1
|
Monteiro LM, Gouveia PJ, Vasques-Nóvoa F, Rosa S, Bardi I, Gomes RN, Correia-Santos S, Ricotti L, Vannozzi L, Guarnera D, Costa L, Leite-Moreira AM, Mendes-Ferreira P, Leite-Moreira AF, Perbellini F, Terracciano CM, Pinto-do-Ó P, Ferreira L, Nascimento DS. Nanoscale piezoelectric patches preserve electrical integrity of infarcted hearts. Mater Today Bio 2025; 32:101742. [PMID: 40290879 PMCID: PMC12033997 DOI: 10.1016/j.mtbio.2025.101742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 04/30/2025] Open
Abstract
Ischemic heart disease is the leading cause of death worldwide. Several approaches have been explored to restore cardiac function, however few investigated new strategies to improve electrical functional recovery. Herein, we have investigated the impact of piezoelectric patches (Piezo patches), capable of generating electric charges upon mechanical deformation, on rat cardiac slices, healthy and ischemic hearts (ex vivo), on infarcted mice (in vivo) and on healthy and infarcted pigs (in vivo). Piezo patches did not preclude cardiac slice contractility, while compared with electrically inert control patches. In addition, Piezo patches showed an adequate safety profile in a working heart model as no electrophysiologic alterations were detected in healthy hearts. Epicardial implantation of Piezo patches in acutely infarcted mice hearts significantly improved myocardial electrical integrity without disturbing systolic function. Moreover, Piezo patches partially prevented ischemia-related adverse cardiac remodeling, reducing left ventricular chamber dilatation and compensatory hypertrophy. Coherently, Piezo patch-implanted hearts revealed downregulation of genes associated with extracellular matrix remodeling. Importantly, in vivo implantation of Piezo patches in porcine hearts revealed to be electrically safe as no major effects in its electrophysiology were detected. Overall, the results presented here endorse Piezo patches as a promising therapeutic strategy to improve post-myocardial infarction structural and electrical remodeling.
Collapse
Affiliation(s)
- Luís M. Monteiro
- IIIUC-Institute of Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, 3030-789, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC, Biotech Parque Tecnológico de Cantanhede, 3060-197, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789, Coimbra, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Pedro J. Gouveia
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC, Biotech Parque Tecnológico de Cantanhede, 3060-197, Coimbra, Portugal
| | - Francisco Vasques-Nóvoa
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Susana Rosa
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC, Biotech Parque Tecnológico de Cantanhede, 3060-197, Coimbra, Portugal
| | - Ifigeneia Bardi
- Imperial College London, National Heart & Lung Institute, London, United Kingdom
| | - Rita N. Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Simão Correia-Santos
- IIIUC-Institute of Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, 3030-789, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC, Biotech Parque Tecnológico de Cantanhede, 3060-197, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789, Coimbra, Portugal
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Lorenzo Vannozzi
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Daniele Guarnera
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Liliana Costa
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - André M. Leite-Moreira
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Pedro Mendes-Ferreira
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Adelino F. Leite-Moreira
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Filippo Perbellini
- Imperial College London, National Heart & Lung Institute, London, United Kingdom
| | | | - Perpétua Pinto-do-Ó
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Lino Ferreira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC, Biotech Parque Tecnológico de Cantanhede, 3060-197, Coimbra, Portugal
- Faculty of Medicine of the University of Coimbra, 3000-548, Coimbra, Portugal
| | - Diana S. Nascimento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
2
|
Ala M. The beneficial effects of mesenchymal stem cells and their exosomes on myocardial infarction and critical considerations for enhancing their efficacy. Ageing Res Rev 2023; 89:101980. [PMID: 37302757 DOI: 10.1016/j.arr.2023.101980] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/17/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells with regenerative, anti-inflammatory, and immunomodulatory properties. MSCs and their exosomes significantly improved structural and functional alterations after myocardial infarction (MI) in preclinical studies and clinical trials. By reprograming intracellular signaling pathways, MSCs attenuate inflammatory response, oxidative stress, apoptosis, pyroptosis, and endoplasmic reticulum (ER) stress and improve angiogenesis, mitochondrial biogenesis, and myocardial remodeling after MI. MSC-derived exosomes contain a mixture of non-coding RNAs, growth factors, anti-inflammatory mediators, and anti-fibrotic factors. Although primary results from clinical trials were promising, greater efficacies can be achieved by controlling several modifiable factors. The optimum timing of transplantation, route of administration, origin of MSCs, number of doses, and number of cells per dose need to be further investigated by future studies. Newly, highly effective MSC delivery systems have been developed to improve the efficacy of MSCs and their exosomes. Moreover, MSCs can be more efficacious after being pretreated with non-coding RNAs, growth factors, anti-inflammatory or inflammatory mediators, and hypoxia. Similarly, viral vector-mediated overexpression of particular genes can augment the protective effects of MSCs on MI. Therefore, future clinical trials must consider these advances in preclinical studies to properly reflect the efficacy of MSCs or their exosomes for MI.
Collapse
Affiliation(s)
- Moein Ala
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Raposo L, Cerqueira RJ, Leite S, Moreira-Costa L, Laundos TL, Miranda JO, Mendes-Ferreira P, Coelho JA, Gomes RN, Pinto-do-Ó P, Nascimento DS, Lourenço AP, Cardim N, Leite-Moreira A. Human-umbilical cord matrix mesenchymal cells improved left ventricular contractility independently of infarct size in swine myocardial infarction with reperfusion. Front Cardiovasc Med 2023; 10:1186574. [PMID: 37342444 PMCID: PMC10277821 DOI: 10.3389/fcvm.2023.1186574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/09/2023] [Indexed: 06/22/2023] Open
Abstract
Background Human umbilical cord matrix-mesenchymal stromal cells (hUCM-MSC) have demonstrated beneficial effects in experimental acute myocardial infarction (AMI). Reperfusion injury hampers myocardial recovery in a clinical setting and its management is an unmet need. We investigated the efficacy of intracoronary (IC) delivery of xenogeneic hUCM-MSC as reperfusion-adjuvant therapy in a translational model of AMI in swine. Methods In a placebo-controlled trial, pot-belied pigs were randomly assigned to a sham-control group (vehicle-injection; n = 8), AMI + vehicle (n = 12) or AMI + IC-injection (n = 11) of 5 × 105 hUCM-MSC/Kg, within 30 min of reperfusion. AMI was created percutaneously by balloon occlusion of the mid-LAD. Left-ventricular function was blindly evaluated at 8-weeks by invasive pressure-volume loop analysis (primary endpoint). Mechanistic readouts included histology, strength-length relationship in skinned cardiomyocytes and gene expression analysis by RNA-sequencing. Results As compared to vehicle, hUCM-MSC enhanced systolic function as shown by higher ejection fraction (65 ± 6% vs. 43 ± 4%; p = 0.0048), cardiac index (4.1 ± 0.4 vs. 3.1 ± 0.2 L/min/m2; p = 0.0378), preload recruitable stroke work (75 ± 13 vs. 36 ± 4 mmHg; p = 0.0256) and end-systolic elastance (2.8 ± 0.7 vs. 2.1 ± 0.4 mmHg*m2/ml; p = 0.0663). Infarct size was non-significantly lower in cell-treated animals (13.7 ± 2.2% vs. 15.9 ± 2.7%; Δ = -2.2%; p = 0.23), as was interstitial fibrosis and cardiomyocyte hypertrophy in the remote myocardium. Sarcomere active tension improved, and genes related to extracellular matrix remodelling (including MMP9, TIMP1 and PAI1), collagen fibril organization and glycosaminoglycan biosynthesis were downregulated in animals treated with hUCM-MSC. Conclusion Intracoronary transfer of xenogeneic hUCM-MSC shortly after reperfusion improved left-ventricular systolic function, which could not be explained by the observed extent of infarct size reduction alone. Combined contributions of favourable modification of myocardial interstitial fibrosis, matrix remodelling and enhanced cardiomyocyte contractility in the remote myocardium may provide mechanistic insight for the biological effect.
Collapse
Affiliation(s)
- Luís Raposo
- Cardiology Department, Hospital de Santa Cruz - Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
- Centro Cardiovascular, Hospital da Luz – Lisboa, Luz Saúde, Lisbon, Portugal
- Nova Medical School, Lisbon, Portugal
| | - Rui J. Cerqueira
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Department of Cardiothoracic Surgery, Hospital Universitário de São João, Porto, Portugal
| | - Sara Leite
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Anta Family Health Unit, Espinho/Gaia Healthcare Centre, Espinho, Portugal
- ICBAS- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Liliana Moreira-Costa
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Tiago L. Laundos
- ICBAS- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- I3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Joana O. Miranda
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Pedro Mendes-Ferreira
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Paris-Porto Pulmonary Hypertension Collaborative Laboratory (3PH), UMR_S 999, INSERM, Université Paris-Saclay, Paris, France
| | - João Almeida Coelho
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Rita N. Gomes
- ICBAS- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- I3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Perpétua Pinto-do-Ó
- ICBAS- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- I3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Diana S. Nascimento
- ICBAS- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- I3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - André P. Lourenço
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Department of Anesthesiology, Hospital Universitário de São João, Porto, Portugal
| | - Nuno Cardim
- Centro Cardiovascular, Hospital da Luz – Lisboa, Luz Saúde, Lisbon, Portugal
- Nova Medical School, Lisbon, Portugal
| | - Adelino Leite-Moreira
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Department of Cardiothoracic Surgery, Hospital Universitário de São João, Porto, Portugal
| |
Collapse
|
4
|
Martinez-Arroyo O, Ortega A, Forner MJ, Cortes R. Mesenchymal Stem Cell-Derived Extracellular Vesicles as Non-Coding RNA Therapeutic Vehicles in Autoimmune Diseases. Pharmaceutics 2022; 14:pharmaceutics14040733. [PMID: 35456567 PMCID: PMC9028692 DOI: 10.3390/pharmaceutics14040733] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 03/26/2022] [Indexed: 02/07/2023] Open
Abstract
Autoimmune diseases (ADs) are characterized by the activation of the immune system against self-antigens. More common in women than in men and with an early onset, their incidence is increasing worldwide, and this, combined with their chronic nature, is contributing to an enlarged medical and economic burden. Conventional immunosuppressive agents are designed to alleviate symptoms but do not constitute an effective therapy, highlighting a need to develop new alternatives. In this regard, mesenchymal stem cells (MSCs) have demonstrated powerful immunosuppressive and regenerative effects. MSC-derived extracellular vesicles (MSC-EVs) have shown some advantages, such as less immunogenicity, and are proposed as novel therapies for ADs. In this review, we summarize current perspectives on therapeutic options for ADs based on MSCs and MSC-EVs, focusing particularly on their mechanism of action exerted through their non-coding RNA (ncRNA) cargo. A complete state-of-the-art review was performed, centralized on some of the most severe ADs (rheumatoid arthritis, autoimmune type 1 diabetes mellitus, and systemic lupus erythematosus), giving evidence that a promising field is evolving to overcome the current knowledge and provide new therapeutic possibilities centered on MSC-EVs and their role as ncRNA delivery vehicles for AD gene therapy.
Collapse
Affiliation(s)
- Olga Martinez-Arroyo
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (M.J.F.)
| | - Ana Ortega
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (M.J.F.)
- Correspondence: (A.O.); (R.C.); Tel.: +34-96398-3916 (R.C.); Fax: +34-96398-7860 (R.C.)
| | - Maria J. Forner
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (M.J.F.)
- Internal Medicine Unit, Hospital Clinico Universitario, 46010 Valencia, Spain
| | - Raquel Cortes
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (M.J.F.)
- Correspondence: (A.O.); (R.C.); Tel.: +34-96398-3916 (R.C.); Fax: +34-96398-7860 (R.C.)
| |
Collapse
|
5
|
Yan W, Chen Y, Guo Y, Xia Y, Li C, Du Y, Lin C, Xu X, Qi T, Fan M, Zhang F, Hu G, Gao E, Liu R, Hai C, Tao L. Irisin Promotes Cardiac Homing of Intravenously Delivered MSCs and Protects against Ischemic Heart Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103697. [PMID: 35038246 PMCID: PMC8895138 DOI: 10.1002/advs.202103697] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/09/2021] [Indexed: 05/15/2023]
Abstract
Few intravenously administered mesenchymal stromal cells (MSCs) engraft to the injured myocardium, thereby limiting their therapeutic efficacy for the treatment of ischemic heart injury. Here, it is found that irisin pretreatment increases the cardiac homing of adipose tissue-derived MSCs (ADSCs) administered by single and multiple intravenous injections to mice with MI/R by more than fivefold, which subsequently increases their antiapoptotic, proangiogenic, and antifibrotic effects in rats and mice that underwent MI/R. RNA sequencing, Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analysis, and loss-of-function studies identified CSF2RB as a cytokine receptor that facilitates the chemotaxis of irisin-treated ADSCs in the presence of CSF2, a chemokine that is significantly upregulated in the ischemic heart. Cardiac-specific CSF2 knockdown blocked the cardiac homing and cardioprotection abilities of intravenously injected irisin-treated ADSCs in mice subjected to MI/R. Moreover, irisin pretreatment reduced the apoptosis of hydrogen peroxide-induced ADSCs and increased the paracrine proangiogenic effect of ADSCs. ERK1/2-SOD2, and ERK1/2-ANGPTL4 are responsible for the antiapoptotic and paracrine angiogenic effects of irisin-treated ADSCs, respectively. Integrin αV/β5 is identified as the irisin receptor in ADSCs. These results provide compelling evidence that irisin pretreatment can be an effective means to optimize intravenously delivered MSCs as therapy for ischemic heart injury.
Collapse
Affiliation(s)
- Wenjun Yan
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'an710032China
| | - Youhu Chen
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'an710032China
| | - Yongzhen Guo
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'an710032China
| | - Yunlong Xia
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'an710032China
| | - Congye Li
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'an710032China
| | - Yunhui Du
- Beijing Anzhen HospitalCapital Medical UniversityBeijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing100029China
| | - Chen Lin
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'an710032China
| | - Xiaoming Xu
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'an710032China
| | - Tingting Qi
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'an710032China
| | - Miaomiao Fan
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'an710032China
| | - Fuyang Zhang
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'an710032China
| | - Guangyu Hu
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'an710032China
| | - Erhe Gao
- Center for Translational MedicineTemple UniversityPhiladelphiaPA19104USA
| | - Rui Liu
- Department of ToxicologyShanxi Key Lab of Free Radical Biology and MedicineSchool of Public HealthThe Fourth Military Medical UniversityXi'an710032China
| | - Chunxu Hai
- Department of ToxicologyShanxi Key Lab of Free Radical Biology and MedicineSchool of Public HealthThe Fourth Military Medical UniversityXi'an710032China
| | - Ling Tao
- Department of CardiologyXijing HospitalFourth Military Medical UniversityXi'an710032China
| |
Collapse
|