1
|
Sisto A, van Wermeskerken T, Pancher M, Gatto P, Asselbergh B, Assunção Carreira ÁS, De Winter V, Adami V, Provenzani A, Timmerman V. Autophagy induction by piplartine ameliorates axonal degeneration caused by mutant HSPB1 and HSPB8 in Charcot-Marie-Tooth type 2 neuropathies. Autophagy 2025; 21:1116-1143. [PMID: 39698979 PMCID: PMC12013449 DOI: 10.1080/15548627.2024.2439649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
HSPB1 [heat shock protein family B (small) member 1] and HSPB8 are essential molecular chaperones for neuronal proteostasis, as they prevent protein aggregation. Mutant HSPB1 and HSPB8 primarily harm peripheral neurons, resulting in axonal Charcot-Marie-Tooth neuropathies (CMT2). Macroautophagy/autophagy is a shared mechanism by which HSPB1 and HSPB8 mutations cause neuronal dysfunction. Autophagosome formation is reduced in mutant HSPB1-induced pluripotent stem-cell-derived motor neurons from CMT type 2F patients. Likewise, the HSPB8K141N knockin mouse model, mimicking CMT type 2 L, exhibits axonal degeneration and muscle atrophy, with SQSTM1/p62-positive deposits. We show here that mouse embryonic fibroblasts isolated from a HSPB8K141N/green fluorescent protein (GFP)-LC3 model have diminished autophagosome production under conditions of MTOR inhibition. To correct the autophagic deficits in the HSPB1 and HSPB8 models, we screened by high-throughput autophagosome quantification the repurposing Spectrum Collection library for molecules that could boost the autophagic activity above the canonical MTOR inhibition. Hit compounds were validated on motor neurons obtained by differentiation of HSPB1P182L and HSPB8K141N patient-derived induced pluripotent stem cells, focusing on autophagy induction as well as neurite network density, axonal degeneration, and mitochondrial morphology. We identified molecules that specifically stimulate autophagosome formation in the HSPB8K141N cells, without affecting autophagy flux. Two top lead compounds induced autophagy and reduced axonal degeneration, thus promoting neuronal network maturation in the CMT2 patient-derived motor neurons. Based on these findings, the phenotypical screen revealed that piplartine rescued autophagy deficiencies in both the HSPB1 and HSPB8 models, demonstrating autophagy induction as an effective therapeutic strategy for CMT neuropathies and other chaperonopathies.
Collapse
Affiliation(s)
- Angela Sisto
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Tamira van Wermeskerken
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Pamela Gatto
- HTS Core Facility, University of Trento, Trento, Italy
| | - Bob Asselbergh
- Neuromics Support Facility, VIB - Center for Molecular Neurology, Antwerp, Belgium
- Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Vicky De Winter
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | | | - Alessandro Provenzani
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Yang J, Xie S, Guo J, Zhou Y, Yang Y, Sun Z, Cai P, Zhang C, Jiang S, Cao X, Fan Y, Chen X, Li X, Zhang Y. Restoration of mitochondrial function alleviates trigeminal neuropathic pain in mice. Free Radic Biol Med 2025; 226:185-198. [PMID: 39528053 DOI: 10.1016/j.freeradbiomed.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Craniofacial pain is prevalent and a debilitating condition. Managing craniofacial pain is particularly challenging due to its multifaceted nature. Among the most severe forms of craniofacial pain is trigeminal neuralgia, often described as one of the most excruciating pain syndromes encountered in clinical practice. Utilizing a mouse model of trigeminal neuropathic pain, we found severe mitochondrial impairment in the injured trigeminal ganglion (TG), spanning transcription and translation to functionality. Our findings demonstrated that rejuvenating mitochondria by boosting NAD+ levels enhanced mitochondrial fitness and significantly ameliorated trigeminal neuropathic pain. Additionally, we showed that the analgesic effects of nicotinamide riboside (NR) supplementation mainly depend on Sirt1. Importantly, our multi-omics studies revealed that activated Sirt1 by NR suppresses a broad range of key pain genes and exerts anti-inflammatory effects in the TG. Together, we present a comprehensive view of how mitochondrial dysfunction is involved in trigeminal neuropathic pain. Therefore, targeting mitochondrial dysfunction offers a novel and promising approach to craniofacial pain management.
Collapse
Affiliation(s)
- Jiajun Yang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Song Xie
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Jiahao Guo
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Yujuan Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Yaning Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Zhaoxia Sun
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Peng Cai
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Chenchen Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Shangying Jiang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Xuxia Cao
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Yuanlan Fan
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province, 330006, China
| | - Xing Chen
- School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, UK
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China.
| | - Yi Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang Province, 325101, China.
| |
Collapse
|
3
|
Labat-de-Hoz L, Jiménez MÁ, Correas I, Alonso MA. Regulation of formin INF2 and its alteration in INF2-linked inherited disorders. Cell Mol Life Sci 2024; 81:463. [PMID: 39586895 PMCID: PMC11589041 DOI: 10.1007/s00018-024-05499-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024]
Abstract
Formins are proteins that catalyze the formation of linear filaments made of actin. INF2, a formin, is crucial for correct vesicular transport, microtubule stability and mitochondrial division. Its activity is regulated by a complex of cyclase-associated protein and lysine-acetylated G-actin (KAc-actin), which helps INF2 adopt an inactive conformation through the association of its N-terminal diaphanous inhibitory domain (DID) with its C-terminal diaphanous autoinhibitory domain. INF2 activation can occur through calmodulin binding, KAc-actin deacetylation, G-actin binding, or association with the Cdc42 GTPase. Mutations in the INF2 DID are linked to focal segmental glomerulosclerosis (FSGS), affecting podocytes, and Charcot-Marie-Tooth disease, which affects Schwann cells and leads to axonal loss. At least 80 pathogenic DID variants of INF2 have been identified, with potential for many more. These mutations disrupt INF2 regulation, leading to excessive actin polymerization. This in turn causes altered intracellular trafficking, abnormal mitochondrial dynamics, and profound transcriptional reprogramming via the MRTF/SRF complex, resulting in mitotic abnormalities and p53-mediated cell death. This sequence of events could be responsible for progressive podocyte loss during glomerular degeneration in FSGS patients. Pharmacological targeting of INF2 or actin polymerization could offer the therapeutic potential to halt the progression of FSGS and improve outcomes for patients with INF2-linked disease.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - M Ángeles Jiménez
- Instituto de Química Física (IQF) Blas Cabrera, Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Department of Molecular Biology, UAM, 28049, Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.
| |
Collapse
|
4
|
Chen X, Li CG, Zhou X, Zhu M, Jin J, Wang P. A new perspective on the regulation of glucose and cholesterol transport by mitochondria-lysosome contact sites. Front Physiol 2024; 15:1431030. [PMID: 39290619 PMCID: PMC11405319 DOI: 10.3389/fphys.2024.1431030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Mitochondria and lysosomes play a very important role in maintaining cellular homeostasis, and the dysfunction of these organelles is closely related to many diseases. Recent studies have revealed direct interactions between mitochondria and lysosomes, forming mitochondria-lysosome contact sites that regulate organelle network dynamics and mediate the transport of metabolites between them. Impaired function of these contact sites is not only linked to physiological processes such as glucose and cholesterol transport but also closely related to the pathological processes of metabolic diseases. Here, we highlight the recent progress in understanding the mitochondria-lysosome contact sites, elucidate their role in regulating metabolic homeostasis, and explore the potential implications of this pathway in metabolic disorders.
Collapse
Affiliation(s)
- Xiaolong Chen
- School of Physical Education, Hangzhou Normal University, Hangzhou, China
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Minghua Zhu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jing Jin
- School of Physical Education, Hangzhou Normal University, Hangzhou, China
| | - Ping Wang
- School of Physical Education, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
5
|
Schiavon CR, Wang Y, Feng JW, Garrett S, Sung TC, Dayn Y, Wang C, Youle RJ, Quintero-Carmona OA, Shadel GS, Manor U. INF2-mediated actin polymerization at ER-organelle contacts regulates organelle size and movement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602365. [PMID: 39005402 PMCID: PMC11245118 DOI: 10.1101/2024.07.06.602365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Proper regulation of organelle dynamics is critical for cellular function, but the mechanisms coordinating multiple organelles remain poorly understood. Here we show that actin polymerization mediated by the endoplasmic reticulum (ER)-anchored formin INF2 acts as a master regulator of organelle morphology and movement. Using high-resolution imaging, we demonstrate that INF2-polymerized actin filaments assemble at ER contact sites on mitochondria, endosomes, and lysosomes just prior to their fission. Genetic manipulation of INF2 activity alters the size, shape and motility of all three organelles. Our findings reveal a conserved mechanism by which the ER uses actin polymerization to control diverse organelles, with implications for understanding organelle dysfunction in neurodegenerative and other diseases. This work establishes INF2-mediated actin assembly as a central coordinator of organelle dynamics and inter-organelle communication.
Collapse
Affiliation(s)
- Cara R. Schiavon
- Department of Cell & Developmental Biology, University of California, San Diego
| | - Yuning Wang
- Department of Cell & Developmental Biology, University of California, San Diego
| | | | - Stephanie Garrett
- Department of Cell & Developmental Biology, University of California, San Diego
| | | | | | - Chunxin Wang
- National Institute of Neurological Disorders and Stroke
| | | | | | | | - Uri Manor
- Department of Cell & Developmental Biology, University of California, San Diego
| |
Collapse
|
6
|
Artiukhov AV, Solovjeva ON, Balashova NV, Sidorova OP, Graf AV, Bunik VI. Pharmacological Doses of Thiamine Benefit Patients with the Charcot-Marie-Tooth Neuropathy by Changing Thiamine Diphosphate Levels and Affecting Regulation of Thiamine-Dependent Enzymes. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1161-1182. [PMID: 39218016 DOI: 10.1134/s0006297924070010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 09/04/2024]
Abstract
Charcot-Marie-Tooth (CMT) neuropathy is a polygenic disorder of peripheral nerves with no effective cure. Thiamine (vitamin B1) is a neurotropic compound that improves neuropathies. Our pilot study characterizes therapeutic potential of daily oral administration of thiamine (100 mg) in CMT neuropathy and its molecular mechanisms. The patient hand grip strength was determined before and after thiamine administration along with the blood levels of the thiamine coenzyme form (thiamine diphosphate, ThDP), activities of endogenous holo-transketolase (without ThDP in the assay medium) and total transketolase (with ThDP in the assay medium), and transketolase activation by ThDP [1 - (holo-transketolase/total transketolase),%], corresponding to the fraction of ThDP-free apo-transketolase. Single cases of administration of sulbutiamine (200 mg) or benfotiamine (150 mg) reveal their effects on the assayed parameters within those of thiamine. Administration of thiamine or its pharmacological forms increased the hand grip strength in the CMT patients. Comparison of the thiamin status in patients with different forms of CMT disease to that of control subjects without diagnosed pathologies revealed no significant differences in the average levels of ThDP, holo-transketolase, or relative content of holo and apo forms of transketolase. However, the regulation of transketolase by thiamine/ThDP differed in the control and CMT groups: in the assay, ThDP activated transketolase from the control individuals, but not from CMT patients. Thiamine administration paradoxically decreased endogenous holo-transketolase in CMT patients; this effect was not observed in the control group. Correlation analysis revealed sex-specific differences in the relationship between the parameters of thiamine status in both the control subjects and patients with the CMT disease. Thus, our findings link physiological benefits of thiamine administration in CMT patients to changes in their thiamine status, in particular, the blood levels of ThDP and transketolase regulation.
Collapse
Affiliation(s)
- Artem V Artiukhov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Biochemistry, Sechenov University, Moscow, 119991, Russia
| | - Olga N Solovjeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Natalia V Balashova
- Faculty of Advanced Medicine, Vladimirsky Moscow Regional Research and Clinical Institute, Moscow, 129110, Russia
- Faculty of Continuing Medical Education, RUDN Medical Institute, Moscow, 117198, Russia
| | - Olga P Sidorova
- Department of Neurology, Vladimirsky Moscow Regional Research and Clinical Institute, Moscow, 129110, Russia
| | - Anastasia V Graf
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Victoria I Bunik
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Department of Biochemistry, Sechenov University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
7
|
Kumar A, Larrea D, Pero ME, Infante P, Conenna M, Shin GJ, Van Elias V, Grueber WB, Di Marcotullio L, Area-Gomez E, Bartolini F. MFN2 coordinates mitochondria motility with α-tubulin acetylation and this regulation is disrupted in CMT2A. iScience 2024; 27:109994. [PMID: 38883841 PMCID: PMC11177149 DOI: 10.1016/j.isci.2024.109994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/13/2023] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
Mitofusin-2 (MFN2), a large GTPase residing in the mitochondrial outer membrane and mutated in Charcot-Marie-Tooth type 2 disease (CMT2A), is a regulator of mitochondrial fusion and tethering with the ER. The role of MFN2 in mitochondrial transport has however remained elusive. Like MFN2, acetylated microtubules play key roles in mitochondria dynamics. Nevertheless, it is unknown if the α-tubulin acetylation cycle functionally interacts with MFN2. Here, we show that mitochondrial contacts with microtubules are sites of α-tubulin acetylation, which occurs through MFN2-mediated recruitment of α-tubulin acetyltransferase 1 (ATAT1). This activity is critical for MFN2-dependent regulation of mitochondria transport, and axonal degeneration caused by CMT2A MFN2 associated R94W and T105M mutations may depend on the inability to release ATAT1 at sites of mitochondrial contacts with microtubules. Our findings reveal a function for mitochondria in α-tubulin acetylation and suggest that disruption of this activity plays a role in the onset of MFN2-dependent CMT2A.
Collapse
Affiliation(s)
- Atul Kumar
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Delfina Larrea
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Maria Elena Pero
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - Paola Infante
- Department of Molecular Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy
| | - Marilisa Conenna
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Molecular Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy
| | - Grace J. Shin
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Vincent Van Elias
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wesley B. Grueber
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Physiology & Cellular Biophysics, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome La Sapienza, Rome, Italy
| | - Estela Area-Gomez
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Francesca Bartolini
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
8
|
Malik SO, Wierenga A, Gao C, Akaaboune M. Plasticity and structural alterations of mitochondria and sarcoplasmic organelles in muscles of mice deficient in α-dystrobrevin, a component of the dystrophin-glycoprotein complex. Hum Mol Genet 2024; 33:1107-1119. [PMID: 38507070 PMCID: PMC12099290 DOI: 10.1093/hmg/ddae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/03/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
The dystrophin-glycoprotein complex (DGC) plays a crucial role in maintaining the structural integrity of the plasma membrane and the neuromuscular junction. In this study, we investigated the impact of the deficiency of α-dystrobrevin (αdbn), a component of the DGC, on the homeostasis of intracellular organelles, specifically mitochondria and the sarcoplasmic reticulum (SR). In αdbn deficient muscles, we observed a significant increase in the membrane-bound ATP synthase complex levels, a marker for mitochondria in oxidative muscle fiber types compared to wild-type. Furthermore, examination of muscle fibers deficient in αdbn using electron microscopy revealed profound alterations in the organization of mitochondria and the SR within certain myofibrils of muscle fibers. This included the formation of hyper-branched intermyofibrillar mitochondria with extended connections, an extensive network spanning several myofibrils, and a substantial increase in the number/density of subsarcolemmal mitochondria. Concurrently, in some cases, we observed significant structural alterations in mitochondria, such as cristae loss, fragmentation, swelling, and the formation of vacuoles and inclusions within the mitochondrial matrix cristae. Muscles deficient in αdbn also displayed notable alterations in the morphology of the SR, along with the formation of distinct anomalous concentric SR structures known as whorls. These whorls were prevalent in αdbn-deficient mice but were absent in wild-type muscles. These results suggest a crucial role of the DGC αdbn in regulating intracellular organelles, particularly mitochondria and the SR, within muscle cells. The remodeling of the SR and the formation of whorls may represent a novel mechanism of the unfolded protein response (UPR) in muscle cells.
Collapse
Affiliation(s)
- Saad O Malik
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4164 Biological Sciences Building, 1105 N. University Avenue, Ann Arbor, MI 48109, United States
| | - Alissa Wierenga
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4164 Biological Sciences Building, 1105 N. University Avenue, Ann Arbor, MI 48109, United States
| | - Chenlang Gao
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4164 Biological Sciences Building, 1105 N. University Avenue, Ann Arbor, MI 48109, United States
| | - Mohammed Akaaboune
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4164 Biological Sciences Building, 1105 N. University Avenue, Ann Arbor, MI 48109, United States
- Michigan Neuroscience Institute, University of Michigan, 205 Zina Pitcher Pl, Ann Arbor, MI 48109, United States
| |
Collapse
|
9
|
Iuzzolino A, Pellegrini FR, Rotili D, Degrassi F, Trisciuoglio D. The α-tubulin acetyltransferase ATAT1: structure, cellular functions, and its emerging role in human diseases. Cell Mol Life Sci 2024; 81:193. [PMID: 38652325 PMCID: PMC11039541 DOI: 10.1007/s00018-024-05227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
The acetylation of α-tubulin on lysine 40 is a well-studied post-translational modification which has been associated with the presence of long-lived stable microtubules that are more resistant to mechanical breakdown. The discovery of α-tubulin acetyltransferase 1 (ATAT1), the enzyme responsible for lysine 40 acetylation on α-tubulin in a wide range of species, including protists, nematodes, and mammals, dates to about a decade ago. However, the role of ATAT1 in different cellular activities and molecular pathways has been only recently disclosed. This review comprehensively summarizes the most recent knowledge on ATAT1 structure and substrate binding and analyses the involvement of ATAT1 in a variety of cellular processes such as cell motility, mitosis, cytoskeletal organization, and intracellular trafficking. Finally, the review highlights ATAT1 emerging roles in human diseases and discusses ATAT1 potential enzymatic and non-enzymatic roles and the current efforts in developing ATAT1 inhibitors.
Collapse
Affiliation(s)
- Angela Iuzzolino
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, Via degli Apuli 4, Rome, 00185, Italy
| | - Francesca Romana Pellegrini
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, Via degli Apuli 4, Rome, 00185, Italy
| | - Dante Rotili
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Francesca Degrassi
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, Via degli Apuli 4, Rome, 00185, Italy.
| | - Daniela Trisciuoglio
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council of Italy, Via degli Apuli 4, Rome, 00185, Italy.
| |
Collapse
|
10
|
Wilson GN, Tonk VS. Clinical-Genomic Analysis of 1261 Patients with Ehlers-Danlos Syndrome Outlines an Articulo-Autonomic Gene Network (Entome). Curr Issues Mol Biol 2024; 46:2620-2643. [PMID: 38534782 DOI: 10.3390/cimb46030166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/08/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Systematic evaluation of 80 history and 40 history findings diagnosed 1261 patients with Ehlers-Danlos syndrome (EDS) by direct or online interaction, and 60 key findings were selected for their relation to clinical mechanisms and/or management. Genomic testing results in 566 of these patients supported EDS relevance by their differences from those in 82 developmental disability patients and by their association with general rather than type-specific EDS findings. The 437 nuclear and 79 mitochondrial DNA changes included 71 impacting joint matrix (49 COL5), 39 bone (30 COL1/2/9/11), 22 vessel (12 COL3/8VWF), 43 vessel-heart (17FBN1/11TGFB/BR), 59 muscle (28 COL6/12), 56 neural (16 SCN9A/10A/11A), and 74 autonomic (13 POLG/25porphyria related). These genes were distributed over all chromosomes but the Y, a network analogized to an 'entome' where DNA change disrupts truncal mechanisms (skin constraint, neuromuscular support, joint vessel flexibility) and produces a mirroring cascade of articular and autonomic symptoms. The implied sequences of genes from nodal proteins to hypermobility to branching tissue laxity or dysautonomia symptoms would be ideal for large language/artificial intelligence analyses.
Collapse
Affiliation(s)
- Golder N Wilson
- Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- KinderGenome Genetics Private Practice, 5347 W Mockingbird, Dallas, TX 75209, USA
| | - Vijay S Tonk
- Director of Medical Genetics and the Cytogenomic Laboratory, Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
11
|
Gushi S, Balis V. Mitochondrial Inherited Disorders and their Correlation with Neurodegenerative Diseases. Endocr Metab Immune Disord Drug Targets 2024; 24:381-393. [PMID: 37937560 DOI: 10.2174/0118715303250271231018103202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/13/2023] [Accepted: 09/15/2023] [Indexed: 11/09/2023]
Abstract
Mitochondria are essential organelles for the survival of a cell because they produce energy. The cells that need more mitochondria are neurons because they perform a variety of tasks that are necessary to support brain homeostasis. The build-up of abnormal proteins in neurons, as well as their interactions with mitochondrial proteins, or MAM proteins, cause serious health issues. As a result, mitochondrial functions, such as mitophagy, are impaired, resulting in the disorders described in this review. They are also due to mtDNA mutations, which alter the heritability of diseases. The topic of disease prevention, as well as the diagnosis, requires further explanation and exploration. Finally, there are treatments that are quite promising, but more detailed research is needed.
Collapse
Affiliation(s)
- Sofjana Gushi
- Department of Health Science and Biomedical Science, Metropolitan College - Thessaloniki Campus, Thessaloniki, Greece
| | - Vasileios Balis
- Department of Health Science and Biomedical Science, Metropolitan College - Thessaloniki Campus, Thessaloniki, Greece
| |
Collapse
|
12
|
Wong YC, Jayaraj ND, Belton TB, Shum GC, Ball HE, Ren D, Tadenev ALD, Krainc D, Burgess RW, Menichella DM. Misregulation of mitochondria-lysosome contact dynamics in Charcot-Marie-Tooth Type 2B disease Rab7 mutant sensory peripheral neurons. Proc Natl Acad Sci U S A 2023; 120:e2313010120. [PMID: 37878717 PMCID: PMC10622892 DOI: 10.1073/pnas.2313010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2023] [Indexed: 10/27/2023] Open
Abstract
Inter-organelle contact sites between mitochondria and lysosomes mediate the crosstalk and bidirectional regulation of their dynamics in health and disease. However, mitochondria-lysosome contact sites and their misregulation have not been investigated in peripheral sensory neurons. Charcot-Marie-Tooth type 2B disease is an autosomal dominant axonal neuropathy affecting peripheral sensory neurons caused by mutations in the GTPase Rab7. Using live super-resolution and confocal time-lapse microscopy, we showed that mitochondria-lysosome contact sites dynamically form in the soma and axons of peripheral sensory neurons. Interestingly, Charcot-Marie-Tooth type 2B mutant Rab7 led to prolonged mitochondria-lysosome contact site tethering preferentially in the axons of peripheral sensory neurons, due to impaired Rab7 GTP hydrolysis-mediated contact site untethering. We further generated a Charcot-Marie-Tooth type 2B mutant Rab7 knock-in mouse model which exhibited prolonged axonal mitochondria-lysosome contact site tethering and defective downstream axonal mitochondrial dynamics due to impaired Rab7 GTP hydrolysis as well as fragmented mitochondria in the axon of the sciatic nerve. Importantly, mutant Rab7 mice further demonstrated preferential sensory behavioral abnormalities and neuropathy, highlighting an important role for mutant Rab7 in driving degeneration of peripheral sensory neurons. Together, this study identifies an important role for mitochondria-lysosome contact sites in the pathogenesis of peripheral neuropathy.
Collapse
Affiliation(s)
- Yvette C. Wong
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Nirupa D. Jayaraj
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Tayler B. Belton
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - George C. Shum
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Hannah E. Ball
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Dongjun Ren
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | | | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Simpson Querrey Center for Neurogenetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | | | - Daniela M. Menichella
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| |
Collapse
|
13
|
Cesur MF, Basile A, Patil KR, Çakır T. A new metabolic model of Drosophila melanogaster and the integrative analysis of Parkinson's disease. Life Sci Alliance 2023; 6:e202201695. [PMID: 37236669 PMCID: PMC10215973 DOI: 10.26508/lsa.202201695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
High conservation of the disease-associated genes between flies and humans facilitates the common use of Drosophila melanogaster to study metabolic disorders under controlled laboratory conditions. However, metabolic modeling studies are highly limited for this organism. We here report a comprehensively curated genome-scale metabolic network model of Drosophila using an orthology-based approach. The gene coverage and metabolic information of the draft model derived from a reference human model were expanded via Drosophila-specific KEGG and MetaCyc databases, with several curation steps to avoid metabolic redundancy and stoichiometric inconsistency. Furthermore, we performed literature-based curations to improve gene-reaction associations, subcellular metabolite locations, and various metabolic pathways. The performance of the resulting Drosophila model (8,230 reactions, 6,990 metabolites, and 2,388 genes), iDrosophila1 (https://github.com/SysBioGTU/iDrosophila), was assessed using flux balance analysis in comparison with the other currently available fly models leading to superior or comparable results. We also evaluated the transcriptome-based prediction capacity of iDrosophila1, where differential metabolic pathways during Parkinson's disease could be successfully elucidated. Overall, iDrosophila1 is promising to investigate system-level metabolic alterations in response to genetic and environmental perturbations.
Collapse
Affiliation(s)
- Müberra Fatma Cesur
- Systems Biology and Bioinformatics Program, Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| | - Arianna Basile
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Kiran Raosaheb Patil
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Tunahan Çakır
- Systems Biology and Bioinformatics Program, Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
14
|
Ueda H, Tran QTH, Tran LNT, Higasa K, Ikeda Y, Kondo N, Hashiyada M, Sato C, Sato Y, Ashida A, Nishio S, Iwata Y, Iida H, Matsuoka D, Hidaka Y, Fukui K, Itami S, Kawashita N, Sugimoto K, Nozu K, Hattori M, Tsukaguchi H. Characterization of cytoskeletal and structural effects of INF2 variants causing glomerulopathy and neuropathy. Sci Rep 2023; 13:12003. [PMID: 37491439 PMCID: PMC10368640 DOI: 10.1038/s41598-023-38588-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a common glomerular injury leading to end-stage renal disease. Monogenic FSGS is primarily ascribed to decreased podocyte integrity. Variants between residues 184 and 245 of INF2, an actin assembly factor, produce the monogenic FSGS phenotype. Meanwhile, variants between residues 57 and 184 cause a dual-faceted disease involving peripheral neurons and podocytes (Charcot-Marie-Tooth CMT/FSGS). To understand the molecular basis for INF2 disorders, we compared structural and cytoskeletal effects of INF2 variants classified into two subgroups: One (G73D, V108D) causes the CMT/FSGS phenotype, and the other (T161N, N202S) produces monogenic FSGS. Molecular dynamics analysis revealed that all INF2 variants show distinct flexibility compared to the wild-type INF2 and could affect stability of an intramolecular interaction between their N- and C-terminal segments. Immunocytochemistry of cells expressing INF2 variants showed fewer actin stress fibers, and disorganization of cytoplasmic microtubule arrays. Notably, CMT/FSGS variants caused more prominent changes in mitochondrial distribution and fragmentation than FSGS variants and these changes correlated with the severity of cytoskeletal disruption. Our results indicate that CMT/FSGS variants are associated with more severe global cellular defects caused by disrupted cytoskeleton-organelle interactions than are FSGS variants. Further study is needed to clarify tissue-specific pathways and/or cellular functions implicated in FSGS and CMT phenotypes.
Collapse
Affiliation(s)
- Hiroko Ueda
- Division of Nephrology, Second Department of Internal Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1191, Japan
| | - Quynh Thuy Huong Tran
- Division of Nephrology, Second Department of Internal Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1191, Japan
| | - Linh Nguyen Truc Tran
- Division of Nephrology, Second Department of Internal Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1191, Japan
| | - Koichiro Higasa
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Yoshiki Ikeda
- Department of Molecular Genetics, Kansai Medical University, Hirakata, Japan
| | - Naoyuki Kondo
- Department of Molecular Genetics, Kansai Medical University, Hirakata, Japan
| | - Masaki Hashiyada
- Department of Legal Medicine, Kansai Medical University, Hirakata, Japan
| | - Chika Sato
- Department of Gynecology and Obstetrics, Kansai Medical University, Hirakata, Japan
| | - Yoshinori Sato
- Division of Nephrology, Department of Medicine, Showa University Fujigaoka Hospital, Yokohama, Kanagawa, Japan
| | - Akira Ashida
- Department of Pediatrics, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Saori Nishio
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasunori Iwata
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Iida
- Department of Internal Medicine, Toyama Prefectural Central Hospital, Toyama, Japan
- Toyama Transplantation Promotion Foundation, Toyama, Japan
| | - Daisuke Matsuoka
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoshihiko Hidaka
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kenji Fukui
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Suzu Itami
- Major in Science, Graduate School of Science and Engineering, Kindai University, Higashiosaka, Japan
| | - Norihito Kawashita
- Department of Energy and Materials, Faculty of Science and Engineering, Kindai University, Higashiosaka, Japan
| | - Keisuke Sugimoto
- Department of Pediatrics, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Motoshi Hattori
- Department of Pediatric Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroyasu Tsukaguchi
- Division of Nephrology, Second Department of Internal Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1191, Japan.
| |
Collapse
|
15
|
Bar O, Ebenau L, Weiner K, Mintz M, Boles RG. Whole exome/genome sequencing in cyclic vomiting syndrome reveals multiple candidate genes, suggesting a model of elevated intracellular cations and mitochondrial dysfunction. Front Neurol 2023; 14:1151835. [PMID: 37234784 PMCID: PMC10208274 DOI: 10.3389/fneur.2023.1151835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/03/2023] [Indexed: 05/28/2023] Open
Abstract
OBJECTIVE To utilize whole exome or genome sequencing and the scientific literature for identifying candidate genes for cyclic vomiting syndrome (CVS), an idiopathic migraine variant with paroxysmal nausea and vomiting. METHODS A retrospective chart review of 80 unrelated participants, ascertained by a quaternary care CVS specialist, was conducted. Genes associated with paroxysmal symptoms were identified querying the literature for genes associated with dominant cases of intermittent vomiting or both discomfort and disability; among which the raw genetic sequence was reviewed. "Qualifying" variants were defined as coding, rare, and conserved. Additionally, "Key Qualifying" variants were Pathogenic/Likely Pathogenic, or "Clinical" based upon the presence of a corresponding diagnosis. Candidate association to CVS was based on a point system. RESULTS Thirty-five paroxysmal genes were identified per the literature review. Among these, 12 genes were scored as "Highly likely" (SCN4A, CACNA1A, CACNA1S, RYR2, TRAP1, MEFV) or "Likely" (SCN9A, TNFRSF1A, POLG, SCN10A, POGZ, TRPA1) CVS related. Nine additional genes (OTC, ATP1A3, ATP1A2, GFAP, SLC2A1, TUBB3, PPM1D, CHAMP1, HMBS) had sufficient evidence in the literature but not from our study participants. Candidate status for mitochondrial DNA was confirmed by the literature and our study data. Among the above-listed 22 CVS candidate genes, a Key Qualifying variant was identified in 31/80 (34%), and any Qualifying variant was present in 61/80 (76%) of participants. These findings were highly statistically significant (p < 0.0001, p = 0.004, respectively) compared to an alternative hypothesis/control group regarding brain neurotransmitter receptor genes. Additional, post-analyses, less-intensive review of all genes (exome) outside our paroxysmal genes identified 13 additional genes as "Possibly" CVS related. CONCLUSION All 22 CVS candidate genes are associated with either cation transport or energy metabolism (14 directly, 8 indirectly). Our findings suggest a cellular model in which aberrant ion gradients lead to mitochondrial dysfunction, or vice versa, in a pathogenic vicious cycle of cellular hyperexcitability. Among the non-paroxysmal genes identified, 5 are known causes of peripheral neuropathy. Our model is consistent with multiple current hypotheses of CVS.
Collapse
Affiliation(s)
- Omri Bar
- NeurAbilities Healthcare, Voorhees, NJ, United States
| | - Laurie Ebenau
- NeurAbilities Healthcare, Voorhees, NJ, United States
| | - Kellee Weiner
- NeurAbilities Healthcare, Voorhees, NJ, United States
| | - Mark Mintz
- NeurAbilities Healthcare, Voorhees, NJ, United States
| | - Richard G. Boles
- NeurAbilities Healthcare, Voorhees, NJ, United States
- NeuroNeeds, Old Lyme, CT, United States
| |
Collapse
|
16
|
Dang X, Zhang L, Franco A, Dorn II GW. Activating mitofusins interrupts mitochondrial degeneration and delays disease progression in SOD1 mutant amyotrophic lateral sclerosis. Hum Mol Genet 2023; 32:1208-1222. [PMID: 36416308 PMCID: PMC10026224 DOI: 10.1093/hmg/ddac287] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Mitochondrial involvement in neurodegenerative diseases is widespread and multifactorial. Targeting mitochondrial pathology is therefore of interest. The recent development of bioactive molecules that modulate mitochondrial dynamics (fusion, fission and motility) offers a new therapeutic approach for neurodegenerative diseases with either indirect or direct mitochondrial involvement. Here, we asked: (1) Can enhanced mitochondrial fusion and motility improve secondary mitochondrial pathology in superoxide dismutase1 (SOD1) mutant amyotrophic lateral sclerosis (ALS)? And: (2) What is the impact of enhancing mitochondria fitness on in vivo manifestations of SOD1 mutant ALS? We observed that small molecule mitofusin activators corrected mitochondrial fragmentation, depolarization and dysmotility in genetically diverse ALS patient reprogrammed motor neurons and fibroblasts, and in motor neurons, sensory neurons and fibroblasts from SOD1 G93A mice. Continuous, but not intermittent, pharmacologic mitofusin activation delayed phenotype progression and lethality in SOD1 G93A mice, reducing neuron loss and improving neuromuscular connectivity. Mechanistically, mitofusin activation increased mitochondrial motility, fitness and residency within neuromuscular synapses; reduced mitochondrial reactive oxygen species production; and diminished apoptosis in SOD1 mutant neurons. These benefits were accompanied by improved mitochondrial respiratory coupling, despite characteristic SOD1 mutant ALS-associated downregulation of mitochondrial respiratory complexes. Targeting mitochondrial dysdynamism is a promising approach to alleviate pathology caused by secondary mitochondrial dysfunction in some neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiawei Dang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis MO USA
- Department of Psychiatry, The First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, Shaanxi 710061, China
| | - Lihong Zhang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis MO USA
| | - Antonietta Franco
- Department of Internal Medicine, Washington University School of Medicine, St. Louis MO USA
| | - Gerald W Dorn II
- Department of Internal Medicine, Washington University School of Medicine, St. Louis MO USA
| |
Collapse
|
17
|
Small heat shock proteins operate as molecular chaperones in the mitochondrial intermembrane space. Nat Cell Biol 2023; 25:467-480. [PMID: 36690850 PMCID: PMC10014586 DOI: 10.1038/s41556-022-01074-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/12/2022] [Indexed: 01/24/2023]
Abstract
Mitochondria are complex organelles with different compartments, each harbouring their own protein quality control factors. While chaperones of the mitochondrial matrix are well characterized, it is poorly understood which chaperones protect the mitochondrial intermembrane space. Here we show that cytosolic small heat shock proteins are imported under basal conditions into the mitochondrial intermembrane space, where they operate as molecular chaperones. Protein misfolding in the mitochondrial intermembrane space leads to increased recruitment of small heat shock proteins. Depletion of small heat shock proteins leads to mitochondrial swelling and reduced respiration, while aggregation of aggregation-prone substrates is countered in their presence. Charcot-Marie-Tooth disease-causing mutations disturb the mitochondrial function of HSPB1, potentially linking previously observed mitochondrial dysfunction in Charcot-Marie-Tooth type 2F to its role in the mitochondrial intermembrane space. Our results reveal that small heat shock proteins form a chaperone system that operates in the mitochondrial intermembrane space.
Collapse
|
18
|
Franco A, Dang X, Zhang L, Molinoff PB, Dorn GW. Mitochondrial Dysfunction and Pharmacodynamics of Mitofusin Activation in Murine Charcot-Marie-Tooth Disease Type 2A. J Pharmacol Exp Ther 2022; 383:137-148. [PMID: 36507849 PMCID: PMC9553116 DOI: 10.1124/jpet.122.001332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/03/2022] [Indexed: 01/07/2023] Open
Abstract
Mitofusin (MFN) 1 and MFN2 are dynamin GTPase family mitochondrial proteins that mediate mitochondrial fusion requiring MFN conformational shifts, formation of macromolecular complexes on and between mitochondria, and GTP hydrolysis. Damaging MFN2 mutations cause an untreatable, largely pediatric progressive peripheral neuropathy, Charcot-Marie-Tooth (CMT) disease type 2A. We used small molecule allosteric mitofusin activators that promote MFN conformations favoring fusion to interrogate the effects of MFN2 conformation and GTPase activity on MFN2-mediated mitochondrial fusion and motility in vitro. We translated these findings in vivo by defining dose-dependent pharmacodynamic and disease-modifying effects of mitofusin activators in murine CMT2A. MFN2 catalytic GTPase activity and MFN2 conformational switching are essential for mitochondrial fusion, but the two processes are separate and dissociable. We report the first concentration-response relationships for mitofusin activators to stimulate mitochondrial transport through CMT2A neuronal axons, which is similar to their stimulation of mitochondrial fusion. In CMT2A mice, intermittent (daily short acting) and sustained (twice daily long acting) mitofusin activation were equally effective in reversing neuromuscular degeneration. Moreover, acute dose-dependent pharmacodynamic effects of mitofusin activators on mitochondrial transport through CMT2A neuronal axons anticipated those for long-term reversal of neurodegenerative phenotypes. A crossover study showed that CMT2A neuronal deficits recurred after mitofusin activators are discontinued, and revealed that CMT2A can be ameliorated by mitofusin activation even in old (>74 week) mice. These data add to our understanding of mitochondrial dysfunction induced by a CMT2A MFN2 GTPase mutation and provide additional information supporting the approach of pharmacological mitofusin activation in CMT2A. SIGNIFICANCE: This study interrogated the roles of MFN2 catalytic activity and allosteric activation on impaired mitochondrial fusion and neuronal transport as they impact an untreatable peripheral neuropathy caused by MFN2 mutations, Charcot-Marie-Tooth disease type 2A. The results mechanistically link mitochondrial fusion and motility to the relaxed MFN2 protein conformation and correction of mitochondrial abnormalities to in vivo reversal of neurodegeneration in murine CMT2A.
Collapse
Affiliation(s)
- Antonietta Franco
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri (A.F., X.D., L.Z., G.W.D.); Department of Cardiology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China (X.D.); Mitochondria in Motion Inc., St. Louis, Missouri (L.Z.); and Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania (P.B.M.)
| | - Xiawei Dang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri (A.F., X.D., L.Z., G.W.D.); Department of Cardiology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China (X.D.); Mitochondria in Motion Inc., St. Louis, Missouri (L.Z.); and Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania (P.B.M.)
| | - Lihong Zhang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri (A.F., X.D., L.Z., G.W.D.); Department of Cardiology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China (X.D.); Mitochondria in Motion Inc., St. Louis, Missouri (L.Z.); and Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania (P.B.M.)
| | - Perry B Molinoff
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri (A.F., X.D., L.Z., G.W.D.); Department of Cardiology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China (X.D.); Mitochondria in Motion Inc., St. Louis, Missouri (L.Z.); and Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania (P.B.M.)
| | - Gerald W Dorn
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri (A.F., X.D., L.Z., G.W.D.); Department of Cardiology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China (X.D.); Mitochondria in Motion Inc., St. Louis, Missouri (L.Z.); and Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania (P.B.M.)
| |
Collapse
|
19
|
Gu Y, Guerra F, Hu M, Pope A, Sung K, Yang W, Jetha S, Shoff TA, Gunatilake T, Dahlkamp O, Shi LZ, Manganelli F, Nolano M, Zhou Y, Ding J, Bucci C, Wu C. Mitochondria dysfunction in Charcot Marie Tooth 2B Peripheral Sensory Neuropathy. Commun Biol 2022; 5:717. [PMID: 35851620 PMCID: PMC9293960 DOI: 10.1038/s42003-022-03632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 06/23/2022] [Indexed: 11/21/2022] Open
Abstract
Rab7 GTPase regulates mitochondrial morphology and function. Missense mutation(s) of Rab7 underlies the pathogenesis of Charcot Marie Tooth 2B (CMT2B) peripheral neuropathy. Herein, we investigate how mitochondrial morphology and function are impacted by the CMT2B associated Rab7V162M mutation. In contrast to recent studies of using heterologous overexpression systems, our results demonstrate significant mitochondrial fragmentation in both human CMT2B patient fibroblasts and CMT2B embryonic fibroblasts (MEFs). Primary cultured E18 dorsal root ganglion (DRG) sensory neurons also show mitochondrial fragmentation and altered axonal mitochondrial movement. In addition, we demonstrate that inhibitors to either the mitochondrial fission protein Drp1 or to the nucleotide binding to Rab7 normalize the mitochondrial deficits in both MEFs and E18 cultured DRG neurons. Our study reveals, for the first time, that expression of CMT2B Rab7 mutation at the physiological level enhances Drp1 activity to promote mitochondrial fission, potentially underlying selective vulnerability of peripheral sensory neurons in CMT2B pathogenesis.
Collapse
Affiliation(s)
- Yingli Gu
- Department of Neurosciences, University of California San Diego, La Jolla, 92093, CA, USA
- Department of Neurology, the Fourth Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Università del Salento, Via Provinciale Lecce-Monteroni n. 165, 73100, Lecce, Italy
| | - Mingzheng Hu
- Department of Neurosciences, University of California San Diego, La Jolla, 92093, CA, USA
| | - Alexander Pope
- Department of Neurosciences, University of California San Diego, La Jolla, 92093, CA, USA
| | - Kijung Sung
- Department of Neurosciences, University of California San Diego, La Jolla, 92093, CA, USA
| | - Wanlin Yang
- Department of Neurosciences, University of California San Diego, La Jolla, 92093, CA, USA
- Department of Neurology, Zhujiang Hospital of Southern Medical University Guangzhou, Guangzhou, 510280, Guangdong Sheng, China
| | - Simone Jetha
- Department of Neurosciences, University of California San Diego, La Jolla, 92093, CA, USA
| | - Thomas A Shoff
- Department of Neurosciences, University of California San Diego, La Jolla, 92093, CA, USA
| | - Tessanya Gunatilake
- Department of Neurosciences, University of California San Diego, La Jolla, 92093, CA, USA
| | - Owen Dahlkamp
- Department of Neurosciences, University of California San Diego, La Jolla, 92093, CA, USA
| | - Linda Zhixia Shi
- Department of Bioengineering, University of California San Diego, La Jolla, 92093, CA, USA
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Via Sergio Pansini 5, 80131, Naples, Italy
| | - Maria Nolano
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Via Sergio Pansini 5, 80131, Naples, Italy
| | - Yue Zhou
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Jianqing Ding
- Institute of Neurology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Università del Salento, Via Provinciale Lecce-Monteroni n. 165, 73100, Lecce, Italy.
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, La Jolla, 92093, CA, USA.
| |
Collapse
|
20
|
Zaman M, Shutt TE. The Role of Impaired Mitochondrial Dynamics in MFN2-Mediated Pathology. Front Cell Dev Biol 2022; 10:858286. [PMID: 35399520 PMCID: PMC8989266 DOI: 10.3389/fcell.2022.858286] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/07/2022] [Indexed: 12/17/2022] Open
Abstract
The Mitofusin 2 protein (MFN2), encoded by the MFN2 gene, was first described for its role in mediating mitochondrial fusion. However, MFN2 is now recognized to play additional roles in mitochondrial autophagy (mitophagy), mitochondrial motility, lipid transfer, and as a tether to other organelles including the endoplasmic reticulum (ER) and lipid droplets. The tethering role of MFN2 is an important mediator of mitochondrial-ER contact sites (MERCs), which themselves have many important functions that regulate mitochondria, including calcium homeostasis and lipid metabolism. Exemplifying the importance of MFN2, pathogenic variants in MFN2 are established to cause the peripheral neuropathy Charcot-Marie-Tooth Disease Subtype 2A (CMT2A). However, the mechanistic basis for disease is not clear. Moreover, additional pathogenic phenotypes such as lipomatosis, distal myopathy, optic atrophy, and hearing loss, can also sometimes be present in patients with CMT2A. Given these variable patient phenotypes, and the many cellular roles played by MFN2, the mechanistic underpinnings of the cellular impairments by which MFN2 dysfunction leads to disease are likely to be complex. Here, we will review what is known about the various functions of MFN2 that are impaired by pathogenic variants causing CMT2A, with a specific emphasis on the ties between MFN2 variants and MERCs.
Collapse
Affiliation(s)
- Mashiat Zaman
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Timothy E Shutt
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute (ACHRI), Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
21
|
Dang X, Walton EK, Zablocka B, Baloh RH, Shy ME, Dorn GW. Mitochondrial Phenotypes in Genetically Diverse Neurodegenerative Diseases and Their Response to Mitofusin Activation. Cells 2022; 11:1053. [PMID: 35326504 PMCID: PMC8947610 DOI: 10.3390/cells11061053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023] Open
Abstract
Mitochondrial fusion is essential to mitochondrial fitness and cellular health. Neurons of patients with genetic neurodegenerative diseases often exhibit mitochondrial fragmentation, reflecting an imbalance in mitochondrial fusion and fission (mitochondrial dysdynamism). Charcot-Marie-Tooth (CMT) disease type 2A is the prototypical disorder of impaired mitochondrial fusion caused by mutations in the fusion protein mitofusin (MFN)2. Yet, cultured CMT2A patient fibroblast mitochondria are often reported as morphologically normal. Metabolic stress might evoke pathological mitochondrial phenotypes in cultured patient fibroblasts, providing a platform for the pre-clinical individualized evaluation of investigational therapeutics. Here, substitution of galactose for glucose in culture media was used to redirect CMT2A patient fibroblasts (MFN2 T105M, R274W, H361Y, R364W) from glycolytic metabolism to mitochondrial oxidative phosphorylation, which provoked characteristic mitochondrial fragmentation and depolarization and induced a distinct transcriptional signature. Pharmacological MFN activation of metabolically reprogrammed fibroblasts partially reversed the mitochondrial abnormalities in CMT2A and CMT1 and a subset of Parkinson's and Alzheimer's disease patients, implicating addressable mitochondrial dysdynamism in these illnesses.
Collapse
Affiliation(s)
- Xiawei Dang
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA; (X.D.); (E.K.W.)
| | - Emily K. Walton
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA; (X.D.); (E.K.W.)
| | - Barbara Zablocka
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Robert H. Baloh
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Michael E. Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Gerald W. Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110, USA; (X.D.); (E.K.W.)
| |
Collapse
|
22
|
Mitochondria-lysosome contact site dynamics and misregulation in neurodegenerative diseases. Trends Neurosci 2022; 45:312-322. [PMID: 35249745 PMCID: PMC8930467 DOI: 10.1016/j.tins.2022.01.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/11/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023]
Abstract
Neurons rely heavily on properly regulated mitochondrial and lysosomal homeostasis, with multiple neurodegenerative diseases linked to dysfunction in these two organelles. Interestingly, mitochondria-lysosome membrane contact sites have been identified as a key pathway mediating their crosstalk in neurons. Recent studies have further elucidated the regulation of mitochondria-lysosome contact dynamics via distinct tethering/untethering protein machinery. Moreover, this pathway has been shown to have additional functions in regulating organelle network dynamics and metabolite transfer between lysosomes and mitochondria. In this review, we highlight recent advances in the field of mitochondria-lysosome contact sites and their misregulation across multiple neurodegenerative disorders, which further underscore a potential role for this pathway in neuronal homeostasis and disease.
Collapse
|
23
|
Markworth R, Bähr M, Burk K. Held Up in Traffic-Defects in the Trafficking Machinery in Charcot-Marie-Tooth Disease. Front Mol Neurosci 2021; 14:695294. [PMID: 34483837 PMCID: PMC8415527 DOI: 10.3389/fnmol.2021.695294] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT), also known as motor and sensory neuropathy, describes a clinically and genetically heterogenous group of disorders affecting the peripheral nervous system. CMT typically arises in early adulthood and is manifested by progressive loss of motor and sensory functions; however, the mechanisms leading to the pathogenesis are not fully understood. In this review, we discuss disrupted intracellular transport as a common denominator in the pathogenesis of different CMT subtypes. Intracellular transport via the endosomal system is essential for the delivery of lipids, proteins, and organelles bidirectionally to synapses and the soma. As neurons of the peripheral nervous system are amongst the longest neurons in the human body, they are particularly susceptible to damage of the intracellular transport system, leading to a loss in axonal integrity and neuronal death. Interestingly, defects in intracellular transport, both in neurons and Schwann cells, have been found to provoke disease. This review explains the mechanisms of trafficking and subsequently summarizes and discusses the latest findings on how defects in trafficking lead to CMT. A deeper understanding of intracellular trafficking defects in CMT will expand our understanding of CMT pathogenesis and will provide novel approaches for therapeutic treatments.
Collapse
Affiliation(s)
- Ronja Markworth
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Katja Burk
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| |
Collapse
|
24
|
English K, Barton MC. HDAC6: A Key Link Between Mitochondria and Development of Peripheral Neuropathy. Front Mol Neurosci 2021; 14:684714. [PMID: 34531721 PMCID: PMC8438325 DOI: 10.3389/fnmol.2021.684714] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/30/2021] [Indexed: 01/21/2023] Open
Abstract
Peripheral neuropathy, which is the result of nerve damage from lesions or disease, continues to be a major health concern due to the common manifestation of neuropathic pain. Most investigations into the development of peripheral neuropathy focus on key players such as voltage-gated ion channels or glutamate receptors. However, emerging evidence points to mitochondrial dysfunction as a major player in the development of peripheral neuropathy and resulting neuropathic pain. Mitochondrial dysfunction in neuropathy includes altered mitochondrial transport, mitochondrial metabolism, as well as mitochondrial dynamics. The mechanisms that lead to mitochondrial dysfunction in peripheral neuropathy are poorly understood, however, the Class IIb histone deacetylase (HDAC6), may play an important role in the process. HDAC6 is a key regulator in multiple mechanisms of mitochondrial dynamics and may contribute to mitochondrial dysregulation in peripheral neuropathy. Accumulating evidence shows that HDAC6 inhibition is strongly associated with alleviating peripheral neuropathy and neuropathic pain, as well as mitochondrial dysfunction, in in vivo and in vitro models of peripheral neuropathy. Thus, HDAC6 inhibitors are being investigated as potential therapies for multiple peripheral neuropathic disorders. Here, we review emerging studies and integrate recent advances in understanding the unique connection between peripheral neuropathy and mitochondrial dysfunction through HDAC6-mediated interactions.
Collapse
Affiliation(s)
- Krystal English
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- UTHealth McGovern Medical School, Houston, TX, United States
| | - Michelle Craig Barton
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
25
|
Sharma G, Pfeffer G, Shutt TE. Genetic Neuropathy Due to Impairments in Mitochondrial Dynamics. BIOLOGY 2021; 10:268. [PMID: 33810506 PMCID: PMC8066130 DOI: 10.3390/biology10040268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria are dynamic organelles capable of fusing, dividing, and moving about the cell. These properties are especially important in neurons, which in addition to high energy demand, have unique morphological properties with long axons. Notably, mitochondrial dysfunction causes a variety of neurological disorders including peripheral neuropathy, which is linked to impaired mitochondrial dynamics. Nonetheless, exactly why peripheral neurons are especially sensitive to impaired mitochondrial dynamics remains somewhat enigmatic. Although the prevailing view is that longer peripheral nerves are more sensitive to the loss of mitochondrial motility, this explanation is insufficient. Here, we review pathogenic variants in proteins mediating mitochondrial fusion, fission and transport that cause peripheral neuropathy. In addition to highlighting other dynamic processes that are impacted in peripheral neuropathies, we focus on impaired mitochondrial quality control as a potential unifying theme for why mitochondrial dysfunction and impairments in mitochondrial dynamics in particular cause peripheral neuropathy.
Collapse
Affiliation(s)
- Govinda Sharma
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Gerald Pfeffer
- Departments of Clinical Neurosciences and Medical Genetics, Cumming School of Medicine, Hotchkiss Brain Institute, Alberta Child Health Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Timothy E. Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| |
Collapse
|