| | - Angel Díaz-Lagares
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain.
- Cancer Epigenomics Laboratory, Epigenomics Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain.
| |
Collapse
|
21
|
Li X, Wang Q, Wang R. Roles of Exosome Genomic DNA in Colorectal Cancer. Front Pharmacol 2022; 13:923232. [PMID: 35721181 PMCID: PMC9198365 DOI: 10.3389/fphar.2022.923232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/18/2022] [Indexed: 12/03/2022] Open
Abstract
Exosomes are extracellular vesicles that mediate cell-to-cell communication. Bioactive substances such as DNA, RNA, lipids, and proteins are present in it, and they play an essential role in the pathogenesis of colorectal cancer (CRC). The role of RNA and protein in exosomes has been extensively studied. Exosome DNA has recently attracted the attention of a great deal of scientists. According to studies, exosome DNA mainly contains genomic DNA (gDNA) and mitochondrial DNA (mtDNA), of which exosome gDNA is widely used in liquid biopsy of CRC. It includes a variety of clinically relevant tumor-specific mutation genes. In addition to liquid biopsy, researchers find that exosome gDNA regulates immune and metabolic functions in CRC, making it an important research object. However, the primary research on exosome gDNA is still limited. Here, we describe the occurrence and composition of exosomes. Summarize the essential characteristics and mode of action of exosome gDNA. Remarkably, this paper constitutes a comprehensive summary on the role of exosome gDNA on CRC with the intent of providing a theoretical basis and reference for early diagnosis and clinical treatment of cancer.
Collapse
Affiliation(s)
- Xiaoshuai Li
- Department of Blood Transfusion, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiushi Wang
- Department of Blood Transfusion, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rui Wang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| |
Collapse
|
22
|
Carvalho Â, Guimarães-Teixeira C, Constâncio V, Fernandes M, Macedo-Silva C, Henrique R, Monteiro FJ, Jerónimo C. One sample fits all: a microfluidic-assisted methodology for label-free isolation of CTCs with downstream methylation analysis of cfDNA in lung cancer. Biomater Sci 2022; 10:3296-3308. [PMID: 35583893 DOI: 10.1039/d2bm00044j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lung cancer (LC) is a major cause of mortality. Late diagnosis, associated with limitations in tissue biopsies for adequate tumor characterization contribute to limited survival of lung cancer patients. Liquid biopsies have been introduced to improve tumor characetrization through the analysis of biomarkers, including circulating tumour cells (CTCs) and cell-free DNA (cfDNA). Considering their availability in blood, several enrichment strategies have been developed to augment circulating biomarkers for improving diagnostic, prognostic and treament efficacy assessment; often, however, only one biomarker is tested. In this work we developed and implemented a microfluidic chip for label-free enrichment of CTCs with a methodology for subsequent cfDNA analysis from the same cryopreserved sample. CTCs were successfully isolated in 38 of 42 LC patients with the microfluidic chip. CTCs frequency was significantly higher in LC patients with advanced disease. A cut-off of 1 CTC per mL was established for diagnosis (sensitivity = 76.19%, specificity = 100%) and in patients with late stage lung cancer, the presence of ≥5 CTCs per mL was significantly associated with shorter overall survival. MIR129-2me and ADCY4me panel of cfDNA methylation performed well for LC detection, whereas MIR129-2me combined with HOXA11me allowed for patient risk stratification. Analysis of combinations of biomarkers enabled the definition of panels for LC diagnosis and prognosis. Overall, this study demonstrates that multimodal analysis of tumour biomarkers via microfluidic devices may significantly improve LC characterization in cryopreserved samples, constituting a reliable source for continuous disease monitoring.
Collapse
Affiliation(s)
- Ângela Carvalho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal. .,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Catarina Guimarães-Teixeira
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.,Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Vera Constâncio
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.,Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Mariana Fernandes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal. .,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Catarina Macedo-Silva
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.,Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rui Henrique
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.,Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Fernando Jorge Monteiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal. .,INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.,Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e Materiais, Universidade do Porto, Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Carmen Jerónimo
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.,Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| |
Collapse
|
23
|
Yuan Z, Zhao H, Zhi Q, Wang S, Liu C, Han Y, Xu Z, Liu F, Liu X, Zan X, Wang Q, Wan D. Long non-coding RNA H19X promotes tumorigenesis and metastasis of colorectal cancer through regulating the miR-503-5p/KANK1 axis. Genes Genomics 2022; 44:1577-1591. [PMID: 35567714 DOI: 10.1007/s13258-022-01259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/12/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND It has been well established that the long non-coding RNAs (lncRNAs) plays a critical role in tumor progression. However, the function of these transcripts and mechanisms responsible for their deregulation in colorectal cancer (CRC) remain to be investigated. OBJECTIVE To explore the potential effect and regulation mechanism of lncRNA H19X in colorectal cancer. METHODS We predicted and validated long non-coding RNA H19X from microarray data of colorectal cancer tissues. In addition, the biological behaviors of H19X and miR-503-5p on CRC were examined in vitro and in vivo, including MTT, colony formation assay, Hoechst33342 and transwell assay. The mRNA and protein levels of KN Motif and Ankyrin Repeat Domains 1 (KANK1) were analyzed by Quantitative real-time PCR (qRT-PCR), western blotting (WB) assay. Moreover, bioinformatics tools and dual-luciferase reporter assay were applied to demonstrate the relationship between KANK1 and miR-503-5p. RESULTS H19X was remarkably up-regulated in CRC tissues. Its expression related to tumor size (p = 0.041), lymph node metastasis (p = 0.037), distal metastasis (p = 0.028), advanced TNM stage (p = 0.034) and poor survival in CRC. H19X acted as an oncogenic lncRNA that induced CRC cell proliferation, invasion and metastasis. Through a number of functional studies, we found that H19X silencing inhibited the malignance phenotype of cancer cells through loss of miR-503-5p. Further studies demonstrated that miR-503-5p was involved in the progression of CRC by directly regulating the downstream target KANK1. CONCLUSION Collectively, the findings of the present study indicate H19X/miR-503-5p/KANK1 axis has critical role in the progression of colorectal cancer, providing an effective prognostic indicator and promising target in treatment of colorectal cancer.
Collapse
Affiliation(s)
- Zihan Yuan
- Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, People's Republic of China
| | - Haizhou Zhao
- Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, People's Republic of China
| | - Qiaoming Zhi
- Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, People's Republic of China
| | - Sentai Wang
- Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, People's Republic of China
| | - Chao Liu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, No. 59 Haier Rd, Qingdao, 266003, Shandong Province, People's Republic of China
| | - Ye Han
- Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, People's Republic of China
| | - Zhihua Xu
- Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, People's Republic of China
| | - Fei Liu
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, People's Republic of China
| | - Xingyi Liu
- Department of Bioinformatics, Center for Systems Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu Province, People's Republic of China
| | - Xinquan Zan
- Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, People's Republic of China
| | - Qiang Wang
- Department of General Surgery, Jiangsu Shengze Hospital, Wujiang, 215228, Jiangsu Province, People's Republic of China.
| | - Daiwei Wan
- Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, People's Republic of China.
| |
Collapse
|
24
|
Alorda-Clara M, Torrens-Mas M, Morla-Barcelo PM, Martinez-Bernabe T, Sastre-Serra J, Roca P, Pons DG, Oliver J, Reyes J. Use of Omics Technologies for the Detection of Colorectal Cancer Biomarkers. Cancers (Basel) 2022; 14:817. [PMID: 35159084 PMCID: PMC8834235 DOI: 10.3390/cancers14030817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers with high mortality rates, especially when detected at later stages. Early detection of CRC can substantially raise the 5-year survival rate of patients, and different efforts are being put into developing enhanced CRC screening programs. Currently, the faecal immunochemical test with a follow-up colonoscopy is being implemented for CRC screening. However, there is still a medical need to describe biomarkers that help with CRC detection and monitor CRC patients. The use of omics techniques holds promise to detect new biomarkers for CRC. In this review, we discuss the use of omics in different types of samples, including breath, urine, stool, blood, bowel lavage fluid, or tumour tissue, and highlight some of the biomarkers that have been recently described with omics data. Finally, we also review the use of extracellular vesicles as an improved and promising instrument for biomarker detection.
Collapse
Affiliation(s)
- Marina Alorda-Clara
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
| | - Margalida Torrens-Mas
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
- Translational Research in Aging and Longevity (TRIAL) Group, Instituto de Investigación Sanitaria Illes Balears (IdISBa), E-07120 Palma de Mallorca, Illes Balears, Spain
| | - Pere Miquel Morla-Barcelo
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
| | - Toni Martinez-Bernabe
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
| | - Jorge Sastre-Serra
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03) Instituto Salud Carlos III, E-28029 Madrid, Madrid, Spain
| | - Pilar Roca
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03) Instituto Salud Carlos III, E-28029 Madrid, Madrid, Spain
| | - Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
| | - Jordi Oliver
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03) Instituto Salud Carlos III, E-28029 Madrid, Madrid, Spain
| | - Jose Reyes
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
- Servicio Aparato Digestivo, Hospital Comarcal de Inca, E-07300 Inca, Illes Balears, Spain
| |
Collapse
|
25
|
Methods for the Detection of Circulating Biomarkers in Cancer Patients. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:525-552. [DOI: 10.1007/978-3-031-04039-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Abumustafa W, Zamer BA, Khalil BA, Hamad M, Maghazachi AA, Muhammad JS. Protein arginine N-methyltransferase 5 in colorectal carcinoma: Insights into mechanisms of pathogenesis and therapeutic strategies. Biomed Pharmacother 2022; 145:112368. [PMID: 34794114 DOI: 10.1016/j.biopha.2021.112368] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Protein arginine N-methyltransferase 5 (PRMT5) enzyme is one of the eight canonical PRMTs, classified as a type II PRMT, induces arginine monomethylation and symmetric dimethylation. PRMT5 is known to be overexpressed in multiple cancer types, including colorectal cancer (CRC), where its overexpression is associated with poor survival. Recent studies have shown that upregulation of PRMT5 induces tumor growth and metastasis in CRC. Moreover, various novel PRMT5 inhibitors tested on CRC cell lines showed promising anticancer effects. Also, it was suggested that PRMT5 could be a valid biomarker for CRC diagnosis and prognosis. Hence, a deeper understanding of PRMT5-mediated CRC carcinogenesis could provide new avenues towards developing a targeted therapy. In this study, we started with in silico analysis correlating PRMT5 expression in CRC patients as a prelude to further our investigation of its role in CRC. We then carried out a comprehensive review of the scientific literature that dealt with the role(s) of PRMT5 in CRC pathogenesis, diagnosis, and prognosis. Also, we have summarized key findings from in vitro research using various therapeutic agents and strategies directly targeting PRMT5 or disrupting its function. In conclusion, PRMT5 seems to play a significant role in the pathogenesis of CRC; therefore, its prognostic and therapeutic potential merits further investigation.
Collapse
Affiliation(s)
- Wafaa Abumustafa
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Batoul Abi Zamer
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Bariaa A Khalil
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Azzam A Maghazachi
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
27
|
Kuligina E, Moiseyenko F, Belukhin S, Stepanova E, Zakharova M, Chernobrivtseva V, Aliev I, Sharabura T, Moiseyenko V, Aleksakhina S, Laidus T, Martianov A, Kholmatov M, Whitehead A, Yanus G, Imyanitov E. Tumor irradiation may facilitate the detection of tumor-specific mutations in plasma. World J Clin Oncol 2021; 12:1215-1226. [PMID: 35070740 PMCID: PMC8716992 DOI: 10.5306/wjco.v12.i12.1215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/26/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The mutation-based analysis of circulating tumor DNA (ctDNA) is a promising diagnostic tool for clinical oncology. However, it has low success rate because many cancer patients do not have detectable ctDNA in the bloodstream.
AIM To evaluate whether preoperative tumor irradiation results in a transient increase of plasma ctDNA concentration due to the induction of apoptosis in radiation-exposed cells.
METHODS This study focused on patients with locally advanced rectal cancer, because preoperative tumor irradiation is a part of their standard treatment plan. Nine subjects, whose tumors contained KRAS, NRAS or BRAF mutations, donated serial blood samples 1 h prior to the first fraction of irradiation (at baseline), immediately after the first fraction (time 0), and 1, 3, 6, 12, 24, 36, 48, 72 and 96 h after the first fraction. The amount of mutated gene copies was measured by droplet digital PCR.
RESULTS Five out of nine patients were mutation-negative by ctDNA test at baseline; two of these subjects demonstrated an emergence of the mutated DNA copies in the bloodstream within the follow-up period. There were 4 patients, who had detectable ctDNA in the plasma at the start of the experiment; three of them showed an evident treatment-induced increase of the content of mutated RAS/RAF alleles.
CONCLUSION Local tumor irradiation may facilitate the detection of tumor-specific DNA in the bloodstream. These data justify further assessment of the clinical feasibility of irradiation-assisted liquid biopsy.
Collapse
Affiliation(s)
- Ekaterina Kuligina
- Department of Tumor Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Fedor Moiseyenko
- Department of Therapy, City Cancer Center, St.-Petersburg 197758, Russia
| | - Sergey Belukhin
- Department of Surgery, City Cancer Center, St.-Petersburg 197758, Russia
| | | | - Maria Zakharova
- Department of Radiology, City Cancer Center, St.-Petersburg 197758, Russia
| | | | - Ikram Aliev
- Department of Surgery, City Cancer Center, St.-Petersburg 197758, Russia
| | - Tatiana Sharabura
- Department of Radiology, City Cancer Center, St.-Petersburg 197758, Russia
| | | | - Svetlana Aleksakhina
- Department of Tumor Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Tatiana Laidus
- Department of Tumor Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
| | - Aleksandr Martianov
- Department of Tumor Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Maksim Kholmatov
- Department of Tumor Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
| | - Aldon Whitehead
- Internal Medicine Residency Program, The University of Illinois College of Medicine, Chicago, IL 60612, United States
| | - Grigoriy Yanus
- Department of Tumor Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Evgeny Imyanitov
- Department of Tumor Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
- Department of Oncology, I.I. Mechnikov Northwestern Medical University, St.-Petersburg 191015, Russia
| |
Collapse
|
28
|
Bonde A, Smith DA, Kikano E, Yoest JM, Tirumani SH, Ramaiya NH. Overview of serum and tissue markers in colorectal cancer: a primer for radiologists. Abdom Radiol (NY) 2021; 46:5521-5535. [PMID: 34415413 DOI: 10.1007/s00261-021-03243-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 12/17/2022]
Abstract
Serum and tissue tumor markers provide crucial information in the diagnosis, treatment, and follow-up of colorectal cancers. Tissue tumor markers are increasingly used for determination of targeted chemotherapy planning based on genotyping of tumor cells. Recently, plasma-based technique of liquid biopsy is being evaluated for providing tumor biomarkers in the management of colorectal cancer. Tumor markers are commonly used in conjunction with imaging during initial staging, treatment determination, response assessment, and determination of recurrence or metastatic disease. Knowledge of tumor markers and their association with radiological findings is thus crucial for radiologists. Additionally, various novel imaging techniques are being evaluated as potential noninvasive imaging biomarkers to predict tumor genotypes, features, and tumor response. We review and discuss the potential role of these newer imaging techniques.
Collapse
Affiliation(s)
- Apurva Bonde
- Department of Radiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| | - Daniel A Smith
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Elias Kikano
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Jennifer M Yoest
- Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Sree H Tirumani
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Nikhil H Ramaiya
- Department of Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| |
Collapse
|
29
|
Honoré N, Galot R, van Marcke C, Limaye N, Machiels JP. Liquid Biopsy to Detect Minimal Residual Disease: Methodology and Impact. Cancers (Basel) 2021; 13:5364. [PMID: 34771526 PMCID: PMC8582541 DOI: 10.3390/cancers13215364] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022] Open
Abstract
One reason why some patients experience recurrent disease after a curative-intent treatment might be the persistence of residual tumor cells, called minimal residual disease (MRD). MRD cannot be identified by standard radiological exams or clinical evaluation. Tumor-specific alterations found in the blood indirectly diagnose the presence of MRD. Liquid biopsies thus have the potential to detect MRD, allowing, among other things, the detection of circulating tumor DNA (ctDNA), circulating tumor cells (CTC), or tumor-specific microRNA. Although liquid biopsy is increasingly studied, several technical issues still limit its clinical applicability: low sensitivity, poor standardization or reproducibility, and lack of randomized trials demonstrating its clinical benefit. Being able to detect MRD could give clinicians a more comprehensive view of the risk of relapse of their patients and could select patients requiring treatment escalation with the goal of improving cancer survival. In this review, we are discussing the different methodologies used and investigated to detect MRD in solid cancers, their respective potentials and issues, and the clinical impacts that MRD detection will have on the management of cancer patients.
Collapse
Affiliation(s)
- Natasha Honoré
- Institute for Experimental and Clinical Research (IREC, Pôle MIRO), Université Catholique de Louvain (UCLouvain) ,1200 Brussels, Belgium; (R.G.); (C.v.M.)
| | - Rachel Galot
- Institute for Experimental and Clinical Research (IREC, Pôle MIRO), Université Catholique de Louvain (UCLouvain) ,1200 Brussels, Belgium; (R.G.); (C.v.M.)
- Department of Medical Oncology, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Cédric van Marcke
- Institute for Experimental and Clinical Research (IREC, Pôle MIRO), Université Catholique de Louvain (UCLouvain) ,1200 Brussels, Belgium; (R.G.); (C.v.M.)
- Department of Medical Oncology, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Nisha Limaye
- Genetics of Autoimmune Diseases and Cancer, de Duve Institute, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Jean-Pascal Machiels
- Institute for Experimental and Clinical Research (IREC, Pôle MIRO), Université Catholique de Louvain (UCLouvain) ,1200 Brussels, Belgium; (R.G.); (C.v.M.)
- Department of Medical Oncology, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
30
|
Masoumi F, Saraiva SM, Bouzo BL, López-López R, Esteller M, Díaz-Lagares Á, de la Fuente M. Modulation of Colorectal Tumor Behavior via lncRNA TP53TG1-Lipidic Nanosystem. Pharmaceutics 2021; 13:pharmaceutics13091507. [PMID: 34575588 PMCID: PMC8470159 DOI: 10.3390/pharmaceutics13091507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 01/01/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are an emerging group of RNAs with a crucial role in cancer pathogenesis. In gastrointestinal cancers, TP53 target 1 (TP53TG1) is an epigenetically regulated lncRNA that represents a promising therapeutic target due to its tumor suppressor properties regulating the p53-mediated DNA damage and the intracellular localization of the oncogenic YBX1 protein. However, to translate this finding into the clinic as a gene therapy, it is important to develop effective carriers able to deliver exogenous lncRNAs to the targeted cancer cells. Here, we propose the use of biocompatible sphingomyelin nanosystems comprising DOTAP (DSNs) to carry and deliver a plasmid vector encoding for TP53TG1 (pc(TP53TG1)-DSNs) to a colorectal cancer cell line (HCT-116). DSNs presented a high association capacity and convenient physicochemical properties. In addition, pc(TP53TG1)-DSNs showed anti-tumor activities in vitro, specifically a decrease in the proliferation rate, a diminished colony-forming capacity, and hampered migration and invasiveness of the treated cancer cells. Consequently, the proposed strategy displays a high potential as a therapeutic approach for colorectal cancer.
Collapse
Affiliation(s)
- Farimah Masoumi
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (F.M.); (S.M.S.); (B.L.B.)
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran 14176-13151, Iran
- School of Medicine, Tonekabon Branch, Islamic Azad University, Tonekabon 46841-61167, Iran
| | - Sofia M. Saraiva
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (F.M.); (S.M.S.); (B.L.B.)
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), 28029 Madrid, Spain; (R.L.-L.); (M.E.)
| | - Belén L. Bouzo
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (F.M.); (S.M.S.); (B.L.B.)
| | - Rafael López-López
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), 28029 Madrid, Spain; (R.L.-L.); (M.E.)
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain
| | - Manel Esteller
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), 28029 Madrid, Spain; (R.L.-L.); (M.E.)
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), 08907 Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Ángel Díaz-Lagares
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), 28029 Madrid, Spain; (R.L.-L.); (M.E.)
- Cancer Epigenomics, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS), SERGAS, 15706 Santiago de Compostela, Spain
- Correspondence: (A.D.-L.); (M.d.l.F.)
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, 15706 Santiago de Compostela, Spain; (F.M.); (S.M.S.); (B.L.B.)
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), 28029 Madrid, Spain; (R.L.-L.); (M.E.)
- Correspondence: (A.D.-L.); (M.d.l.F.)
| |
Collapse
|
31
|
Krasic J, Abramovic I, Vrtaric A, Nikolac Gabaj N, Kralik-Oguic S, Katusic Bojanac A, Jezek D, Sincic N. Impact of Preanalytical and Analytical Methods on Cell-Free DNA Diagnostics. Front Cell Dev Biol 2021; 9:686149. [PMID: 34552921 PMCID: PMC8451956 DOI: 10.3389/fcell.2021.686149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/13/2021] [Indexed: 01/18/2023] Open
Abstract
While tissue biopsy has for the longest time been the gold-standard in biomedicine, precision/personalized medicine is making the shift toward liquid biopsies. Cell-free DNA (cfDNA) based genetic and epigenetic biomarkers reflect the molecular status of its tissue-of-origin allowing for early and non-invasive diagnostics of different pathologies. However, selection of preanalytical procedures (including cfDNA isolation) as well as analytical methods are known to impact the downstream results. Calls for greater standardization are made continuously, yet comprehensive assessments of the impact on diagnostic parameters are lacking. This study aims to evaluate the preanalytic and analytic factors that influence cfDNA diagnostic parameters in blood and semen. Text mining analysis has been performed to assess cfDNA research trends, and identify studies on isolation methods, preanalytical and analytical impact. Seminal and blood plasma were tested as liquid biopsy sources. Traditional methods of cfDNA isolation, commercial kits (CKs), and an in-house developed protocol were tested, as well as the impact of dithiothreitol (DTT) on cfDNA isolation performance. Fluorimetry, qPCR, digital droplet PCR (ddPCR), and bioanalyzer were compared as cfDNA quantification methods. Fragment analysis was performed by qPCR and bioanalyzer while the downstream application (cfDNA methylation) was analyzed by pyrosequencing. In contrast to blood, semen as a liquid biopsy source has only recently begun to be reported as a liquid biopsy source, with almost half of all publications on it being review articles. Experimental data revealed that cfDNA isolation protocols give a wide range of cfDNA yields, both from blood and seminal plasma. The addition of DTT to CKs has improved yields in seminal plasma and had a neutral/negative impact in blood plasma. Capillary electrophoresis and fluorometry reported much higher yields than PCR methods. While cfDNA yield and integrity were highly impacted, cfDNA methylation was not affected by isolation methodology or DTT. In conclusion, NucleoSnap was recognized as the kit with the best overall performance. DTT improved CK yields in seminal plasma. The in-house developed protocol has shown near-kit isolation performance. ddPCR LINE-1 assay for absolute detection of minute amounts of cfDNA was established and allowed for quantification of samples inhibited in qPCR. cfDNA methylation was recognized as a stable biomarker unimpacted by cfDNA isolation method. Finally, semen was found to be an abundant source of cfDNA offering potential research opportunities and benefits for cfDNA based biomarkers development related to male reproductive health.
Collapse
Affiliation(s)
- Jure Krasic
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Irena Abramovic
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Alen Vrtaric
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Clinical Chemistry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Nora Nikolac Gabaj
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Clinical Chemistry, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Sasa Kralik-Oguic
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
- Clinical Institute of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ana Katusic Bojanac
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Davor Jezek
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nino Sincic
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Scientific Group for Research on Epigenetic Biomarkers, School of Medicine, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
32
|
Tomicic MT, Dawood M, Efferth T. Epigenetic Alterations Upstream and Downstream of p53 Signaling in Colorectal Carcinoma. Cancers (Basel) 2021; 13:cancers13164072. [PMID: 34439227 PMCID: PMC8394868 DOI: 10.3390/cancers13164072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) belongs to the most common tumor types, and half of all CRC harbor missense mutations in the TP53 tumor suppressor gene. In addition to genetically caused loss of function of p53, epigenetic alterations (DNA methylation, histone modifications, micro-RNAs) contribute to CRC development. In this review, we focused on epigenetic alterations related to the entire p53 signaling pathway upstream and downstream of p53. Methylation of genes which activate p53 function has been reported, and methylation of APC and MGMT was associated with increased mutation rates of TP53. The micro-RNA 34a activates TP53 and was methylated in CRC. Proteins that regulate TP53 DNA methylation, mutations, and acetylation of TP53-related histones were methylated in CRC. P53 regulates the activity of numerous downstream proteins. Even if TP53 is not mutated, the function of wildtype p53 may be compromised if corresponding downstream genes are epigenetically inactivated. Thus, the role of p53 for CRC development, therapy response, and survival prognosis of patients may be much more eminent than previously estimated. Therefore, we propose that novel diagnostic devices measuring the entirety of genetic and epigenetic changes in the "p53 signalome" have the potential to improve the predictive and prognostic power in CRC diagnostics and management.
Collapse
Affiliation(s)
- Maja T. Tomicic
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany;
| | - Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128 Mainz, Germany;
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128 Mainz, Germany;
- Correspondence: ; Tel.: +49-6131-3925751; Fax: +49-6131-3923752
| |
Collapse
|
33
|
Guo X, Liang X, Wang Y, Cheng A, Qin C, Zhang H, Wang Z. Construction and Comprehensive Prognostic Analysis of a lncRNA-miRNA-mRNA Regulatory Network and Tumor Immune Cell Infiltration in Colorectal Cancer. Front Genet 2021; 12:652601. [PMID: 34276767 PMCID: PMC8281064 DOI: 10.3389/fgene.2021.652601] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/11/2021] [Indexed: 11/25/2022] Open
Abstract
Colorectal cancer (CRC) is a malignant tumor with high morbidity and mortality worldwide. Recent studies have shown that long noncoding RNAs (lncRNAs) play an important role in almost all human tumors, including CRC. Competitive endogenous RNA (ceRNA) regulatory networks have become hot topics in cancer research. Tumor-infiltrating immune cells (TICs) have also been reported to be closely related to the survival and prognosis of CRC patients. In this study, we used the lncRNA–miRNA–mRNA regulatory network combined with tumor immune cell infiltration to predict the survival and prognosis of 598 CRC patients. First, we downloaded the lncRNA, mRNA, and miRNA transcriptome data of CRC patients from The Cancer Genome Atlas (TCGA) database and identified differentially expressed genes through “limma” package of R software. The ceRNA regulatory network was established by using the “GDCRNATools” R package. Then, univariate Cox analysis and least absolute shrinkage and selection operator analysis were performed to identify the optimal prognostic network nodes, including SRPX, UST, H19, SNHG7, hsa-miR-29b-3p, and TTYH3. Next, we analyzed the differences in 22 types of TICs between 58 normal subjects and 206 CRC patients and included memory CD4 T cells, dendritic cells and neutrophils in the construction of a prognostic model. Finally, we identified the relationship between the ceRNA prognostic model and the infiltrating immune cell prognostic model. In conclusion, we constructed two prognostic models that provide insights on the prognosis and treatment strategy of CRC.
Collapse
Affiliation(s)
- Xiong Guo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaolong Liang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yujun Wang
- Department of Pathology, Daping Hospital, Army Military Medical University, Chongqing, China
| | - Anqi Cheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chuan Qin
- Department of Gastrointestinal Surgery, Three Gorges Hospital, Chongqing University, Chongqing, China
| | - Han Zhang
- Department of Digestive Oncology, Three Gorges Hospital, Chongqing University, Chongqing, China
| | - Ziwei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
34
|
Profiling Colorectal Cancer in the Landscape Personalized Testing-Advantages of Liquid Biopsy. Int J Mol Sci 2021; 22:ijms22094327. [PMID: 33919272 PMCID: PMC8122648 DOI: 10.3390/ijms22094327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/11/2022] Open
Abstract
Drug-specific therapeutic approaches for colorectal cancer (CRC) have contributed to significant improvements in patient health. Nevertheless, there is still a great need to improve the personalization of treatments based on genetic and epigenetic tumor profiles to maximize the quality and efficacy while limiting cytotoxicity. Currently, CEA and CA 19-9 are the only validated blood biomarkers in clinical practice. For this reason, laboratories are trying to identify new specific prognostics and, more importantly, predictive biomarkers for CRC patient profiling. Thus, the unique landscape of personalized biomarker data should have a clinical impact on CRC treatment strategies and molecular genetic screening tests should become the standard method for diagnosing CRC. This review concentrates on recent molecular testing in CRC and discusses the potential modifications in CRC assay methodology with the upcoming clinical application of novel genomic approaches. While mechanisms for analyzing circulating tumor DNA have been proven too inaccurate, detecting and analyzing circulating tumor cells and protein analysis of exosomes represent more promising options. Blood liquid biopsy offers good prospects for the future if the results align with pathologists’ tissue analyses. Overall, early detection, accurate diagnosis and treatment monitoring for CRC with specific markers and targeted molecular testing may benefit many patients.
Collapse
|