1
|
Liu L, Kishengere MA, Xu X, Yue Z. Revealing tumor microenvironment communication through m6A single-cell analysis and elucidating immunotherapeutic potentials for cutaneous melanoma (CM). J Cancer Res Clin Oncol 2025; 151:135. [PMID: 40205154 PMCID: PMC11982169 DOI: 10.1007/s00432-025-06176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/17/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND The methylation of N6-methyladenosine (m6A) RNA plays a crucial role in the genetic regulation of various cancers. While m6A modifications have been extensively studied in the tumor microenvironment (TME) of several malignancies, their role in cutaneous melanoma (CM) remains unexplored. METHODS Using Non-negative matrix factorization (NMF) analysis on single-cell RNA-seq data (GSE215121) from three CM samples obtained from public databases, 26 m6A RNA methylation regulators were utilized to determine TME subclusters, their expression, and function. RESULTS Six distinct TME cell types were identified and NMF clustering further revealed unique m6A-based subpopulations of cancer-associated fibroblasts and T cells. The prognostic model demonstrated strong predictive capabilities, particularly for fibroblast and T cell m6A clusters, and highlighted COL3A1 as a critical regulator of melanoma-fibroblast interactions. CONCLUSION Highlighting the COL3A1 gene as a critical link and potential therapeutic target in melanoma could offer new avenues for targeted therapies and improve prognostic assessments in cutaneous melanoma.
Collapse
Affiliation(s)
- Lun Liu
- Department of Bioinformatics, Changsha Duxact Clinical Laboratory Co., Ltd, C9 Building, Lugu S&T Park, 28 Lutian Road, Changsha, 410000, Hunan, People's Republic of China
| | - Maxwell Andriano Kishengere
- Department of Dermatology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, 410000, Hunan, People's Republic of China
| | - Xueming Xu
- Department of Intensive Care Unit, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zhanghui Yue
- Department of Dermatology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, 410000, Hunan, People's Republic of China.
| |
Collapse
|
2
|
Singh A, Hu Y, Lopes RF, Lane L, Woldemichael H, Xu C, Udeshi ND, Carr SA, Perrimon N. Cell-death induced immune response and coagulopathy promote cachexia in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631515. [PMID: 39829769 PMCID: PMC11741341 DOI: 10.1101/2025.01.07.631515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Tumors can exert a far-reaching influence on the body, triggering systemic responses that contribute to debilitating conditions like cancer cachexia. To characterize the mechanisms underlying tumor-host interactions, we utilized a BioID-based proximity labeling method to identify proteins secreted by Ykiact adult Drosophila gut tumors into the bloodstream/hemolymph. Among the major proteins identified are coagulation and immune-responsive factors that contribute to the systemic wasting phenotypes associated with Ykiact tumors. The effect of innate immunity factors is mediated by NFκB transcription factors Relish, dorsal, and Dif, which in turn upregulate the expression of the cachectic factors Pvf1, Impl2, and Upd3. In addition, Ykiact tumors secrete Eiger, a TNF-alpha homolog, which activates the JNK signaling pathway in neighboring non-tumor cells, leading to cell death. The release of damage-associated molecular patterns (DAMPs) from these dying cells presumably amplifies the inflammatory response, exacerbating systemic wasting. Targeting the inflammatory response, the JNK pathway, or the production of cachectic factors could potentially alleviate the debilitating effects of cancer cachexia.
Collapse
Affiliation(s)
- Ankita Singh
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 7 02115, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 7 02115, USA
| | - Raphael Fragoso Lopes
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 7 02115, USA
| | - Liz Lane
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 7 02115, USA
| | | | - Charles Xu
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Steven A. Carr
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 7 02115, USA
- HHMI, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
3
|
Liu ZH, Ma P, He Y, Zhang YF, Mou Z, Fang T, Wang W, Yu KH. The Mechanism and Latest Progress of m6A Methylation in the Progression of Pancreatic Cancer. Int J Biol Sci 2025; 21:1187-1201. [PMID: 39897038 PMCID: PMC11781182 DOI: 10.7150/ijbs.104407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025] Open
Abstract
Pancreatic cancer (PC), known as the "king of cancers," is characterized by an exceptionally low five-year survival rate, posing a formidable challenge to global public health. N6-methyladenosine (m6A) methylation is prevalent across various stages of eukaryotic RNA expression, including splicing, maturation, stability, translation, and localization, and represents a pivotal mechanism of epigenetic regulation. m6A methylation influences tumor initiation and progression by modulating post-transcriptional processes, playing a critical role in sustaining cancer cell stemness, promoting cell proliferation, and mediating drug resistance. Extensive research underscores the substantial contribution of m6A modifications to PC development. However, the multiplicity of m6A regulators and their intricate mechanisms of action complicate the landscape. This review aims to deepen the understanding of m6A's role in PC by delineating its involvement in four key areas of tumorigenesis: the hypoxic tumor microenvironment, metabolic reprogramming, immune microenvironment, and resistance mechanisms. Additionally, the review addresses the emerging frontier of m6A interactions with non-coding RNAs (ncRNAs), offering insights into the potential therapeutic and prognostic applications of m6A in the treatment and prognosis prediction of PC.
Collapse
Affiliation(s)
- Ze-Hao Liu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Peng Ma
- Department of Hepatobiliary Surgery, East Hospital, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ying He
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yue-Feng Zhang
- Department of Hepatobiliary Surgery, East Hospital, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zuo Mou
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting Fang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Wang
- Department of Hepatobiliary Surgery, East Hospital, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Kai-Huan Yu
- Department of Hepatobiliary Surgery, East Hospital, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| |
Collapse
|
4
|
Cai M, Li X, Luan X, Zhao P, Sun Q. Exploring m6A methylation in skin Cancer: Insights into molecular mechanisms and treatment. Cell Signal 2024; 124:111420. [PMID: 39304098 DOI: 10.1016/j.cellsig.2024.111420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
N6-methyladenosine (m6A) is the most common and prevalent internal mRNA modification in eukaryotes. m6A modification is a dynamic and reversible process regulated by methyltransferases, demethylases, and m6A binding proteins. Skin cancers, including melanoma and nonmelanoma skin cancers (NMSCs), are among the most commonly diagnosed cancers worldwide. m6A methylation is involved in the regulation of RNA splicing, translation, degradation, stability, translocation, export, and folding. Aberrant m6A modification participates in the pathophysiological processes of skin cancers and is associated with tumor cell proliferation, invasion, migration, and metastasis during cancer progression. In this review, we provide a comprehensive summary of the biological functions of m6A and the most up-to-date evidence related to m6A RNA modification in skin cancer. We also emphasize the potential clinical applications in the diagnosis and treatment of skin cancers.
Collapse
Affiliation(s)
- Mingjun Cai
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan 250012, Shandong, China
| | - Xueqing Li
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan 250012, Shandong, China
| | - Xueyu Luan
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan 250012, Shandong, China
| | - Pengyuan Zhao
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan 250012, Shandong, China
| | - Qing Sun
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
5
|
Wang F, Liao Q, Qin Z, Li J, Wei Q, Li M, Deng H, Xiong W, Tan M, Zhou M. Autophagy: a critical mechanism of N 6-methyladenosine modification involved in tumor progression and therapy resistance. Cell Death Dis 2024; 15:783. [PMID: 39468015 PMCID: PMC11519594 DOI: 10.1038/s41419-024-07148-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
N6-Methyladenosine (m6A) is an evolutionarily highly conserved epigenetic modification that affects eukaryotic RNAs, especially mRNAs, and m6A modification is commonly linked to tumor proliferation, progression, and therapeutic resistance by participating in RNA metabolism. Autophagy is an intracellular degradation and recycling biological process by which cells remove damaged organelles, protein aggregates, and other intracellular wastes, and release nutrients to maintain cell survival when energy is scarce. Recent studies have shown that m6A modification plays a critical role in the regulation of autophagy, affecting the initiation of autophagy, the formation and assembly of autophagosomes, and lysosomal function by regulating critical regulatory molecules involved in the process of autophagy. Moreover, autophagy can also affect the expression of the three types of regulators related to m6A, which in turn affects the levels of their target genes via m6A modification. Thus, m6A modification and autophagy form a sophisticated regulatory network through mutual regulation, which plays an important role in tumor progression and therapeutic resistance. In this manuscript, we reviewed the effects of m6A modification on autophagy as well as the effects of autophagy on m6A modification and the roles of the m6A-autophagy axis in tumor progression and therapy resistance. Additionally, we summarized the value and application prospects of key molecules in the m6A-autophagy axis in tumor diagnosis and therapy.
Collapse
Affiliation(s)
- Feiyang Wang
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qiudi Liao
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zihao Qin
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jingyi Li
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qingqing Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Mengna Li
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Hongyu Deng
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Ming Tan
- Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/ Hunan Cancer Hospital, Changsha, China.
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China.
| |
Collapse
|
6
|
Zhang YW, Wu SX, Wang GW, Wan RD, Yang QE. Single-cell analysis identifies critical regulators of spermatogonial development and differentiation in cattle-yak bulls. J Dairy Sci 2024; 107:7317-7336. [PMID: 38642661 DOI: 10.3168/jds.2023-24442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/11/2024] [Indexed: 04/22/2024]
Abstract
Spermatogenesis is a continuous process in which functional sperm are produced through a series of mitotic and meiotic divisions and morphological changes in germ cells. The aberrant development and fate transitions of spermatogenic cells cause hybrid sterility in mammals. Cattle-yak, a hybrid animal between taurine cattle (Bos taurus) and yak (Bos grunniens), exhibits male-specific sterility due to spermatogenic failure. In the present study, we performed single-cell RNA sequencing analysis to identify differences in testicular cell composition and the developmental trajectory of spermatogenic cells between yak and cattle-yak. The composition and molecular signatures of spermatogonial subtypes were dramatically different between these 2 animals, and the expression of genes associated with stem cell maintenance, cell differentiation and meiotic entry was altered in cattle-yak, indicating the impairment of undifferentiated spermatogonial fate decisions. Cell communication analysis revealed that signaling within different spermatogenic cell subpopulations was weakened, and progenitor spermatogonia were unable to or delayed receiving and sending signals for transformation to the next stage in cattle-yak. Simultaneously, the communication between niche cells and germ cells was also abnormal. Collectively, we obtained the expression profiles of transcriptome signatures of different germ cells and testicular somatic cell populations at the single-cell level and identified critical regulators of spermatogonial differentiation and meiosis in yak and sterile cattle-yak. The findings of this study shed light on the genetic mechanisms that lead to hybrid sterility and speciation in bovid species.
Collapse
Affiliation(s)
- Yi-Wen Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Xin Wu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guo-Wen Wang
- Qinghai Academy of Animal Husbandry and Veterinary Sciences, Xining, Qinghai 810016, China
| | - Rui-Dong Wan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810001, China.
| |
Collapse
|
7
|
Jin W, Yao Y, Fu Y, Lei X, Fu W, Lu Q, Tong X, Xu Q, Su W, Hu X. WTAP/IGF2BP3-mediated GBE1 expression accelerates the proliferation and enhances stemness in pancreatic cancer cells via upregulating c-Myc. Cell Mol Biol Lett 2024; 29:97. [PMID: 38961325 PMCID: PMC11223412 DOI: 10.1186/s11658-024-00611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/19/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is one of the most malignant cancers with highly aggressiveness and poor prognosis. N6-methyladenosine (m6A) have been indicated to be involved in PC development. Glucan Branching Enzyme 1 (GBE1) is mainly involved in cell glycogen metabolism. However, the function of GBE1 and Whether GBE1 occurs m6A modification in PC progression remains to be illustrated. METHODS The clinical prognosis of GBE1 was analyzed through online platform. The expression of GBE1 was obtained from online platform and then verified in normal and PC cell lines. Lentivirus was used to generated GBE1 stable-overexpression or knockdown PC cells. Cell Counting Kit (CCK-8), colony formation assay, sphere formation assay and flow cytometry assay were conducted to analyze cell proliferation and stemness ability in vitro. Subcutaneous and orthotopic mouse models were used to verify the function of GBE1 in vivo. RNA immunoprecipitation (RIP) assay, RNA stability experiment and western blots were conducted to explore the molecular regulation of GBE1 in PC. RESULTS GBE1 was significantly upregulated in PC and associated with poor prognosis of PC patients. Functionally, GBE1 overexpression facilitated PC cell proliferation and stemness-like properties, while knockdown of GBE1 attenuated the malignancy of PC cells. Importantly, we found the m6A modification of GBE1 RNA, and WTAP and IGF2BP3 was revealed as the m6A regulators to increase GBE1 mRNA stability and expression. Furthermore, c-Myc was discovered as a downstream gene of GBE1 and functional rescue experiments showed that overexpression of c-Myc could rescue GBE1 knockdown-induced PC cell growth inhibition. CONCLUSIONS Our study uncovered the oncogenic role of GBE1/c-Myc axis in PC progression and revealed WTAP/IGF2BP3-mediated m6A modification of GBE1, which highlight the potential application of GBE1 in the targeted therapy of PC.
Collapse
Affiliation(s)
- Weiwei Jin
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yanru Yao
- Hangzhou Medical College, Hangzhou, China
| | - Yuhan Fu
- Hangzhou Medical College, Hangzhou, China
| | | | - Wen Fu
- The Medical College of Qingdao University, Qingdao, China
| | - Qiliang Lu
- The Medical College of Qingdao University, Qingdao, China
| | - Xiangmin Tong
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qiuran Xu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.
| | - Wei Su
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China.
| | - Xiaoge Hu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
8
|
Su X, Qu Y, Mu D. Methyltransferase-like 3 modifications of RNAs: Implications for the pathology in the endocrine system. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167010. [PMID: 38176459 DOI: 10.1016/j.bbadis.2023.167010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Methyltransferase-like 3 (METTL3) is the most well-known element of N6-methyladenosine modification on RNAs. METTL3 deposits a methyl group onto target RNAs to modify their expression, ultimately regulating various physiological and pathological events. Numerous studies have suggested the significant role of METTL3 in endocrine dysfunction and related disorders. However, reviews that summarize and interpret these studies are lacking. In this review, we systematically analyze such studies, including obesity, type 2 diabetes mellitus (T2DM), T2DM-induced diseases, pancreatic cancer, and thyroid carcinoma. This review indicates that METTL3 contributes remarkably to the endocrine dysfunction and progression of obesity, T2DM, T2DM-induced diseases, pancreatic cancer, and thyroid carcinoma. In conclusion, this review provides a comprehensive interpretation of the mechanism via which METTL3 functions on RNAs and regulates various endocrine dysfunction events and suggest potential associated correlations. Our review, thus, provides a valuable reference for further fundamental studies and clinical applications.
Collapse
Affiliation(s)
- Xiaojuan Su
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
9
|
Kelliher S, Gamba S, Weiss L, Shen Z, Marchetti M, Schieppati F, Scaife C, Madden S, Bennett K, Fortune A, Maung S, Fay M, Ní Áinle F, Maguire P, Falanga A, Kevane B, Krishnan A. Platelet proteo-transcriptomic profiling validates mediators of thrombosis and proteostasis in patients with myeloproliferative neoplasms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563619. [PMID: 37961700 PMCID: PMC10634751 DOI: 10.1101/2023.10.23.563619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Patients with chronic Myeloproliferative Neoplasms (MPN) including polycythemia vera (PV) and essential thrombocythemia (ET) exhibit unique clinical features, such as a tendency toward thrombosis and hemorrhage, and risk of disease progression to secondary bone marrow fibrosis and/or acute leukemia. Although an increase in blood cell lineage counts (quantitative features) contribute to these morbid sequelae, the significant qualitative abnormalities of myeloid cells that contribute to vascular risk are not well understood. Here, we address this critical knowledge gap via a comprehensive and untargeted profiling of the platelet proteome in a large (n= 140) cohort of patients (from two independent sites) with an established diagnosis of PV and ET (and complement prior work on the MPN platelet transcriptome from a third site). We discover distinct MPN platelet protein expression and confirm key molecular impairments associated with proteostasis and thrombosis mechanisms of potential relevance to MPN pathology. Specifically, we validate expression of high-priority candidate markers from the platelet transcriptome at the platelet proteome (e.g., calreticulin (CALR), Fc gamma receptor (FcγRIIA) and galectin-1 (LGALS1) pointing to their likely significance in the proinflammatory, prothrombotic and profibrotic phenotypes in patients with MPN. Together, our proteo-transcriptomic study identifies the peripherally-derived platelet molecular profile as a potential window into MPN pathophysiology and demonstrates the value of integrative multi-omic approaches in gaining a better understanding of the complex molecular dynamics of disease.
Collapse
Affiliation(s)
- Sarah Kelliher
- School of Medicine, University College Dublin, Dublin, Ireland
- Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
| | - Sara Gamba
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Luisa Weiss
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Zhu Shen
- Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Marina Marchetti
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Francesca Schieppati
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Caitriona Scaife
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Stephen Madden
- Data Science Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kathleen Bennett
- School of Population Health, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Anne Fortune
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Su Maung
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Michael Fay
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Fionnuala Ní Áinle
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
- School of Medicine, Royal College of Surgeons in Ireland
| | - Patricia Maguire
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Institute for Discovery, University College Dublin, Dublin, Ireland
| | - Anna Falanga
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
- University of Milano-Bicocca, Department of Medicine and Surgery, Monza, Italy
| | - Barry Kevane
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
| | - Anandi Krishnan
- Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Rutgers University, Piscataway, NJ
- Stanford Cancer Institute, Stanford, CA, USA
| |
Collapse
|
10
|
Shen LT, Che LR, He Z, Lu Q, Chen DF, Qin ZY, Wang B. Aberrant RNA m 6A modification in gastrointestinal malignancies: versatile regulators of cancer hallmarks and novel therapeutic opportunities. Cell Death Dis 2023; 14:236. [PMID: 37015927 PMCID: PMC10072051 DOI: 10.1038/s41419-023-05736-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 04/06/2023]
Abstract
Gastrointestinal (GI) cancer is one of the most common malignancies, and a leading cause of cancer-related death worldwide. However, molecular targeted therapies are still lacking, leading to poor treatment efficacies. As an important layer of epigenetic regulation, RNA N6-Methyladenosine (m6A) modification is recently linked to various biological hallmarks of cancer by orchestrating RNA metabolism, including RNA splicing, export, translation, and decay, which is partially involved in a novel biological process termed phase separation. Through these regulatory mechanisms, m6A dictates gene expression in a dynamic and reversible manner and may play oncogenic, tumor suppressive or context-dependent roles in GI tumorigenesis. Therefore, regulators and effectors of m6A, as well as their modified substrates, represent a novel class of molecular targets for cancer treatments. In this review, we comprehensively summarize recent advances in this field and highlight research findings that documented key roles of RNA m6A modification in governing hallmarks of GI cancers. From a historical perspective, milestone findings in m6A machinery are integrated with a timeline of developing m6A targeting compounds. These available chemical compounds, as well as other approaches that target core components of the RNA m6A pathway hold promises for clinical translational to treat human GI cancers. Further investigation on several outstanding issues, e.g. how oncogenic insults may disrupt m6A homeostasis, and how m6A modification impacts on the tumor microenvironment, may dissect novel mechanisms underlying human tumorigenesis and identifies next-generation anti-cancer therapeutics. In this review, we discuss advances in our understanding of m6A RNA modification since its discovery in the 1970s to the latest progress in defining its potential clinic relevance. We summarize the molecular basis and roles of m6A regulators in the hallmarks of GI cancer and discuss their context-dependent functions. Furthermore, the identification and characterization of inhibitors or activators of m6A regulators and their potential anti-cancer effects are discussed. With the rapid growth in this field there is significant potential for developing m6A targeted therapy in GI cancers.
Collapse
Affiliation(s)
- Li-Ting Shen
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
- Department of Internal Medicine, Hospital of Zhejiang Armed Police (PAP), Hangzhou, 310051, China
| | - Lin-Rong Che
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Zongsheng He
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Qian Lu
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Dong-Feng Chen
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Zhong-Yi Qin
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Bin Wang
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China.
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
11
|
Lin C, Li T, Wang Y, Lai S, Huang Y, Guo Z, Zhang X, Weng S. METTL3 enhances pancreatic ductal adenocarcinoma progression and gemcitabine resistance through modifying DDX23 mRNA N6 adenosine methylation. Cell Death Dis 2023; 14:221. [PMID: 36977668 PMCID: PMC10050319 DOI: 10.1038/s41419-023-05715-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/30/2023]
Abstract
The aim of the present study was to clarify the mechanism of how METTL3 regulated pancreatic ductal adenocarcinoma (PDAC) progression by m6A modification of its downstream target mRNA and signaling pathway. Immunoblotting and qRT-PCR assays was employed to determine the expression levels of METTL3. In situ fluorescence hybridization was conducted to localize the cellular distribution of METTL3 and DEAD-box helicase 23 (DDX23). CCK8, colony formation, EDU incorporation, TUNEL, wound healing and Transwell assays were carried out accordingly to study the viability, proliferation, apoptosis, and mobility of cells under different treatments in vitro. Xenograft and animal lung metastasis experiments were also conducted to study the functional role of METTL3 or DDX23 on tumor growth and lung metastasis in vivo. MeRIP-qPCR and bioinformatical analyses were used to obtain the potential direct targets of METTL3. It was shown that m6A methyltransferase METTL3 was upregulated in PDAC tissues with gemcitabine resistance, and its knockdown sensitized pancreatic cancer cells to chemotherapy. Furthermore, silencing METTL3 remarkably reduced pancreatic cancer cell proliferation, migration, and invasion both in vitro and in vivo. Mechanistically, validation experiments confirmed that DDX23 mRNA was a direct target of METTL3 in YTHDF1-dependent manner. Additionally, DDX23 silence resulted in the suppression of pancreatic cancer cell malignancy and PIAK/Akt signaling inactivation. Strikingly, rescuse experiments demonstrated the inhibitive effects of METTL3 silence on cell phenotypes and gemcitabine resistance were partially reversed by forcibly expressed DDX23. In summary, METTL3 promotes PDAC progression and gemcitabine resistance by modifying DDX23 mRNA m6A methylation and enhancing PI3K/Akt signaling activation. Our findings establish a potential tumor promotive and chemo-resistant role for METTL3/DDX23 axis in PDAC.
Collapse
Affiliation(s)
- Chengjie Lin
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350001, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
| | - Ting Li
- Department of Oncology, Fujian Provincial Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Yan Wang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350001, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
| | - Shihui Lai
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350001, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
| | - Yue Huang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350001, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
| | - Zhenyun Guo
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350001, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China
| | - Xiang Zhang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350001, China.
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China.
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China.
| | - Shangeng Weng
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350001, China.
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350001, China.
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350212, China.
| |
Collapse
|
12
|
Xie LY, Huang HY, Hao YL, Yu M, Zhang W, Wei E, Gao C, Wang C, Zeng L. Development and validation of a tumor immune cell infiltration-related gene signature for recurrence prediction by weighted gene co-expression network analysis in prostate cancer. Front Genet 2023; 14:1067172. [PMID: 37007952 PMCID: PMC10061146 DOI: 10.3389/fgene.2023.1067172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction: Prostate cancer (PCa) is the second most common malignancy in men. Despite multidisciplinary treatments, patients with PCa continue to experience poor prognoses and high rates of tumor recurrence. Recent studies have shown that tumor-infiltrating immune cells (TIICs) are associated with PCa tumorigenesis.Methods: The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets were used to derive multi-omics data for prostate adenocarcinoma (PRAD) samples. The CIBERSORT algorithm was used to calculate the landscape of TIICs. Weighted gene co-expression network analysis (WGCNA) was performed to determine the candidate module most significantly associated with TIICs. LASSO Cox regression was applied to screen a minimal set of genes and construct a TIIC-related prognostic gene signature for PCa. Then, 78 PCa samples with CIBERSORT output p-values of less than 0.05 were selected for analysis. WGCNA identified 13 modules, and the MEblue module with the most significant enrichment result was selected. A total of 1143 candidate genes were cross-examined between the MEblue module and active dendritic cell-related genes.Results: According to LASSO Cox regression analysis, a risk model was constructed with six genes (STX4, UBE2S, EMC6, EMD, NUCB1 and GCAT), which exhibited strong correlations with clinicopathological variables, tumor microenvironment context, antitumor therapies, and tumor mutation burden (TMB) in TCGA-PRAD. Further validation showed that the UBE2S had the highest expression level among the six genes in five different PCa cell lines.Discussion: In conclusion, our risk-score model contributes to better predicting PCa patient prognosis and understanding the underlying mechanisms of immune responses and antitumor therapies in PCa.
Collapse
Affiliation(s)
- Lin-Ying Xie
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jillin University, Changchun, Jilin, China
| | - Han-Ying Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yu-Lei Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Miaomiao Yu
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jillin University, Changchun, Jilin, China
| | - Wenju Zhang
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jillin University, Changchun, Jilin, China
| | - Enwei Wei
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jillin University, Changchun, Jilin, China
| | - Chunfeng Gao
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jillin University, Changchun, Jilin, China
| | - Chang Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Chang Wang, ; Lei Zeng,
| | - Lei Zeng
- Bethune Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jillin University, Changchun, Jilin, China
- *Correspondence: Chang Wang, ; Lei Zeng,
| |
Collapse
|
13
|
Chen L, Gao Y, Xu S, Yuan J, Wang M, Li T, Gong J. N6-methyladenosine reader YTHDF family in biological processes: Structures, roles, and mechanisms. Front Immunol 2023; 14:1162607. [PMID: 36999016 PMCID: PMC10043241 DOI: 10.3389/fimmu.2023.1162607] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
As the most abundant and conserved internal modification in eukaryote RNAs, N6-methyladenosine (m6A) is involved in a wide range of physiological and pathological processes. The YT521-B homology (YTH) domain-containing family proteins (YTHDFs), including YTHDF1, YTHDF2, and YTHDF3, are a class of cytoplasmic m6A-binding proteins defined by the vertebrate YTH domain, and exert extensive functions in regulating RNA destiny. Distinct expression patterns of the YTHDF family in specific cell types or developmental stages result in prominent differences in multiple biological processes, such as embryonic development, stem cell fate, fat metabolism, neuromodulation, cardiovascular effect, infection, immunity, and tumorigenesis. The YTHDF family mediates tumor proliferation, metastasis, metabolism, drug resistance, and immunity, and possesses the potential of predictive and therapeutic biomarkers. Here, we mainly summary the structures, roles, and mechanisms of the YTHDF family in physiological and pathological processes, especially in multiple cancers, as well as their current limitations and future considerations. This will provide novel angles for deciphering m6A regulation in a biological system.
Collapse
Affiliation(s)
- Lin Chen
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gao
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Simiao Xu
- Division of Endocrinology, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Branch of National Clinical Research Center for Metabolic Disease, Wuhan, China
| | - Jinxiong Yuan
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianyu Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Gong
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jun Gong,
| |
Collapse
|
14
|
Huang H, Pan R, Wang S, Guan Y, Zhao Y, Liu X. Current and potential roles of RNA modification-mediated autophagy dysregulation in cancer. Arch Biochem Biophys 2023; 736:109542. [PMID: 36758911 DOI: 10.1016/j.abb.2023.109542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 02/09/2023]
Abstract
Autophagy, a cellular lysosomal degradation and survival pathway, supports nutrient recycling and adaptation to metabolic stress and participates in various stages of tumor development, including tumorigenesis, metastasis, and malignant state maintenance. Among the various factors contributing to the dysregulation of autophagy in cancer, RNA modification can regulate autophagy by directly affecting the expression of core autophagy proteins. We propose that autophagy disorder mediated by RNA modification is an important mechanism for cancer development. Therefore, this review mainly discusses the role of RNA modification-mediated autophagy regulation in tumorigenesis. We summarize the molecular basis of autophagy and the core proteins and complexes at different stages of autophagy, especially those involved in cancer development. Moreover, we describe the crosstalk of RNA modification and autophagy and review the recent advances and potential role of the RNA modification/autophagy axis in the development of multiple cancers. Furthermore, the dual role of the RNA modification/autophagy axis in cancer drug resistance is discussed. A comprehensive understanding and extensive exploration of the molecular crosstalk of RNA modifications with autophagy will provide important insights into tumor pathophysiology and provide more options for cancer therapeutic strategies.
Collapse
Affiliation(s)
- Hua Huang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
| | - Ruining Pan
- Center of Excellence for Environmental Safety and Biological Effects, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
| | - Sijia Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
| | - Yifei Guan
- Center of Excellence for Environmental Safety and Biological Effects, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
| | - Yue Zhao
- Intensive Care Unit, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Xinhui Liu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
15
|
Roles of RNA Methylations in Cancer Progression, Autophagy, and Anticancer Drug Resistance. Int J Mol Sci 2023; 24:ijms24044225. [PMID: 36835633 PMCID: PMC9959100 DOI: 10.3390/ijms24044225] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
RNA methylations play critical roles in RNA processes, including RNA splicing, nuclear export, nonsense-mediated RNA decay, and translation. Regulators of RNA methylations have been shown to be differentially expressed between tumor tissues/cancer cells and adjacent tissues/normal cells. N6-methyladenosine (m6A) is the most prevalent internal modification of RNAs in eukaryotes. m6A regulators include m6A writers, m6A demethylases, and m6A binding proteins. Since m6A regulators play important roles in regulating the expression of oncogenes and tumor suppressor genes, targeting m6A regulators can be a strategy for developing anticancer drugs. Anticancer drugs targeting m6A regulators are in clinical trials. m6A regulator-targeting drugs could enhance the anticancer effects of current chemotherapy drugs. This review summarizes the roles of m6A regulators in cancer initiation and progression, autophagy, and anticancer drug resistance. The review also discusses the relationship between autophagy and anticancer drug resistance, the effect of high levels of m6A on autophagy and the potential values of m6A regulators as diagnostic markers and anticancer therapeutic targets.
Collapse
|
16
|
The Emerging Role of m6A Modification in Endocrine Cancer. Cancers (Basel) 2023; 15:cancers15041033. [PMID: 36831377 PMCID: PMC9954123 DOI: 10.3390/cancers15041033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
With the development of RNA modification research, N6-methyladenosine (m6A) is regarded as one of the most important internal epigenetic modifications of eukaryotic mRNA. It is also regulated by methylase, demethylase, and protein preferentially recognizing the m6A modification. This dynamic and reversible post-transcriptional RNA alteration has steadily become the focus of cancer research. It can increase tumor stem cell self-renewal and cell proliferation. The m6A-modified genes may be the primary focus for cancer breakthroughs. Although some endocrine cancers are rare, they may have a high mortality rate. As a result, it is critical to recognize the significance of endocrine cancers and identify new therapeutic targets that will aid in improving disease treatment and prognosis. We summarized the latest experimental progress in the m6A modification in endocrine cancers and proposed the m6A alteration as a potential diagnostic marker for endocrine malignancies.
Collapse
|
17
|
Ntostis P, Swanson G, Kokkali G, Iles D, Huntriss J, Pantou A, Tzetis M, Pantos K, Picton HM, Krawetz SA, Miller D. Trophectoderm non-coding RNAs reflect the higher metabolic and more invasive properties of young maternal age blastocysts. Syst Biol Reprod Med 2023; 69:3-19. [PMID: 36576378 DOI: 10.1080/19396368.2022.2153636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Increasing female age is accompanied by a corresponding fall in her fertility. This decline is influenced by a variety of factors over an individual's life course including background genetics, local environment and diet. Studying both coding and non-coding RNAs of the embryo could aid our understanding of the causes and/or effects of the physiological processes accompanying the decline including the differential expression of sub-cellular biomarkers indicative of various diseases. The current study is a post-hoc analysis of the expression of trophectoderm RNA data derived from a previous high throughput study. Its main aim is to determine the characteristics and potential functionalities that characterize long non-coding RNAs. As reported previously, a maternal age-related component is potentially implicated in implantation success. Trophectoderm samples representing the full range of maternal reproductive ages were considered in relation to embryonic implantation potential, trophectoderm transcriptome dynamics and reproductive maternal age. The long non-coding RNA (lncRNA) biomarkers identified here are consistent with the activities of embryo-endometrial crosstalk, developmental competency and implantation and share common characteristics with markers of neoplasia/cancer invasion. Corresponding genes for expressed lncRNAs were more active in the blastocysts of younger women are associated with metabolic pathways including cholesterol biosynthesis and steroidogenesis.
Collapse
Affiliation(s)
- Panagiotis Ntostis
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- Department of Genetics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Grace Swanson
- Department of Obstetrics and Gynecology, Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Georgia Kokkali
- Genesis Athens Clinic, Reproductive Medicine Unit, Athens, Greece
| | - David Iles
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - John Huntriss
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Agni Pantou
- Genesis Athens Clinic, Reproductive Medicine Unit, Athens, Greece
| | - Maria Tzetis
- Department of Genetics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Helen M Picton
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Stephen A Krawetz
- Department of Obstetrics and Gynecology, Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - David Miller
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
18
|
Meta-Analysis of MS-Based Proteomics Studies Indicates Interferon Regulatory Factor 4 and Nucleobindin1 as Potential Prognostic and Drug Resistance Biomarkers in Diffuse Large B Cell Lymphoma. Cells 2023; 12:cells12010196. [PMID: 36611989 PMCID: PMC9818977 DOI: 10.3390/cells12010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
The prognosis of diffuse large B cell lymphoma (DLBCL) is inaccurately predicted using clinical features and immunohistochemistry (IHC) algorithms. Nomination of a panel of molecules as the target for therapy and predicting prognosis in DLBCL is challenging because of the divergences in the results of molecular studies. Mass spectrometry (MS)-based proteomics in the clinic represents an analytical tool with the potential to improve DLBCL diagnosis and prognosis. Previous proteomics studies using MS-based proteomics identified a wide range of proteins. To achieve a consensus, we reviewed MS-based proteomics studies and extracted the most consistently significantly dysregulated proteins. These proteins were then further explored by analyzing data from other omics fields. Among all significantly regulated proteins, interferon regulatory factor 4 (IRF4) was identified as a potential target by proteomics, genomics, and IHC. Moreover, annexinA5 (ANXA5) and nucleobindin1 (NUCB1) were two of the most up-regulated proteins identified in MS studies. Functional enrichment analysis identified the light zone reactions of the germinal center (LZ-GC) together with cytoskeleton locomotion functions as enriched based on consistent, significantly dysregulated proteins. In this study, we suggest IRF4 and NUCB1 proteins as potential biomarkers that deserve further investigation in the field of DLBCL sub-classification and prognosis.
Collapse
|
19
|
Zhang W, Jiang T, Xie K. Epigenetic reprogramming in pancreatic premalignancy and clinical implications. Front Oncol 2023; 13:1024151. [PMID: 36874143 PMCID: PMC9978013 DOI: 10.3389/fonc.2023.1024151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Pancreatic cancer (PC) is the most lethal human cancer, with less than 10% 5-year survival. Pancreatic premalignancy is a genetic and epigenomic disease and is linked to PC initiation. Pancreatic premalignant lesions include pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasm (IPMN), and mucinous cystic neoplasm (MCN), with pancreatic acinar-to-ductal metaplasia (ADM) as the major source of pancreatic premalignant lesions. Emerging evidence reveals that an epigenetic dysregulation is an early event in pancreatic tumorigenesis. The molecular mechanisms of epigenetic inheritance include chromatin remodeling; modifications in histone, DNA, and RNA; non-coding RNA expression; and alternative splicing of RNA. Changes in those epigenetic modifications contribute to the most notable alterations in chromatin structure and promoter accessibility, thus leading to the silence of tumor suppressor genes and/or activation of oncogenes. The expression profiles of various epigenetic molecules provide a promising opportunity for biomarker development for early diagnosis of PC and novel targeted treatment strategies. However, how the alterations in epigenetic regulatory machinery regulate epigenetic reprogramming in pancreatic premalignant lesions and the different stages of their initiation needs further investigation. This review will summarize the current knowledge of epigenetic reprogramming in pancreatic premalignant initiation and progression, and its clinical applications as detection and diagnostic biomarkers and therapeutic targets in PC.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| | - Tingting Jiang
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| |
Collapse
|
20
|
Verghese M, Wilkinson E, He YY. Recent Advances in RNA m 6A Modification in Solid Tumors and Tumor Immunity. Cancer Treat Res 2023; 190:95-142. [PMID: 38113000 DOI: 10.1007/978-3-031-45654-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
An analogous field to epigenetics is referred to as epitranscriptomics, which focuses on the study of post-transcriptional chemical modifications in RNA. RNA molecules, including mRNA, tRNA, rRNA, and other non-coding RNA molecules, can be edited with numerous modifications. The most prevalent modification in eukaryotic mRNA is N6-methyladenosine (m6A), which is a reversible modification found in over 7000 human genes. Recent technological advances have accelerated the characterization of these modifications, and they have been shown to play important roles in many biological processes, including pathogenic processes such as cancer. In this chapter, we discuss the role of m6A mRNA modification in cancer with a focus on solid tumor biology and immunity. m6A RNA methylation and its regulatory proteins can play context-dependent roles in solid tumor development and progression by modulating RNA metabolism to drive oncogenic or tumor-suppressive cellular pathways. m6A RNA methylation also plays dynamic roles within both immune cells and tumor cells to mediate the anti-tumor immune response. Finally, an emerging area of research within epitranscriptomics studies the role of m6A RNA methylation in promoting sensitivity or resistance to cancer therapies, including chemotherapy, targeted therapy, and immunotherapy. Overall, our understanding of m6A RNA methylation in solid tumors has advanced significantly, and continued research is needed both to fill gaps in knowledge and to identify potential areas of focus for therapeutic development.
Collapse
Affiliation(s)
- Michelle Verghese
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA
- Pritzker School of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Emma Wilkinson
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
21
|
Efeoglu E, Henry M, Clynes M, Meleady P. Label-Free Quantitative Proteomics Analysis of Adriamycin Selected Multidrug Resistant Human Lung Cancer Cells. Biomolecules 2022; 12:biom12101401. [PMID: 36291610 PMCID: PMC9599763 DOI: 10.3390/biom12101401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
The development of drug resistance in lung cancer is a major clinical challenge, leading to a 5-year survival rate of only 18%. Therefore, unravelling the mechanisms of drug resistance and developing novel therapeutic strategies is of crucial importance. This study systematically explores the novel biomarkers of drug resistance using a lung cancer model (DLKP) with a series of drug-resistant variants. In-depth label-free quantitative mass spectrometry-based proteomics and gene ontology analysis shows that parental DLKP cells significantly differ from drug-resistant variants, and the cellular proteome changes even among the drug-resistant subpopulations. Overall, ABC transporter proteins and lipid metabolism were determined to play a significant role in the formation of drug resistance in DKLP cells. A series of membrane-related proteins such as HMOX1, TMB1, EPHX2 and NEU1 were identified to be correlated with levels of drug resistance in the DLKP subpopulations. The study also showed enrichment in biological processes and molecular functions such as drug metabolism, cellular response to the drug and drug binding. In gene ontology analysis, 18 proteins were determined to be positively or negatively correlated with resistance levels. Overall, 34 proteins which potentially have a therapeutic and diagnostic value were identified.
Collapse
Affiliation(s)
- Esen Efeoglu
- National Institute for Cellular Biotechnology, Dublin City University, D09 NR58 Dublin, Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, D09 NR58 Dublin, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, D09 NR58 Dublin, Ireland
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, V94 T9PX Limerick, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, D09 NR58 Dublin, Ireland
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, V94 T9PX Limerick, Ireland
- School of Biotechnology, Dublin City University, D09 E432 Dublin, Ireland
- Correspondence: ; Tel.: +353-1-7005910
| |
Collapse
|
22
|
Chen S, Ren H, Zhang X, Chang L, Wang Z, Wu H, Zhang J, Ren J, Zhou L. Research advances of N6-methyladenosine in diagnosis and therapy of pancreatic cancer. J Clin Lab Anal 2022; 36:e24611. [PMID: 35837987 PMCID: PMC9459282 DOI: 10.1002/jcla.24611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) is the addition of a methyl group on the N6 position of adenosine and is the most prevalent and abundant epigenetic modification in eukaryote mRNA. m6A marks are added to mRNA by the m6A methyltransferase complex ("writers"), removed by m6A demethylases ("erasers"), and recognized by m6A-binding proteins ("readers"). Recent evidence has shown that the m6A modification plays a crucial role in the pathogenic mechanism and malignant progression of pancreatic cancer, with roles in cell survival, proliferation, migration, invasion, tumor metastasis, and drug resistance. METHODS Literature was searched in Pubmed and Web of Science for the following keywords: "N6-methyladenosine", "pancreatic cancer", "epigenetic modification", "immunotherapy". RESULTS Among classical m6A regulators, while METTL3, METTL14, WTAP, FTO, YTHDF2, IGF2BP1-3, hnRNPC, and NKAP are upregulated in pancreatic cancer, METTL16 and ALKBH5 are downregulated in pancreatic cancer. m6A modification has been investigated in pancreatic cancer therapy. CONCLUSION Dysregulated m6A and its related factors in pancreatic cancer cells and patients indicate their potential values as novel biomarkers in pancreatic cancer diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Sai Chen
- Department of Laboratory Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Hefei Ren
- Department of Laboratory Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Xiaomin Zhang
- Department of Laboratory Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Liu Chang
- Department of Laboratory Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Zhenhua Wang
- Department of Laboratory Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Hongkun Wu
- Department of Laboratory Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Jiafeng Zhang
- Department of Laboratory Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Jigang Ren
- Department of Laboratory Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Lin Zhou
- Department of Laboratory Medicine, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| |
Collapse
|
23
|
Hu X, Lei X, Guo J, Fu W, Sun W, Lu Q, Su W, Xu Q, Tu K. The Emerging Role of RNA N6-Methyladenosine Modification in Pancreatic Cancer. Front Oncol 2022; 12:927640. [PMID: 35936737 PMCID: PMC9354683 DOI: 10.3389/fonc.2022.927640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/15/2022] [Indexed: 12/04/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most common malignant cancers, ranking the seventh highest causes of cancer-related deaths globally. Recently, RNA N6-methyladenosine (m6A) is emerging as one of the most abundant RNA modifications in eukaryote cells, involved in multiple RNA processes including RNA translocation, alternative splicing, maturation, stability, and degradation. As reported, m6A was dynamically and reversibly regulated by its “writers”, “erasers”, and “readers”, Increasing evidence has revealed the vital role of m6A modification in the development of multiple types of cancers including PC. Currently, aberrant m6A modification level has been found in both PC tissues and cell lines. Moreover, abnormal expressions of m6A regulators and m6A-modified genes have been reported to contribute to the malignant development of PC. Here in this review, we will focus on the function and molecular mechanism of m6A-modulated RNAs including coding RNAs as well as non-coding RNAs. Then the m6A regulators will be summarized to reveal their potential applications in the clinical diagnosis, prognosis, and therapeutics of PC.
Collapse
Affiliation(s)
- Xiaoge Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiangxiang Lei
- Institute of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Jinhui Guo
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wen Fu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wen Sun
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiliang Lu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Wei Su
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Provincial Key Laboratory of Pancreatic Disease; Innovation Center for the Study of Pancreatic Diseases, Hangzhou, China
- *Correspondence: Wei Su, ; Qiuran Xu, ; Kangsheng Tu,
| | - Qiuran Xu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Wei Su, ; Qiuran Xu, ; Kangsheng Tu,
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wei Su, ; Qiuran Xu, ; Kangsheng Tu,
| |
Collapse
|
24
|
Yao Y, Luo L, Xiang G, Xiong J, Ke N, Tan C, Chen Y, Liu X. The expression of m 6A regulators correlated with the immune microenvironment plays an important role in the prognosis of pancreatic ductal adenocarcinoma. Gland Surg 2022; 11:147-165. [PMID: 35242677 PMCID: PMC8825516 DOI: 10.21037/gs-21-859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND The relationship between N6-methyladenosine (m6A) RNA methylation regulators and the tumor immune microenvironment has been extensively studied. Nevertheless, the potential function of m6A regulators in the tumor immune landscape of pancreatic ductal adenocarcinoma (PDAC) remains to be fully elucidated. METHODS Here, we systematically evaluated the expression of 19 m6A regulators in PDAC patients from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database. Utilizing consensus clustering, the PDAC patients were segmented into two subgroups according to the expression of 19 m6A regulators. A prognostic risk signature of 5 m6A methylation regulators (ALKBH5, IGF2BP2, IGF2BP3, LRPPRC, and KIAA1429) was then built, and the PDAC patients were divided into high-risk and low-risk groups. Subsequently, differences in independent prognostic parameters, risk score distribution, survival, and cluster analysis between high-risk and low-risk groups were analyzed. RESULTS We found two subgroups with dramatically different immune landscapes and prognoses. Subsequently, differences in independent prognostic parameters, risk score distribution, survival, and cluster analysis between the high-risk and low-risk groups were found. Moreover, these gene signatures displayed good discriminative performances in the GEO datasets. We also found that the risk score was positively correlated with the tumor mutation burden (TMB), and the TMB value was higher in the high-risk scoring group. The low-risk scoring group was linked by a stronger response to anti-programmed cell death ligand 1 (anti-PD-L1) immunotherapy and clinical advantages in the immunotherapeutic advanced urothelial cancer (IMvigor210) cohort. Ultimately, we found that these 5 m6A regulators had a fatal regulatory role on the tumor immune microenvironment in PDAC patients. CONCLUSIONS The construction signature based on the m6A regulators may be crucial regulators of the tumor immune microenvironment in PDAC, providing a new approach to improving the immunotherapy strategy for PDAC patients.
Collapse
Affiliation(s)
- Yutong Yao
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Le Luo
- Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Guangming Xiang
- Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Junjie Xiong
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Nengwen Ke
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chunlu Tan
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yonghua Chen
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xubao Liu
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Zhu K, Xiaoqiang L, Deng W, Wang G, Fu B. Identification of a novel signature based on unfolded protein response-related gene for predicting prognosis in bladder cancer. Hum Genomics 2021; 15:73. [PMID: 34930465 PMCID: PMC8686253 DOI: 10.1186/s40246-021-00372-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/03/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The unfolded protein response (UPR) served as a vital role in the progression of tumors, but the molecule mechanisms of UPR in bladder cancer (BLCA) have been not fully investigated. METHODS We identified differentially expressed unfolded protein response-related genes (UPRRGs) between BLCA samples and normal bladder samples in the Cancer Genome Atlas (TCGA) database. Univariate Cox analysis and the least absolute shrinkage and selection operator penalized Cox regression analysis were used to construct a prognostic signature in the TCGA set. We implemented the validation of the prognostic signature in GSE13507 from the Gene Expression Omnibus database. The ESTIMATE, CIBERSORT, and ssGSEA algorithms were used to explore the correlation between the prognostic signature and immune cells infiltration as well as key immune checkpoints (PD-1, PD-L1, CTLA-4, and HAVCR2). GDSC database analyses were conducted to investigate the chemotherapy sensitivity among different groups. GSEA analysis was used to explore the potential mechanisms of UPR-based signature. RESULTS A prognostic signature comprising of seven genes (CALR, CRYAB, DNAJB4, KDELR3, CREB3L3, HSPB6, and FBXO6) was constructed to predict the outcome of BLCA. Based on the UPRRGs signature, the patients with BLCA could be classified into low-risk groups and high-risk groups. Patients with BLCA in the low-risk groups showed the more favorable outcomes than those in the high-risk groups, which was verified in GSE13507 set. This signature could serve as an autocephalous prognostic factor in BLCA. A nomogram based on risk score and clinical characteristics was established to predict the over survival of BLCA patients. Furthermore, the signature was closely related to immune checkpoints (PD-L1, CTLA-4, and HAVCR2) and immune cells infiltration including CD8+ T cells, follicular helper T cells, activated dendritic cells, and M2 macrophages. GSEA analysis indicated that immune and carcinogenic pathways were enriched in high-risk group. CONCLUSIONS We identified a novel unfolded protein response-related gene signature which could predict the over survival, immune microenvironment, and chemotherapy response of patients with bladder cancer.
Collapse
Affiliation(s)
- Ke Zhu
- Department of Urology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Liu Xiaoqiang
- Department of Urology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Wen Deng
- Department of Urology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Gongxian Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China. .,Jiangxi Institute of Urology, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi, People's Republic of China. .,Jiangxi Institute of Urology, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|