1
|
Huang H, Ge J, Lu S, Deng X, Tian Y, Huang H, Wang Z, Yao Y, Hong H, Lin T. Comprehensive analyses reveal the promising value of gasdermins as prognostic biomarkers and immunotherapeutic targets in head and neck squamous cell carcinoma. Heliyon 2025; 11:e41213. [PMID: 39807507 PMCID: PMC11728984 DOI: 10.1016/j.heliyon.2024.e41213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Background In several studies of head and neck squamous cell carcinoma (HNSC), the regulation of tumorigenesis and therapeutic sensitivity by pyroptosis has been observed. However, a systematic analysis of gasdermin family members (GSDMs, including GSDMA/B/C/D/E and PJVK), which are deterministic executors of pyroptosis, has not yet been reported in HNSC. Methods We performed comprehensive analyses of the expression profile, prognostic value, regulatory network, and immune infiltration modulation of GSDMs in HNSC on the basis of a computational approach and bioinformatic analysis of publicly available datasets. Results A total of 18.65 % (94/504) of HNSC patients harbored GSDM alterations, with the most dominant type being amplification. Compared with those in normal tissues, the mRNA and protein levels of GSDMs, especially GSDMD/E, were commonly elevated in HNSC (P < 0.05). Additionally, the expression of GSDMs differed significantly between the clinicopathological subgroups of HNSC patients. Overall survival of HNSC patients benefited from increased GSDMC expression (HR = 0.67, P = 0.0053) and decreased GSDME expression (HR = 1.42, P = 0.0140). Regulatory network analysis revealed several essential biological processes associated with GSDMs, including positive regulation of cytokine production involved in the immune response. Notably, almost all infiltrating immune cells and immune checkpoints were negatively correlated with GSDMA/C/E expression and positively related to GSDMB/D and PJVK expression. Conclusions We indicated the potential role of GSDMs (especially GSDME) in HNSC pathogenesis, progression and response to immunotherapy, providing important evidence for further prospective studies and molecular mechanism exploration.
Collapse
Affiliation(s)
- Huageng Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
| | - Jingjing Ge
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
| | - Shunzhen Lu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
| | - Xinyi Deng
- Department of Dermatology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, PR China
| | - Ying Tian
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
| | - He Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
| | - Zhao Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
| | - Yuyi Yao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
| | - Huangming Hong
- Department of Medical Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, PR China
| | - Tongyu Lin
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, PR China
- Department of Medical Oncology, Senior Ward and Phase I Clinical Trial Ward, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, PR China
| |
Collapse
|
2
|
Pan T, Peng L, Dong J, Li L. Pterostilbene Induces Pyroptosis in Breast Cancer Cells through Pyruvate Kinase 2/Caspase-8/Gasdermin C Signaling Pathway. Int J Mol Sci 2024; 25:10509. [PMID: 39408842 PMCID: PMC11476961 DOI: 10.3390/ijms251910509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The incidence and mortality of breast cancer increase year by year, and it is urgent to find high-efficiency and low-toxicity anti-cancer drugs. Pterostilbene (PTE) is a natural product with antitumor activity, but the specific antitumor mechanism is not very clear. Aerobic glycolysis is the main energy supply for cancer cells. Pyroptosis is an inflammatory, programmed cell death. The aim of this study was to investigate the effect of PTE on glycolysis and pyroptosis in EMT6 and 4T1 cells and the specific mechanism, and to elucidate the role of pyruvate kinase 2 (PKM2), a key enzyme in glycolysis, in the antitumor role of PTE. Our study suggested that PTE induced pyroptosis by inhibiting tumor glycolysis. PKM2 played an important role in both the inhibition of glycolysis and the induction of pyroptosis by PTE.
Collapse
Affiliation(s)
| | | | - Jing Dong
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (T.P.); (L.P.)
| | - Lin Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (T.P.); (L.P.)
| |
Collapse
|
3
|
Kelly T, Bhandari S, Carew M, Rubino R, Nicol C, Yang X. A Novel Bioluminescent Biosensor Quantifying Intramolecular Interaction and Levels of Pyroptosis Effector GSDMD. Cells 2024; 13:1606. [PMID: 39404370 PMCID: PMC11475789 DOI: 10.3390/cells13191606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Gasdermin D (GSDMD) is a key executor of pyroptosis, a form of inflammation-induced programmed cell death. Recently, GSDMD has been shown to play important roles in the development of various inflammatory-related human diseases including heart failure and cancer, suggesting that it is a promising therapeutic target for these diseases. While extensive studies on GSDMD's role in pyroptosis have been reported, it is challenging to study its function due to the lack of enzymatic activity of GSDMD. In this study, we used the NanoBiT technology to develop a novel GSDMD bioluminescent biosensor (GSDMD-BS) that detects the amount of non-cleaved GSDMD. This sensor allows us to quantify GSDMD's intramolecular interactions, the amounts of uncleaved GSDMD after caspase-1 cleavage, and expression levels in living cells. In vitro experiments using purified GSDMD-BS also confirmed the sensor's accuracy in reporting GSDMD levels and cleavage. Moreover, the potential for in vivo application was demonstrated in a xenograft mouse model. In conclusion, we have developed a GSDMD biosensor that is a valuable tool for real-time monitoring of GSDMD dynamics and pyroptosis. This biosensor will significantly expedite pyroptosis research and can be used for high-throughput screening for drugs targeting GSDMD for the therapy of many inflammation-related diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (T.K.); (S.B.); (M.C.); (R.R.); (C.N.)
| |
Collapse
|
4
|
Chen C, Ye Q, Wang L, Zhou J, Xiang A, Lin X, Guo J, Hu S, Rui T, Liu J. Targeting pyroptosis in breast cancer: biological functions and therapeutic potentials on It. Cell Death Discov 2023; 9:75. [PMID: 36823153 PMCID: PMC9950129 DOI: 10.1038/s41420-023-01370-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Pyroptosis is a lytic and inflammatory type of programmed cell death that is mediated by Gasdermin proteins (GSDMs). Attractively, recent evidence indicates that pyroptosis involves in the development of tumors and can serve as a new strategy for cancer treatment. Here, we present a basic knowledge of pyroptosis, and an overview of the expression patterns and roles of GSDMs in breast cancer. In addition, we further summarize the available evidence of pyroptosis in breast cancer progression and give insight into the clinical potential of applying pyroptosis in anticancer strategies for breast cancer. This review will deepen our understanding of the relationship between pyroptosis and breast cancer, and provide a novel potential therapeutic avenue for breast cancer.
Collapse
Affiliation(s)
- Cong Chen
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qianwei Ye
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linbo Wang
- grid.13402.340000 0004 1759 700XDepartment of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jichun Zhou
- grid.13402.340000 0004 1759 700XDepartment of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Aizhai Xiang
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Lin
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jufeng Guo
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shufang Hu
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Rui
- grid.13402.340000 0004 1759 700XDepartment of Breast Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Liu
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
5
|
Gong W, Yang K, Zhao W, Zheng J, Yu J, Guo K, Sun X. Intestinal Gasdermins for regulation of inflammation and tumorigenesis. Front Immunol 2022; 13:1052111. [PMID: 36505474 PMCID: PMC9732009 DOI: 10.3389/fimmu.2022.1052111] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Gasdermins (GSDMs) protein family express in intestinal epithelial cells or lamina propria immune cells, and play a nonnegligible function during gut homeostasis. With the gradually in-depth investigation of GSDMs protein family, the proteases that cleave GSDMA-E have been identified. Intestinal GSDMs-induced pyroptosis is demonstrated to play a crucial role in the removal of self-danger molecules and clearance of pathogenic organism infection by mediating inflammatory reaction and collapsing the protective niche for pathogens. Simultaneously, excessive pyroptosis leading to the release of cellular contents including inflammatory mediators into the extracellular environment, enhancing the mucosal immune response. GSDMs-driver pyroptosis also participates in a novel inflammatory cell death, PANoptosis, which makes a significant sense to the initiation and progression of gut diseases. Moreover, GSDMs are expressed in healthy intestinal tissue without obvious pyroptosis and inflammation, indicating the potential intrinsic physiological functions of GSDMs that independent of pyroptotic cell death during maintenance of intestinal homeostasis. This review provides an overview of the latest advances in the physiological and pathological properties of GSDMs, including its mediated pyroptosis, related PANoptosis, and inherent functions independent of pyroptosis, with a focus on their roles involved in intestinal inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Wenbin Gong
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Kui Yang
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Wei Zhao
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianbao Zheng
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Junhui Yu
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Junhui Yu, ; Kun Guo, ; Xuejun Sun,
| | - Kun Guo
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China,*Correspondence: Junhui Yu, ; Kun Guo, ; Xuejun Sun,
| | - Xuejun Sun
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Junhui Yu, ; Kun Guo, ; Xuejun Sun,
| |
Collapse
|
6
|
Zhang J, Deng J, Ding R, Yuan J, Liu J, Zhao X, Wu T, Jia J, Cheng X. Identification of pyroptosis-related genes and long non-coding RNAs signatures in osteosarcoma. Cancer Cell Int 2022; 22:322. [PMID: 36244998 PMCID: PMC9575257 DOI: 10.1186/s12935-022-02729-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Osteosarcoma is a highly malignant tumor, with very high disability and fatality rates. However, the overall prognosis is not optimistic. Pyroptosis is a newly discovered cell death modality accompanied by inflammation, which is closely related to varieties of cancers. In this study, the RNA-seq data were downloaded from public databases, the differences in the expression of the pyroptosis-related genes (PRGs) were identified, and the six PRGs signature was established through the univariate and LASSO Cox analysis. The patients were grouped according to the PRGs signature, and the prognosis between the two groups was further compared. In addition, a ten pyroptosis-related lncRNAs (PRLs) prognostic signature was also constructed. Through functional analysis of the differentially expressed genes (DEGs), the immune-related pathways were found to be enriched. The Pearson correlation analysis showed a strong correlation between the pyroptosis-related biomarkers. Finally, we identified a promising biomarker, CHMP4C, which is highly expressed in osteosarcoma. Overexpression of CHMP4C promoted the proliferation, migration and invasion of the osteosarcoma cell. Our results thus provide new evidence for exploring prognostic biomarkers and therapeutic targets of osteosarcoma.
Collapse
|
7
|
Neel DV, Basu H, Gunner G, Chiu IM. Catching a killer: Mechanisms of programmed cell death and immune activation in Amyotrophic Lateral Sclerosis. Immunol Rev 2022; 311:130-150. [PMID: 35524757 PMCID: PMC9489610 DOI: 10.1111/imr.13083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 12/13/2022]
Abstract
In the central nervous system (CNS), execution of programmed cell death (PCD) is crucial for proper neurodevelopment. However, aberrant activation of these pathways in adult CNS leads to neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). How a cell dies is critical, as it can drive local immune activation and tissue damage. Classical apoptosis engages several mechanisms to evoke "immunologically silent" responses, whereas other forms of programmed death such as pyroptosis, necroptosis, and ferroptosis release molecules that can potentiate immune responses and inflammation. In ALS, a fatal neuromuscular disorder marked by progressive death of lower and upper motor neurons, several cell types in the CNS express machinery for multiple PCD pathways. The specific cell types engaging PCD, and ultimate mechanisms by which neuronal death occurs in ALS are not well defined. Here, we provide an overview of different PCD pathways implicated in ALS. We also examine immune activation in ALS and differentiate apoptosis from necrotic mechanisms based on downstream immunological consequences. Lastly, we highlight therapeutic strategies that target cell death pathways in the treatment of neurodegeneration and inflammation in ALS.
Collapse
Affiliation(s)
- Dylan V Neel
- Harvard Medical School, Department of Immunology, Blavatnik Institute, Boston, MA, USA
| | - Himanish Basu
- Harvard Medical School, Department of Immunology, Blavatnik Institute, Boston, MA, USA
| | - Georgia Gunner
- Harvard Medical School, Department of Immunology, Blavatnik Institute, Boston, MA, USA
| | - Isaac M Chiu
- Harvard Medical School, Department of Immunology, Blavatnik Institute, Boston, MA, USA
- Lead contact
| |
Collapse
|
8
|
Miao Y, Chen Y, Mi D. Role of gasdermin family proteins in the occurrence and progression of hepatocellular carcinoma. Heliyon 2022; 8:e11035. [PMID: 36254294 PMCID: PMC9568847 DOI: 10.1016/j.heliyon.2022.e11035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/07/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Primary liver cancer is the sixth most common cancer and the third leading cause of cancer mortality worldwide, hepatocellular carcinoma (HCC) is the most common type of liver cancer, accounting for 75%-85% of cases. The occurrence and progression of HCC involve multiple events. Pyroptosis is a gasdermins mediated programmed cell death and is intricately associated with cancerogenesis, including HCC. This review mainly concerns the recent research advances of the gasdermin family members in HCC. The biological roles and specific expression patterns of the family members are discussed, especially those that are involved in the regulatory pathways in the occurrence and progression of HCC. We provide the latest progress into the distinct molecular mechanisms of gasdermin family members involved in the occurrence and development of HCC.
Collapse
Affiliation(s)
- Yandong Miao
- The Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2nd Medical College of Binzhou Medical University, Yantai 264000, Shandong Province, China
| | - Yonggang Chen
- Shenzhen Hospital of Southern Medical University, Shenzhen 518100, Guangdong Province, China
| | - Denghai Mi
- Gansu Academy of Traditional Chinese Medicine, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
9
|
Anne A, Saxena S, Mohan KN. Genome-wide methylation analysis of post-mortem cerebellum samples supports the role of peroxisomes in autism spectrum disorder. Epigenomics 2022; 14:1015-1027. [PMID: 36154275 DOI: 10.2217/epi-2022-0184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We tested the hypothesis that a subset of patients with autism spectrum disorder (ASD) contains candidate genes with high DNA methylation differences (effective values) that potentially affect one of the two alleles. Materials & methods: Genome-wide DNA methylation comparisons were made on cerebellum samples from 30 patients and 45 controls. Results: 12 genes with high effective values, including GSDMD, MMACHC, SLC6A5 and NKX6-2, implicated in ASD and other neuropsychiatric disorders were identified. Monoallelic promoter methylation and downregulation were observed for SERHL (serine hydrolase-like) and CAT (catalase) genes associated with peroxisome function. Conclusion: These data are consistent with the hypothesis implicating impaired peroxisome function/biogenesis for ASD. A similar approach holds promise for identifying rare epimutations in ASD and other complex disorders.
Collapse
Affiliation(s)
- Anuhya Anne
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, Birla Institute of Technology & Science, Pilani - Hyderabad Campus, 500 078, India.,Centre for Human Disease Research, Birla Institute of Technology & Science, Pilani - Hyderabad Campus, 500 078, India
| | - Sonal Saxena
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, Birla Institute of Technology & Science, Pilani - Hyderabad Campus, 500 078, India
| | - Kommu Naga Mohan
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, Birla Institute of Technology & Science, Pilani - Hyderabad Campus, 500 078, India.,Centre for Human Disease Research, Birla Institute of Technology & Science, Pilani - Hyderabad Campus, 500 078, India
| |
Collapse
|
10
|
Magnani L, Colantuoni M, Mortellaro A. Gasdermins: New Therapeutic Targets in Host Defense, Inflammatory Diseases, and Cancer. Front Immunol 2022; 13:898298. [PMID: 35844522 PMCID: PMC9285118 DOI: 10.3389/fimmu.2022.898298] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Gasdermins (GSDMs) are a class of pore-forming proteins related to pyroptosis, a programmed cell death pathway that is induced by a range of inflammatory stimuli. Small-scale GSDM activation and pore formation allow the passive release of cytokines, such as IL-1β and IL-18, and alarmins, but, whenever numerous GSDM pores are assembled, osmotic lysis and cell death occur. Such GSDM-mediated pyroptosis promotes pathogen clearance and can help restore homeostasis, but recent studies have revealed that dysregulated pyroptosis is at the root of many inflammation-mediated disease conditions. Moreover, new homeostatic functions for gasdermins are beginning to be revealed. Here, we review the newly discovered mechanisms of GSDM activation and their prominent roles in host defense and human diseases associated with chronic inflammation. We also highlight the potential of targeting GSDMs as a new therapeutic approach to combat chronic inflammatory diseases and cancer and how we might overcome the current obstacles to realize this potential.
Collapse
|
11
|
Zhang Y, Zhang C, Yang Y, Wang G, Wang Z, Liu J, Zhang L, Yu Y. Pyroptosis-Related Gene Signature Predicts Prognosis and Indicates Immune Microenvironment Infiltration in Glioma. Front Cell Dev Biol 2022; 10:862493. [PMID: 35547808 PMCID: PMC9081442 DOI: 10.3389/fcell.2022.862493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/04/2022] [Indexed: 01/13/2023] Open
Abstract
Objective: Gliomas are the most common primary tumors in the central nervous system with a bad prognosis. Pyroptosis, an inflammatory form of regulated cell death, plays a vital role in the progression and occurrence of tumors. However, the value of pyroptosis related genes (PRGs) in glioma remains poorly understood. This study aims to construct a PRGs signature risk model and explore the correlation with clinical characteristics, prognosis, tumor microenviroment (TME), and immune checkpoints. Methods: RNA sequencing profiles and the relevant clinical data were obtained from the Chinese Glioma Genome Atlas (CGGA), the Cancer Genome Atlas (TCGA), the Repository of Molecular Brain Neoplasia Data (REMBRANDT), and the Genotype-Tissue Expression Project (GTEx-Brain). Then, the differentially expressed pyroptosis related genes (PRGs) were identified, and the least absolute shrinkage and selection operator (LASSO) and mutiCox regression model was generated using the TCGA-train dataset. Then the expression of mRNA and protein levels of PRGs signature was detected through qPCR and human protein atlas (HPA). Further, the predictive ability of the PRGs-signature, prognostic analysis, and stratification analysis were utilized and validated using TCGA-test, CGGA, and REMBRANDT datasets. Subsequently, we constructed the nomogram by combining the PRGs signature and other key clinical features. Moreover, we used gene set enrichment analysis (GSEA), GO, KEGG, the tumor immune dysfunction and exclusion (TIDE) single-sample GSEA (ssGSEA), and Immunophenoscore (IPS) to determine the relationship between PRGs and TME, immune infiltration, and predict the response of immune therapy in glioma. Results: A four-gene PRGs signature (CASP4, CASP9, GSDMC, IL1A) was identified and stratified patients into low- or high-risk group. Survival analysis, ROC curves, and stratified analysis revealed worse outcomes in the high-risk group than in the low-risk group. Correlation analysis showed that the risk score was correlated with poor disease features. Furthermore, GSEA and immune infiltrating and IPS analysis showed that the PRGs signature could potentially predict the TME, immune infiltration, and immune response in glioma. Conclusion: The newly identified four-gene PRGs signature is effective in diagnosis and could robustly predict the prognosis of glioma, and its impact on the TME and immune cell infiltrations may provide further guidance for immunotherapy.
Collapse
Affiliation(s)
- Yulian Zhang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Chuanpeng Zhang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
- Department of Neurosurgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Yanbo Yang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
- Department of Neurosurgery, Graduate School of Peking Union Medical College, Beijing, China
| | - Guohui Wang
- Department of Radiotherapy, Tianjin First Center Hospital, Tianjin, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Jiang Liu
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Li Zhang
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
- Department of Neurosurgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Department of Neurosurgery, Graduate School of Peking Union Medical College, Beijing, China
| | - Yanbing Yu
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
- Department of Neurosurgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Department of Neurosurgery, Graduate School of Peking Union Medical College, Beijing, China
- *Correspondence: Yanbing Yu,
| |
Collapse
|
12
|
Hou W, Wei X, Liang J, Fang P, Ma C, Zhang Q, Gao Y. HMGB1-Induced Hepatocyte Pyroptosis Expanding Inflammatory Responses Contributes to the Pathogenesis of Acute-on-Chronic Liver Failure (ACLF). J Inflamm Res 2022; 14:7295-7313. [PMID: 34992418 PMCID: PMC8711847 DOI: 10.2147/jir.s336626] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
Background Acute-on-chronic liver failure (ACLF) is a critical disease with a high fatality rate. Immune dysfunction and inflammatory responses are key risk factors in ACLF. Pyroptosis is a form of programmed cell death characterized by the release of inflammatory cytokines, which causes the strong inflammatory responses. High mobility group box-1 (HMGB1) could induce pyroptosis and is closely related to ACLF. However, the role of HMGB1-induced hepatocyte pyroptosis in ACLF has never been proposed; whether HMGB1-induced hepatocyte pyroptosis participates in the development of ACLF and the mechanisms involved are barely understood. Purpose This study aimed to clarify the roles of HMGB1-induced hepatocyte pyroptosis in ACLF and the molecular mechanisms involved. Methods Wistar rats were randomly divided into five groups, viz.: Normal, ACLF model, HMGB1 inhibitor, Caspase-1 inhibitor, and HMGB1 inhibitor+Caspase-1 inhibitor groups. The ACLF rat model was established using 40% carbon tetrachloride-induced liver fibrosis, followed by D-galactosamine and lipopolysaccharide joint acute attacks. The liver function, coagulation function and pathological damage of rats in each group were evaluated. The biological mechanisms of HMGB1-induced pyroptosis and the release of inflammatory cytokines were investigated using Western blot, quantitative real-time PCR (RT-qPCR), immunofluorescence, enzyme-linked immunosorbent assay (ELISA), and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Results The liver function and coagulation function of ACLF rats were seriously impaired; liver tissue showed massive or submassive necrosis, accompanied by inflammatory cell infiltration; the percentage of pyroptotic hepatocytes significantly increased, and a large number of inflammatory cytokines were released. The expression levels of pyroptosis-related genes and proteins in liver tissues and serum significantly increased. But these phenomenons were improved by the inhibition of HMGB1, and the dual inhibition of HMGB1 and Caspase-1 showed a stronger effect. Conclusion The findings indicate, for the first time, that pyroptosis is a crucial pathophysiological event of ACLF involved in its pathogenesis, and HMGB1-induced hepatocyte pyroptosis expands inflammatory responses to aggravate ACLF, suggesting that it may be a potential therapeutic target for ACLF treatment.
Collapse
Affiliation(s)
- Weixin Hou
- Department of Hepatology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China.,Department of Hepatology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Beijing, People's Republic of China.,Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China.,Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Beijing, People's Republic of China
| | - Xiaoyi Wei
- Department of Hepatology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China.,Department of Hepatology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Beijing, People's Republic of China
| | - Jiajun Liang
- Department of Hepatology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China.,Department of Hepatology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Beijing, People's Republic of China.,Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China.,Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Beijing, People's Republic of China
| | - Peng Fang
- Department of Infectious Diseases, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Chongyang Ma
- Department of Hepatology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China.,Department of Hepatology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Beijing, People's Republic of China
| | - Qiuyun Zhang
- Department of Hepatology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China.,Department of Hepatology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Beijing, People's Republic of China
| | - Yanbin Gao
- Department of Endocrinology, School of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China.,Department of Endocrinology, Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
13
|
Ma D, Yang B, Guan B, Song L, Liu Q, Fan Y, Zhao L, Wang T, Zhang Z, Gao Z, Li S, Xu H. A Bibliometric Analysis of Pyroptosis From 2001 to 2021. Front Immunol 2021; 12:731933. [PMID: 34484243 PMCID: PMC8416445 DOI: 10.3389/fimmu.2021.731933] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/03/2021] [Indexed: 11/15/2022] Open
Abstract
Background Pyroptosis is a new programmed cell death discovered in recent years. Pyroptosis plays an important role in various diseases. Nevertheless, there are few bibliometric analysis systematically studies this field. We aimed to visualize the research hotspots and trends of pyroptosis using a bibliometric analysis to help understand the future development of basic and clinical research. Methods The articles and reviews regarding pyroptosis were culled from Web of Science Core Collection. Countries, institutions, authors, references and keywords in this field were visually analyzed by using CtieSpace and VOSviewer software. Results A total of 2845 articles and reviews were included. The number of articles regarding pyroptosis significantly increased yearly. These publications mainly come from 70 countries led by China and the USA and 418 institutions. We identified 605 authors, among which Thirumaladevi Kanneganti had the most significant number of articles, and Shi JJ was co-cited most often. Frontiers in immunology was the journal with the most studies, and Nature was the most commonly cited journal. After analysis, the most common keywords are nod like receptor family pyrin domain containing 3 inflammasome, apoptosis, cell death, gasdermin D, mechanism, caspase-1, and others are current and developing areas of study. Conclusion Research on the pyroptosis is flourishing. Cooperation and exchanges between countries and institutions must be strengthened in the future. The related pathway mechanism of pyroptosis, the relationship between pyroptosis and other types of programmed cell deaths as well as the role of pyroptosis in various diseases have been the focus of current research and developmental trends in the future research.
Collapse
Affiliation(s)
- Dan Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyi Guan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luxia Song
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyu Liu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yixuan Fan
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lin Zhao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Tongxin Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zihao Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zhuye Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Siming Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Loveless R, Bloomquist R, Teng Y. Pyroptosis at the forefront of anticancer immunity. J Exp Clin Cancer Res 2021; 40:264. [PMID: 34429144 PMCID: PMC8383365 DOI: 10.1186/s13046-021-02065-8] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023] Open
Abstract
Tumor resistance to apoptosis and the immunosuppressive tumor microenvironment are two major contributors to poor therapeutic responses during cancer intervention. Pyroptosis, a lytic and inflammatory programmed cell death pathway distinct from apoptosis, has subsequently sparked notable interest among cancer researchers for its potential to be clinically harnessed and to address these problems. Recent evidence indicates that pyroptosis induction in tumor cells leads to a robust inflammatory response and marked tumor regression. Underlying its antitumor effect, pyroptosis is mediated by pore-forming gasdermin proteins that facilitate immune cell activation and infiltration through their release of pro-inflammatory cytokines and immunogenic material following cell rupture. Considering its inflammatory nature, however, aberrant pyroptosis may also be implicated in the formation of a tumor supportive microenvironment, as evidenced by the upregulation of gasdermin proteins in certain cancers. In this review, the molecular pathways leading to pyroptosis are introduced, followed by an overview of the seemingly entangled links between pyroptosis and cancer. We describe what is known regarding the impact of pyroptosis on anticancer immunity and give insight into the potential of harnessing pyroptosis as a tool and applying it to novel or existing anticancer strategies.
Collapse
Affiliation(s)
- Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Ryan Bloomquist
- Department of Restorative Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA.
| |
Collapse
|