1
|
Yang H, Wang Z, Xiong W, Zhou L, Yu S. Heliox alleviates ischemia-reperfusion-induced damage to neuronal cells by repressing the USP46-SNX5 Axis-triggered ferroptosis. Exp Neurol 2025; 386:115175. [PMID: 39909216 DOI: 10.1016/j.expneurol.2025.115175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/22/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND Cerebral ischemia-reperfusion (I/R) causes brain cell dysfunction and death. Heliox treatment shows therapeutic benefits in treating certain respiratory conditions. Here, we explore the mechanism by which heliox alleviates ferroptosis of neuronal cells injured by I/R treatment. METHOD OGD/R-treated SH-SY5Y cells were used and screened for USPs whose expression is induced by OGD/R but suppressed by heliox treatment. Mass spectrometry was conducted to identify proteins that interact with USP46. The impact of SNX5 deficiency on the ferroptosis of USP46-overexpressing neuronal cells following sequential OGD/R and heliox treatment was also explored. Finally, the effect of USP46 overexpression on brain cell ferroptosis in a cerebral I/R rat model was explored. RESULTS Deubiquitinase USP46 is targeted by heliox treatment in neuronal cells. USP46 expression is stimulated by I/R, and its overexpression enhances ferroptosis in I/R-treated neuronal cells. USP46 interacts with and deubiquitinates SNX5, a ferroptosis promoter, thereby increasing its stability. The knockdown of SNX5 abolishes the ferroptosis-promoting effect of USP46 in I/R-treated neuronal cells. Excessive USP46 attenuates the protective effect of heliox treatment on I/R-triggered cerebral damage in a rat model. CONCLUSION These observations highlight the ferroptosis-promoting function of the USP46-SNX5 axis in I/R-treated neuronal cells.
Collapse
Affiliation(s)
- Hualing Yang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Department of Anesthesiology, Xiamen Humanity Hospital of Fujian Medical University, Xiamen, Fujian, China
| | - Zhanxiang Wang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wei Xiong
- Fujian Medical University, Fuzhou, Fujian, China; Department of Anesthesiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Liying Zhou
- Department of Anesthesiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shuai Yu
- Department of Anesthesiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
2
|
Liu X, Wang W, Nie Q, Liu X, Sun L, Ma Q, Zhang J, Wei Y. The Role and Mechanisms of Ubiquitin-Proteasome System-Mediated Ferroptosis in Neurological Disorders. Neurosci Bull 2025; 41:691-706. [PMID: 39775589 PMCID: PMC11979074 DOI: 10.1007/s12264-024-01343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/29/2024] [Indexed: 01/11/2025] Open
Abstract
Ferroptosis is a form of cell death elicited by an imbalance in intracellular iron concentrations, leading to enhanced lipid peroxidation. In neurological disorders, both oxidative stress and mitochondrial damage can contribute to ferroptosis, resulting in nerve cell dysfunction and death. The ubiquitin-proteasome system (UPS) refers to a cellular pathway in which specific proteins are tagged with ubiquitin for recognition and degradation by the proteasome. In neurological conditions, the UPS plays a significant role in regulating ferroptosis. In this review, we outline how the UPS regulates iron metabolism, ferroptosis, and their interplay in neurological diseases. In addition, we discuss the future application of small-molecule inhibitors and identify potential drug targets. Further investigation into the mechanisms of UPS-mediated ferroptosis will provide novel insights and strategies for therapeutic interventions and clinical applications in neurological diseases.
Collapse
Affiliation(s)
- Xin Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Wei Wang
- Cancer Biology Institute, Baotou Medical College, Baotou, 014010, China
| | - Qiucheng Nie
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xinjing Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Lili Sun
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Qiang Ma
- Cancer Biology Institute, Baotou Medical College, Baotou, 014010, China
| | - Jie Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
- Biomedical Sciences College & Shandong Medicinal Biotechnology Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Yiju Wei
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
3
|
Zhang C, Yang X, Xue Y, Li H, Zeng C, Chen M. The Role of Solute Carrier Family Transporters in Hepatic Steatosis and Hepatic Fibrosis. J Clin Transl Hepatol 2025; 13:233-252. [PMID: 40078199 PMCID: PMC11894391 DOI: 10.14218/jcth.2024.00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 03/14/2025] Open
Abstract
Solute carrier (SLC) family transporters are crucial transmembrane proteins responsible for transporting various molecules, including amino acids, electrolytes, fatty acids, and nucleotides. To date, more than fifty SLC transporter subfamilies have been identified, many of which are linked to the progression of hepatic steatosis and fibrosis. These conditions are often caused by factors such as non-alcoholic fatty liver disease and non-alcoholic steatohepatitis, which are major contributors to the global liver disease burden. The activity of SLC members regulates the transport of substrates across biological membranes, playing key roles in lipid synthesis and metabolism, mitochondrial function, and ferroptosis. These processes, in turn, influence the function of hepatocytes, hepatic stellate cells, and macrophages, thereby contributing to the development of hepatic steatosis and fibrosis. Additionally, some SLC transporters are involved in drug transport, acting as critical regulators of drug-induced hepatic steatosis. Beyond substrate transport, certain SLC members also exhibit additional functions. Given the pivotal role of the SLC family in hepatic steatosis and fibrosis, this review aimed to summarize the molecular mechanisms through which SLC transporters influence these conditions.
Collapse
Affiliation(s)
| | | | - Yi Xue
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huan Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chuanfei Zeng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
4
|
Zhang Y, Yang J, Min J, Huang S, Li Y, Liu S. The emerging role of E3 ubiquitin ligases and deubiquitinases in metabolic dysfunction-associated steatotic liver disease. J Transl Med 2025; 23:368. [PMID: 40133964 PMCID: PMC11938720 DOI: 10.1186/s12967-025-06255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide, with a prevalence as high as 32.4%. MASLD encompasses a spectrum of liver pathologies, ranging from steatosis to metabolic dysfunction-associated steatohepatitis (MASH), fibrosis, and, in some cases, progression to end-stage liver disease (cirrhosis and hepatocellular carcinoma). A comprehensive understanding of the pathogenesis of this highly prevalent liver disease may facilitate the identification of novel targets for the development of improved therapies. E3 ubiquitin ligases and deubiquitinases (DUBs) are key regulatory components of the ubiquitin‒proteasome system (UPS), which plays a pivotal role in maintaining intracellular protein homeostasis. Emerging evidence implicates that aberrant expression of E3 ligases and DUBs is involved in the progression of MASLD. Here, we review abnormalities in E3 ligases and DUBs by (1) discussing their targets, mechanisms, and functions in MASLD; (2) summarizing pharmacological interventions targeting these enzymes in preclinical and clinical studies; and (3) addressing challenges and future therapeutic strategies. This review synthesizes current evidence to highlight the development of novel therapeutic strategies based on the UPS for MASLD and progressive liver disease.
Collapse
Affiliation(s)
- Yu Zhang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Jiahui Yang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Jiali Min
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Shan Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Yuchen Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China
| | - Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, CSU-Sinocare Research Center for Nutrition and Metabolic Health, Furong Laboratory, Changsha, Hunan, 410011, China.
| |
Collapse
|
5
|
Yao S, Quan Y. Research progress of ferroptosis pathway and its related molecular ubiquitination modification in liver cancer. Front Oncol 2025; 15:1502673. [PMID: 40190567 PMCID: PMC11968660 DOI: 10.3389/fonc.2025.1502673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
As a new type of programmed cell death, ferroptosis is characterized by iron metabolism disorder and reactive oxygen species (ROS) accumulation, and is involved in regulating the occurrence and development of cancer cells. Especially in the field of liver cancer treatment, ferroptosis shows great potential because it can induce tumor cell death. Ubiquitination is a process of protein post-translational modification, which can affect the stability of proteins and regulate the progress of ferroptosis. This article reviews the research progress of ubiquitination modification of molecules related to ferroptosis pathway in the regulation of liver cancer, providing a new strategy for the treatment of liver cancer.
Collapse
Affiliation(s)
- Silin Yao
- The First Clinical Medical School, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yi Quan
- The First People’s Hospital of Zhaoqing, Guangdong Medical University, Zhaoqing, Guangdong, China
| |
Collapse
|
6
|
Pei Z, Fan J, Tang M, Li Y. Ferroptosis: A New Strategy for the Treatment of Fibrotic Diseases. Adv Biol (Weinh) 2025; 9:e2400383. [PMID: 39377183 DOI: 10.1002/adbi.202400383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/07/2024] [Indexed: 10/09/2024]
Abstract
Ferroptosis is a new type of cell death characterized by iron dependence and the excessive accumulation of lipid reactive oxygen species (lipid ROS) that has gradually become better characterized. There is sufficient evidence indicating that ferroptosis is associated with a variety of human life activities and diseases, such as tumor suppression, ischemic organ injury, and degenerative disorders. Notably, ferroptosis is also involved in the initiation and development of fibrosis in various organs, including liver fibrosis, pulmonary fibrosis, renal fibrosis, and cardiac fibrosis, which is usually irreversible and refractory. Although a large number of patients with fibrosis urgently need to be treated, the current treatment options are still limited and unsatisfactory. Organ fibrosis involves a series of complex and orderly processes, such as parenchymal cell damage, recruitment of inflammatory cells and activation of fibroblasts, which ultimately leads to the accumulation of extracellular matrix (ECM) and the formation of fibrosis. An increasing number of studies have confirmed the close association between these pathological processes and ferroptosis. This review summarizes the role and function of ferroptosis in fibrosis and proposes several potential therapeutic strategies and pathways based on ferroptosis.
Collapse
Affiliation(s)
- Zhuo Pei
- Air Force Hospital of the Central Theater Command of PLA, Datong, 037006, China
| | - Jing Fan
- Air Force Hospital of the Northern Theater Command of the People's Liberation Army of China, Shenyang, 110044, China
| | - Maolin Tang
- Air Force Hospital of the Central Theater Command of PLA, Datong, 037006, China
| | - Yuhong Li
- Department of Cell Biology, Army Medical University, Chongqing, 400038, China
| |
Collapse
|
7
|
Xia X, Shan H, Jin Z, Ma T, Liu Y, Zhang J, Tian H, Dong B, Xu C, Chen S. TRIM26 exacerbates pathological cardiac hypertrophy by activating TAK1. Heliyon 2025; 11:e40653. [PMID: 39811317 PMCID: PMC11729661 DOI: 10.1016/j.heliyon.2024.e40653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
Pathological myocardial hypertrophy can induce heart failure with high mortality, it is necessary to explore its pathogenesis. Tripartite motif-containing 26 (TRIM26) belongs to the multidomain E3 ubiquitin ligase family. We observed increased expression of TRIM26 in the myocardium of C57BL/6 mice subjected to transverse aortic constriction (TAC) surgery and neonatal rat cardiomyocytes (NRCMs) treated with phenylephrine (PE). To evaluate the role of TRIM26 in pathological cardiac hypertrophy, we generated Trim26 global knockout mice and Trim26 overexpression adenoviruses. Mice with Trim26 deletion showed alleviated cardiomyocyte enlargement, inflammation, fibrosis, and cardiac dysfunction after TAC surgery. In PE-treated NRCMs, Trim26 overexpression promoted cardiomyocyte enlargement and inflammation, while Trim26 knockdown had the opposite effects. RNA sequencing and molecular biology methodologies were performed to identify targets conducive to TRIM26 function. The results showed that TRIM26 activated the transforming growth factor-beta activated kinase 1 (TAK1)-c-Jun N-terminal kinase/p38 signaling pathway in response to hypertrophic stress. Moreover, inhibition of TAK1 activation can reverse the promotion effect of TRIM26 overexpression on cardiomyocyte hypertrophy induced by PE stimulation in vitro. Our study demonstrated that TRIM26 plays an active role in pathological cardiac hypertrophy, and the TRIM26-TAK1 pathway may represent a therapeutic target for treating pathological cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Xiaochuang Xia
- Department of Cardiology, Huanggang central Hospital of Yangtze University, Huanggang, China
| | - Huajing Shan
- Department of Cardiology, Huanggang central Hospital of Yangtze University, Huanggang, China
| | - Zhaoxia Jin
- Department of Cardiology, Huanggang central Hospital of Yangtze University, Huanggang, China
| | - Tengfei Ma
- Department of Neurosurgery, Huanggang central Hospital of Yangtze University, Huanggang, China
- Huanggang Institute of Translational Medicine, Huanggang, China
| | - Yemao Liu
- Department of Cardiology, Huanggang central Hospital of Yangtze University, Huanggang, China
- Huanggang Institute of Translational Medicine, Huanggang, China
| | - Jianqing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Han Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bizhen Dong
- Huanggang Institute of Translational Medicine, Huanggang, China
| | - Chengsheng Xu
- Department of Cardiology, Huanggang central Hospital of Yangtze University, Huanggang, China
| | - Shaoze Chen
- Department of Cardiology, Huanggang central Hospital of Yangtze University, Huanggang, China
| |
Collapse
|
8
|
Zhang M, Xu L, Zhu C, Zhang Y, Luo R, Ren J, Yu J, Zhang Y, Liang G, Zhang Y. Magnoflorine ameliorates hepatic fibrosis and hepatic stellate cell activation by regulating ferroptosis signaling pathway. Heliyon 2024; 10:e39892. [PMID: 39634391 PMCID: PMC11615489 DOI: 10.1016/j.heliyon.2024.e39892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024] Open
Abstract
Liver fibrosis is a chronic liver disease that brings a heavy economic burden to the world and has attracted global attention. Although the pathological mechanisms and treatment strategies of liver fibrosis have been extensively studied, there are currently no effective targeted drugs for the prevention and treatment of liver fibrosis in clinical practice. Therefore, it is imperative to seek and develop effective treatment strategies and drugs for liver fibrosis. Magnoflorine (MAG) is a natural product with multiple pharmacological activities. Thus, in this study, we will explore the effect of MAG on alleviating liver fibrosis in mice and its mechanism of action. Our study indicates that MAG can alleviate liver damage, improve liver collagen deposition, and significantly reduced the expression levels of hepatic stellate cells (HSCs) activation markers in vivo. Additionally, the findings of this study indicate that MAG can inhibit the transforming growth factor-beta (TGF-β)/Smad signaling pathway. Bioinformatics analysis suggests that the alleviating effect of MAG on liver fibrosis may be associated with ferroptosis. Interestingly, in vitro experiments have demonstrated that MAG slows down the progression of liver fibrosis by inhibiting the activation of HSCs, and further confirms that MAG promotes ferroptosis in ROS-mediated activated HSCs. In short, MAG has a good alleviating effect on liver fibrosis and will be a potential candidate drug for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Meiling Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Lenan Xu
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Chengkai Zhu
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Yawen Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Ruixiang Luo
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Juan Ren
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Jie Yu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Yanmei Zhang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| | - Guang Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yi Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, 310012, China
| |
Collapse
|
9
|
Dai X, Yu K, Wang H, Zhong R, Zhang Z, Hou Y. Construction and multiple validations of a robust ferroptosis-related prognostic model in bladder cancer: A comprehensive study. Medicine (Baltimore) 2024; 103:e40133. [PMID: 39432593 PMCID: PMC11495766 DOI: 10.1097/md.0000000000040133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
Ferroptosis is iron-dependent programmed cell death that inhibits tumor growth, particularly in traditional treatment-resistant tumors. Prognostic models constructed from ferroptosis-related genes are lacking; prognostic biomarkers remain insufficient. We acquired gene expression data and corresponding clinical information for bladder cancer (BC) samples from public databases. Ferroptosis-related genes from the ferroptosis database were screened for clinical predictive value. We validated gene expression differences between tumors and normal tissues through polymerase chain reaction and western blotting. Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses were conducted to explore signaling pathways affecting the overall survival of patients with BC. CIBERSORT was used to quantify the infiltration of 22 immune cell types. We identified 6 genes (EGFR, FADS1, ISCU, PGRMC1, PTPN6, and TRIM26) to construct the prognostic risk model. The high-risk group had a poorer overall survival than the low-risk group. Receiver operating characteristic curves demonstrated excellent predictive accuracy. The validation cohort and 3 independent datasets confirmed the models' general applicability and stability. BC tissues had elevated FADS1, PTPN6, and TRIM26 mRNA and protein levels and decreased ISCU levels. Enrichment analysis indicated that neurosecretory activity might be the main pathway affecting the overall survival. High- and low-risk groups had significantly different immune cell infiltration. Specific ferroptosis-related gene expression was associated with immune cell infiltration levels. The risk score was significantly correlated with patients' clinical characteristics. A novel, widely applicable risk model with independent predictive value for the prognosis of patients with BC was established; candidate molecules for future BC research were identified.
Collapse
Affiliation(s)
- Xianyu Dai
- Urology Department, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Kai Yu
- Urology Department, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Hongjie Wang
- Urology Department, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Rong Zhong
- Urology Department, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhongqi Zhang
- Urology Department, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yuchuan Hou
- Urology Department, First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
10
|
Yin J, Xu X, Guo Y, Sun C, Yang Y, Liu H, Yu P, Wu T, Song X. Repair and regeneration: ferroptosis in the process of remodeling and fibrosis in impaired organs. Cell Death Discov 2024; 10:424. [PMID: 39358326 PMCID: PMC11447141 DOI: 10.1038/s41420-024-02181-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/01/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
As common clinical-pathological processes, wound healing and tissue remodelling following injury or stimulation are essential topics in medical research. Promoting the effective healing of prolonged wounds, improving tissue repair and regeneration, and preventing fibrosis are important and challenging issues in clinical practice. Ferroptosis, which is characterized by iron overload and lipid peroxidation, is a nontraditional form of regulated cell death. Emerging evidence indicates that dysregulated metabolic pathways and impaired iron homeostasis play important roles in various healing and regeneration processes via ferroptosis. Thus, we review the intrinsic mechanisms of tissue repair and remodeling via ferroptosis in different organs and systems under various conditions, including the inflammatory response in skin wounds, remodeling of joints and cartilage, and fibrosis in multiple organs. Additionally, we summarize the common underlying mechanisms, key molecules, and targeted drugs for ferroptosis in repair and regeneration. Finally, we discuss the potential of therapeutic agents, small molecules, and novel materials emerging for targeting ferroptosis to promote wound healing and tissue repair and attenuate fibrosis.
Collapse
Affiliation(s)
- Jiali Yin
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Xinjun Xu
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Ying Guo
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Caiyu Sun
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Yujuan Yang
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Huifang Liu
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
- Second Clinical Medicine College, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Pengyi Yu
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Tong Wu
- Qingdao Medical College, Qingdao University, Qingdao, 266071, China.
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China.
| | - Xicheng Song
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, Shandong, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China.
| |
Collapse
|
11
|
Cao X, Chen Y, Chen Y, Jiang M. The Role of Tripartite Motif Family Proteins in Chronic Liver Diseases: Molecular Mechanisms and Therapeutic Potential. Biomolecules 2024; 14:1038. [PMID: 39199424 PMCID: PMC11352684 DOI: 10.3390/biom14081038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
The worldwide impact of liver diseases is increasing steadily, with a consistent upswing evidenced in incidence and mortality rates. Chronic liver diseases (CLDs) refer to the liver function's progressive deterioration exceeding six months, which includes abnormal clotting factors, detoxification failure, and hepatic cholestasis. The most common etiologies of CLDs are mainly composed of chronic viral hepatitis, MAFLD/MASH, alcoholic liver disease, and genetic factors, which induce inflammation and harm to the liver, ultimately resulting in cirrhosis, the irreversible final stage of CLDs. The latest research has shown that tripartite motif family proteins (TRIMs) function as E3 ligases, which participate in the progression of CLDs by regulating gene and protein expression levels through post-translational modification. In this review, our objective is to clarify the molecular mechanisms and potential therapeutic targets of TRIMs in CLDs and provide insights for therapy guidelines and future research.
Collapse
Affiliation(s)
- Xiwen Cao
- The Queen Mary School, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang 330031, China;
| | - Yinni Chen
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang 330031, China;
| | - Yuanli Chen
- Key Laboratory of Major Metabolic Diseases, Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei 230002, China;
| | - Meixiu Jiang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang 330031, China;
| |
Collapse
|
12
|
Liu F, Chen J, Li K, Li H, Zhu Y, Zhai Y, Lu B, Fan Y, Liu Z, Chen X, Jia X, Dong Z, Liu K. Ubiquitination and deubiquitination in cancer: from mechanisms to novel therapeutic approaches. Mol Cancer 2024; 23:148. [PMID: 39048965 PMCID: PMC11270804 DOI: 10.1186/s12943-024-02046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
Ubiquitination, a pivotal posttranslational modification of proteins, plays a fundamental role in regulating protein stability. The dysregulation of ubiquitinating and deubiquitinating enzymes is a common feature in various cancers, underscoring the imperative to investigate ubiquitin ligases and deubiquitinases (DUBs) for insights into oncogenic processes and the development of therapeutic interventions. In this review, we discuss the contributions of the ubiquitin-proteasome system (UPS) in all hallmarks of cancer and progress in drug discovery. We delve into the multiple functions of the UPS in oncology, including its regulation of multiple cancer-associated pathways, its role in metabolic reprogramming, its engagement with tumor immune responses, its function in phenotypic plasticity and polymorphic microbiomes, and other essential cellular functions. Furthermore, we provide a comprehensive overview of novel anticancer strategies that leverage the UPS, including the development and application of proteolysis targeting chimeras (PROTACs) and molecular glues.
Collapse
Affiliation(s)
- Fangfang Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Jingyu Chen
- Department of Pediatric Medicine, School of Third Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Kai Li
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Haochen Li
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yiyi Zhu
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yubo Zhai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Bingbing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yanle Fan
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Ziyue Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Xiaojie Chen
- School of Basic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xuechao Jia
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| | - Zigang Dong
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| | - Kangdong Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
13
|
Zhou Q, Yu H, Chen Y, Ren J, Lu Y, Sun Y. The CRL3 KCTD10 ubiquitin ligase-USP18 axis coordinately regulates cystine uptake and ferroptosis by modulating SLC7A11. Proc Natl Acad Sci U S A 2024; 121:e2320655121. [PMID: 38959043 PMCID: PMC11252818 DOI: 10.1073/pnas.2320655121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/22/2024] [Indexed: 07/04/2024] Open
Abstract
SLC7A11 is a cystine transporter and ferroptosis inhibitor. How the stability of SLC7A11 is coordinately regulated in response to environmental cystine by which E3 ligase and deubiquitylase (DUB) remains elusive. Here, we report that neddylation inhibitor MLN4924 increases cystine uptake by causing SLC7A11 accumulation, via inactivating Cullin-RING ligase-3 (CRL-3). We identified KCTD10 as the substrate-recognizing subunit of CRL-3 for SLC7A11 ubiquitylation, and USP18 as SLC7A11 deubiquitylase. Upon cystine deprivation, the protein levels of KCTD10 or USP18 are decreased or increased, respectively, contributing to SLC7A11 accumulation. By destabilizing or stabilizing SLC7A11, KCTD10, or USP18 inversely regulates the cystine uptake and ferroptosis. Biologically, MLN4924 combination with SLC7A11 inhibitor Imidazole Ketone Erastin (IKE) enhanced suppression of tumor growth. In human breast tumor tissues, SLC7A11 levels were negatively or positively correlated with KCTD10 or USP18, respectively. Collectively, our study defines how SLC7A11 and ferroptosis is coordinately regulated by the CRL3KCTD10/E3-USP18/DUB axis, and provides a sound rationale of drug combination to enhance anticancer efficacy.
Collapse
Affiliation(s)
- Qiyin Zhou
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
- Cancer Center, Zhejiang University, Hangzhou310058, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou310009, China
| | - Hongfei Yu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
- Cancer Center, Zhejiang University, Hangzhou310058, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou310053, China
| | - Yongxia Chen
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
- Cancer Center, Zhejiang University, Hangzhou310058, China
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Jiayi Ren
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
| | - Yan Lu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
- Cancer Center, Zhejiang University, Hangzhou310058, China
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310006, China
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou310029, China
- Cancer Center, Zhejiang University, Hangzhou310058, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou310009, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou310053, China
| |
Collapse
|
14
|
Liu G, Lv J, Wang Y, Sun K, Gao H, Li Y, Yao Q, Ma L, Kochshugulova G, Jiang Z. ZnO NPs induce miR-342-5p mediated ferroptosis of spermatocytes through the NF-κB pathway in mice. J Nanobiotechnology 2024; 22:390. [PMID: 38961442 PMCID: PMC11223436 DOI: 10.1186/s12951-024-02672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Zinc oxide nanoparticle (ZnO NP) is one of the metal nanomaterials with extensive use in many fields such as feed additive and textile, which is an emerging threat to human health due to widely distributed in the environment. Thus, there is an urgent need to understand the toxic effects associated with ZnO NPs. Although previous studies have found accumulation of ZnO NPs in testis, the molecular mechanism of ZnO NPs dominated a decline in male fertility have not been elucidated. RESULTS We reported that ZnO NPs exposure caused testicular dysfunction and identified spermatocytes as the primary damaged site induced by ZnO NPs. ZnO NPs led to the dysfunction of spermatocytes, including impaired cell proliferation and mitochondrial damage. In addition, we found that ZnO NPs induced ferroptosis of spermatocytes through the increase of intracellular chelatable iron content and lipid peroxidation level. Moreover, the transcriptome analysis of testis indicated that ZnO NPs weakened the expression of miR-342-5p, which can target Erc1 to block the NF-κB pathway. Eventually, ferroptosis of spermatocytes was ameliorated by suppressing the expression of Erc1. CONCLUSIONS The present study reveals a novel mechanism in that miR-342-5p targeted Erc1 to activate NF-κB signaling pathway is required for ZnO NPs-induced ferroptosis, and provide potential targets for further research on the prevention and treatment of male reproductive disorders related to ZnO NPs.
Collapse
Affiliation(s)
- Guangyu Liu
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Jing Lv
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Yifan Wang
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Kaikai Sun
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Huimin Gao
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Yuanyou Li
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Qichun Yao
- Animal Husbandry and Veterinary Station of Zhenba County, Hanzhong, 723600, Shaanxi, China
| | - Lizhu Ma
- College of Animal Science and Technology, China Agricultural University, Beijing, 100080, China
| | - Gulzat Kochshugulova
- Department of Food Security, Agrotechnological Faculty, Kozybayev University, 86, Pushkin Street, Petropavlovsk, 150000, Kazakhstan
| | - Zhongliang Jiang
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
15
|
Shen X, Yu Z, Wei C, Hu C, Chen J. Iron metabolism and ferroptosis in nonalcoholic fatty liver disease: what is our next step? Am J Physiol Endocrinol Metab 2024; 326:E767-E775. [PMID: 38506752 PMCID: PMC11376490 DOI: 10.1152/ajpendo.00260.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease with increasing prevalence worldwide. NAFLD could develop from simple hepatic steatosis to nonalcoholic steatohepatitis (NASH), NASH-related fibrosis, cirrhosis, and even hepatocellular carcinoma. However, the mechanism of NAFLD development has not yet been fully defined. Recently, emerging evidence shows that the dysregulated iron metabolism marked by elevated serum ferritin, and ferroptosis are involved in the NAFLD. Understanding iron metabolism and ferroptosis can shed light on the mechanisms of NAFLD development. Here, we summarized studies on iron metabolism and the ferroptosis process involved in NAFLD development to highlight potential medications and therapies for treating NAFLD.
Collapse
Affiliation(s)
- Xiang Shen
- Munich Medical Research School, Ludwig Maximilian University of Munich, Munich, Germany
| | - Ziqi Yu
- Munich Medical Research School, Ludwig Maximilian University of Munich, Munich, Germany
| | - Changli Wei
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, People's Republic of China
| | - Chong Hu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, People's Republic of China
| | - Jianyong Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, People's Republic of China
| |
Collapse
|
16
|
Zheng D, Ning J, Deng H, Ruan Y, Cheng F. TRIM26 inhibits clear cell renal cell carcinoma progression through destabilizing ETK and thus inactivation of AKT/mTOR signaling. J Transl Med 2024; 22:481. [PMID: 38773612 PMCID: PMC11110379 DOI: 10.1186/s12967-024-05273-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/04/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Tripartite motif-containing 26 (TRIM26), a member of the TRIM protein family, exerts dual function in several types of cancer. Nevertheless, the precise role of TRIM26 in clear cell renal cell carcinoma (ccRCC) has not been investigated. METHODS The expression of TRIM26 in ccRCC tissues and cell lines were examined through the use of public resources and experimental validation. The impacts of TRIM26 on cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) process were determined via CCK-8, colony formation, EdU incorporation, wound healing, Transwell invasion, Western blot, and Immunofluorescence assays. RNA-seq followed by bioinformatic analyses were used to identify the downstream pathway of TRIM26. The interaction between TRIM26 and ETK was assessed by co-immunoprecipitation, qRT-PCR, Western blot, cycloheximide (CHX) chase, and in vivo ubiquitination assays. RESULTS We have shown that TRIM26 exhibits a downregulation in both ccRCC tissues and cell lines. Furthermore, this decreased expression of TRIM26 is closely linked to unfavorable overall survival and diseases-free survival outcomes among ccRCC patients. Gain- and loss-of-function experiments demonstrated that increasing the expression of TRIM26 suppressed the proliferation, migration, invasion, and EMT process of ccRCC cells. Conversely, reducing the expression of TRIM26 had the opposite effects. RNA sequencing, coupled with bioinformatic analysis, revealed a significant enrichment of the mTOR signaling pathway in the control group compared to the group with TRIM26 overexpression. This finding was then confirmed by a western blot assay. Subsequent examination revealed that TRMI26 had a direct interaction with ETK, a non-receptor tyrosine kinase. This interaction facilitated the ubiquitination and degradation of ETK, resulting in the deactivation of the AKT/mTOR signaling pathway in ccRCC. ETK overexpression counteracted the inhibitory effects of TRIM26 overexpression on cell proliferation, migration, and invasion. CONCLUSION Our results have shown a novel mechanism by which TRIM26 hinders the advancement of ccRCC by binding to and destabilizing ETK, thus leading to the deactivation of AKT/mTOR signaling. TRIM26 shows promise as both a therapeutic target and prognostic biomarker for ccRCC patients.
Collapse
Affiliation(s)
- Di Zheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P. R. China
| | - Jinzhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P. R. China
| | - Hao Deng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P. R. China
| | - Yuan Ruan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P. R. China.
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P. R. China.
| |
Collapse
|
17
|
Cao Y, Yang H, Huang Y, Lu J, Du H, Wang B. Mesenchymal stem cell-derived exosomal miR-26a induces ferroptosis, suppresses hepatic stellate cell activation, and ameliorates liver fibrosis by modulating SLC7A11. Open Med (Wars) 2024; 19:20240945. [PMID: 38756248 PMCID: PMC11097046 DOI: 10.1515/med-2024-0945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/04/2024] [Accepted: 03/08/2024] [Indexed: 05/18/2024] Open
Abstract
Liver fibrosis is a key contributor to hepatic disease-related mortality. Exosomes derived from mesenchymal stem cells (MSCs) have been revealed to improve liver fibrosis. To explore the effect and mechanism of MSC-derived exosomal miR-26a on liver fibrosis, exosomes were separated from bone marrow-derived MSCs (BMSCs) and used to treat with LX2 cells. The miR-26a level was decreased in BMSC-derived exosomes. Treatment with exosomes isolated from human BMSCs transfected with miR-26a mimics (miR-26a mimic-Exo) decreased the 5-ethynyl-2'-deoxyuridine-positive cell rate, the protein level of α-SMA and collagen I, and the glutathione (GSH) level but enhanced the apoptosis rate and the reactive oxide species (ROS) level in LX2 cells, which were reversed by the treatment of deferoxamine. Mechanically, miR-26a directly bound SLC7A11 mRNA and negatively modulated the level of SLC7A11 in LX2 cells. Overexpression of SLC7A11 reversed the miR-26a mimic-Exo-induced alterations in the level of ROS, Fe2+, malonaldehyde, and GSH in LX2 cells. In vivo, miR-26a mimic-Exo decreased the level of SLC7A11 and attenuated CCL4-induced liver fibrosis. Collectively, miR-26a mimic-Exo induced ferroptosis to alleviate liver fibrosis by regulating SLC7A11, which may provide new strategies for the treatment of liver fibrosis, and even other relevant diseases.
Collapse
Affiliation(s)
- Ying Cao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Huan Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yan Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jian Lu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bingying Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
18
|
Wang J, Zhang H, Chen L, Fu K, Yan Y, Liu Z. CircDCBLD2 alleviates liver fibrosis by regulating ferroptosis via facilitating STUB1-mediated PARK7 ubiquitination degradation. J Gastroenterol 2024; 59:229-249. [PMID: 38310161 DOI: 10.1007/s00535-023-02068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/13/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND Liver fibrosis can progress to cirrhosis and hepatic carcinoma without treatment. CircDCBLD2 was found to be downregulated in liver fibrosis. However, the precise underlying mechanism requires further investigation. METHODS qRT-PCR, Western blot, and immunohistochemistry assays were used to detect the related molecule levels. HE, Masson's trichrome, and Sirius Red staining were used to assess the pathological changes in mice's liver tissues. Flow cytometric analysis and commercial kit were used to assess the levels of lipid reactive oxygen species (ROS), malonaldehyde (MDA), glutathione (GSH), and iron. Cell viability was assessed by MTT. Immunoprecipitation was used to study the ubiquitination of PARK7. Mitophagy was determined by immunostaining and confocal imaging. RIP and Co-IP assays were used to assess the interactions of circDCBLD2/HuR, HuR/STUB1, and STUB1/PARK7. Fluorescence in situ hybridization and immunofluorescence staining were used to assess the co-localization of circDCBLD2 and HuR. RESULTS CircDCBLD2 was downregulated, whereas PARK7 was upregulated in liver fibrosis. Ferroptosis activators increased circDCBLD2 while decreasing PARK7 in hepatic stellate cells (HSCs) and mice with liver fibrosis. CircDCBLD2 overexpression reduced cell viability and GSH, PARK7, and GPX4 expression in erastin-treated HSCs while increasing MDA and iron levels, whereas circDCBLD2 knockdown had the opposite effect. CircDCBLD2 overexpression increased STUB1-mediated PARK7 ubiquitination by promoting HuR-STUB1 binding and thus increasing STUB1 mRNA stability. PARK7 overexpression or HuR knockdown reversed the effects of circDCBLD2 overexpression on HSC activation and ferroptosis. CircDCBLD2 reduced liver fibrosis in mice by inhibiting PARK7. CONCLUSION CircDCBLD2 overexpression increased PARK7 ubiquitination degradation by upregulating STUB1 through its interaction with HuR, inhibiting HSC activation and promoting HSC ferroptosis, ultimately enhancing liver fibrosis.
Collapse
Affiliation(s)
- Juan Wang
- Department of Infectious Disease, Third Xiangya Hospital, Central South University, Hunan, 410013, China
| | - Haoye Zhang
- Department of Infectious Disease, Third Xiangya Hospital, Central South University, Hunan, 410013, China
| | - Limin Chen
- Department of Infectious Disease, Third Xiangya Hospital, Central South University, Hunan, 410013, China
| | - Kangkang Fu
- Department of Infectious Disease, Third Xiangya Hospital, Central South University, Hunan, 410013, China
| | - Yu Yan
- Department of Infectious Disease, Third Xiangya Hospital, Central South University, Hunan, 410013, China
| | - Zhenguo Liu
- Department of Infectious Disease, Third Xiangya Hospital, Central South University, Hunan, 410013, China.
- Changsha & Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Hunan, 410008, China.
| |
Collapse
|
19
|
Sheng X, Xia Z, Yang H, Hu R. The ubiquitin codes in cellular stress responses. Protein Cell 2024; 15:157-190. [PMID: 37470788 PMCID: PMC10903993 DOI: 10.1093/procel/pwad045] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
Ubiquitination/ubiquitylation, one of the most fundamental post-translational modifications, regulates almost every critical cellular process in eukaryotes. Emerging evidence has shown that essential components of numerous biological processes undergo ubiquitination in mammalian cells upon exposure to diverse stresses, from exogenous factors to cellular reactions, causing a dazzling variety of functional consequences. Various forms of ubiquitin signals generated by ubiquitylation events in specific milieus, known as ubiquitin codes, constitute an intrinsic part of myriad cellular stress responses. These ubiquitination events, leading to proteolytic turnover of the substrates or just switch in functionality, initiate, regulate, or supervise multiple cellular stress-associated responses, supporting adaptation, homeostasis recovery, and survival of the stressed cells. In this review, we attempted to summarize the crucial roles of ubiquitination in response to different environmental and intracellular stresses, while discussing how stresses modulate the ubiquitin system. This review also updates the most recent advances in understanding ubiquitination machinery as well as different stress responses and discusses some important questions that may warrant future investigation.
Collapse
Affiliation(s)
- Xiangpeng Sheng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- State Key Laboratory of Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhixiong Xia
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hanting Yang
- Department of Neurology, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ronggui Hu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
20
|
Lai W, Wang B, Huang R, Zhang C, Fu P, Ma L. Ferroptosis in organ fibrosis: From mechanisms to therapeutic medicines. J Transl Int Med 2024; 12:22-34. [PMID: 38525436 PMCID: PMC10956731 DOI: 10.2478/jtim-2023-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Fibrosis occurs in many organs, and its sustained progress can lead to organ destruction and malfunction. Although numerous studies on organ fibrosis have been carried out, its underlying mechanism is largely unknown, and no ideal treatment is currently available. Ferroptosis is an iron-dependent process of programmed cell death that is characterized by lipid peroxidation. In the past decade, a growing body of evidence demonstrated the association between ferroptosis and fibrotic diseases, while targeting ferroptosis may serve as a potential therapeutic strategy. This review highlights recent advances in the crosstalk between ferroptosis and organ fibrosis, and discusses ferroptosis-targeted therapeutic approaches against fibrosis that are currently being explored.
Collapse
Affiliation(s)
- Weijing Lai
- Department of Nephrology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan Province, China
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Bo Wang
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Rongshuang Huang
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Chuyue Zhang
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Ping Fu
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Liang Ma
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| |
Collapse
|
21
|
Sinha S, Hassan N, Schwartz RE. Organelle stress and alterations in interorganelle crosstalk during liver fibrosis. Hepatology 2024; 79:482-501. [PMID: 36626634 DOI: 10.1097/hep.0000000000000012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/03/2022] [Indexed: 01/12/2023]
Abstract
The synchronous functioning and quality control of organelles ensure cell survival and function and are essential for maintaining homeostasis. Prolonged exposure to stressors (viruses, bacteria, parasitic infections, alcohol, drugs) or genetic mutations often disrupt the functional integrity of organelles which plays a critical role in the initiation and progression of several diseases including chronic liver diseases. One of the most important pathologic consequences of chronic liver diseases is liver fibrosis, characterized by tissue scarring due to the progressive accumulation of extracellular matrix components. Left untreated, fibrosis may advance to life-threatening complications such as cirrhosis, hepatic decompensation, and HCC, which collectively accounts for ∼1 million deaths per year worldwide. Owing to the lack of treatment options that can regress or reverse cirrhosis, liver transplantation is currently the only available treatment for end-stage liver disease. However, the limited supply of usable donor organs, adverse effects of lifelong immunosuppressive regimes, and financial considerations pose major challenges and limit its application. Hence, effective therapeutic strategies are urgently needed. An improved understanding of the organelle-level regulation of fibrosis can help devise effective antifibrotic therapies focused on reducing organelle stress, limiting organelle damage, improving interorganelle crosstalk, and restoring organelle homeostasis; and could be a potential clinical option to avoid transplantation. This review provides a timely update on the recent findings and mechanisms covering organelle-specific dysfunctions in liver fibrosis, highlights how correction of organelle functions opens new treatment avenues and discusses the potential challenges to clinical application.
Collapse
Affiliation(s)
- Saloni Sinha
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | | |
Collapse
|
22
|
Zou J, Niu K, Lu T, Kan J, Cheng H, Xu L. The Multifunction of TRIM26: From Immune Regulation to Oncology. Protein Pept Lett 2024; 31:424-436. [PMID: 38956921 PMCID: PMC11475100 DOI: 10.2174/0109298665311516240621114519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024]
Abstract
Ubiquitination, a crucial post-translational modification, plays a role in nearly all physiological processes. Its functional execution depends on a series of catalytic reactions involving numerous proteases. TRIM26, a protein belonging to the TRIM family, exhibits E3 ubiquitin ligase activity because of its RING structural domain, and is present in diverse cell lineages. Over the last few decades, TRIM26 has been documented to engage in numerous physiological and pathological processes as a controller, demonstrating a diverse array of biological roles. Despite the growing research interest in TRIM26, there has been limited attention given to examining the protein's structure and function in existing reviews. This review begins with a concise overview of the composition and positioning of TRIM26 and then proceeds to examine its roles in immune response, viral invasion, and inflammatory processes. Simultaneously, we demonstrate the contribution of TRIM26 to the progression of various diseases, encompassing numerous malignancies and neurologic conditions. Finally, we have investigated the potential areas for future research on TRIM26.
Collapse
Affiliation(s)
- Jialai Zou
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Kaiyi Niu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Tao Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Jianxun Kan
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Hao Cheng
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Lijian Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| |
Collapse
|
23
|
Liang Y, Qiu S, Zou Y, Luo L. Targeting ferroptosis with natural products in liver injury: new insights from molecular mechanisms to targeted therapies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155134. [PMID: 37863001 DOI: 10.1016/j.phymed.2023.155134] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Ferroptosis is a brand-new type of controlled cell death that is distinguished by its reliance on iron and the production of lipid peroxidation. The role of ferroptosis in damaging liver disorders has attracted a lot of attention in recent years. One effective strategy to reduce liver damage is to target ferroptosis. PURPOSE The purpose of this review is to clarify the connection between ferroptosis and liver damage and to look into the potential contribution of natural products to the clinical management of liver damage and the discovery of novel medications. METHODS To study the methods by which natural products operate on ferroptosis to cure liver damage and their main signaling pathways, we searched databases from the time of initial publication to August 2023 in PubMed, EMBASE, Web of Science, Ovid, ScienceDirect, and China National Knowledge Infrastructure. The liver illness that each natural product treats is categorized and summarized. It's interesting to note that several natural compounds, such Artemether, Fucoidan sulfate, Curcumin, etc., have the benefit of having many targets and multiple pathways of action. RESULTS We saw that in human samples or animal models of liver injury, ferroptosis indicators were activated, lipid peroxidation levels were elevated, and iron inhibitors had the ability to reduce liver damage. Liver damage can be treated with natural products by regulating ferroptosis. This is mostly accomplished through the modulation of Nrf2-related pathways (e.g., Conclusions and Astaxanthin), biological enzymes like GPX4 and the SIRT family (e.g., Chrysophanol and Decursin), and transcription factors like P53 (e.g., Artemether and Zeaxanthin). CONCLUSIONS This review proposes a promising path for the therapeutic therapy of liver damage by providing a theoretical foundation for the management of ferroptosis utilizing natural ingredients.
Collapse
Affiliation(s)
- Yongyi Liang
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Shaojun Qiu
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Youwen Zou
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, Guangdong, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, Guangdong, China.
| |
Collapse
|
24
|
Wang Y, Hu J, Wu S, Fleishman JS, Li Y, Xu Y, Zou W, Wang J, Feng Y, Chen J, Wang H. Targeting epigenetic and posttranslational modifications regulating ferroptosis for the treatment of diseases. Signal Transduct Target Ther 2023; 8:449. [PMID: 38072908 PMCID: PMC10711040 DOI: 10.1038/s41392-023-01720-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/16/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Ferroptosis, a unique modality of cell death with mechanistic and morphological differences from other cell death modes, plays a pivotal role in regulating tumorigenesis and offers a new opportunity for modulating anticancer drug resistance. Aberrant epigenetic modifications and posttranslational modifications (PTMs) promote anticancer drug resistance, cancer progression, and metastasis. Accumulating studies indicate that epigenetic modifications can transcriptionally and translationally determine cancer cell vulnerability to ferroptosis and that ferroptosis functions as a driver in nervous system diseases (NSDs), cardiovascular diseases (CVDs), liver diseases, lung diseases, and kidney diseases. In this review, we first summarize the core molecular mechanisms of ferroptosis. Then, the roles of epigenetic processes, including histone PTMs, DNA methylation, and noncoding RNA regulation and PTMs, such as phosphorylation, ubiquitination, SUMOylation, acetylation, methylation, and ADP-ribosylation, are concisely discussed. The roles of epigenetic modifications and PTMs in ferroptosis regulation in the genesis of diseases, including cancers, NSD, CVDs, liver diseases, lung diseases, and kidney diseases, as well as the application of epigenetic and PTM modulators in the therapy of these diseases, are then discussed in detail. Elucidating the mechanisms of ferroptosis regulation mediated by epigenetic modifications and PTMs in cancer and other diseases will facilitate the development of promising combination therapeutic regimens containing epigenetic or PTM-targeting agents and ferroptosis inducers that can be used to overcome chemotherapeutic resistance in cancer and could be used to prevent other diseases. In addition, these mechanisms highlight potential therapeutic approaches to overcome chemoresistance in cancer or halt the genesis of other diseases.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Jing Hu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300060, PR China
| | - Shuang Wu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, 430000, PR China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yulin Li
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Yinshi Xu
- Department of Outpatient, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Wailong Zou
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China.
| | - Yukuan Feng
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China.
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China.
| | - Hongquan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China.
| |
Collapse
|
25
|
Xu M, Tan J, Liu X, Han L, Ge C, Zhang Y, Luo F, Wang Z, Xue X, Xiong L, Wang X, Zhang Q, Wang X, Tian Q, Zhang S, Meng Q, Dai X, Kuang Q, Li Q, Lou D, Hu L, Liu X, Kuang G, Luo J, Chang C, Wang B, Chai J, Shi S, Han L. Tripartite motif containing 26 prevents steatohepatitis progression by suppressing C/EBPδ signalling activation. Nat Commun 2023; 14:6384. [PMID: 37821436 PMCID: PMC10567751 DOI: 10.1038/s41467-023-42040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
Currently potential preclinical drugs for the treatment of nonalcoholic steatohepatitis (NASH) and NASH-related pathopoiesis have failed to achieve expected therapeutic efficacy due to the complexity of the pathogenic mechanisms. Here we show Tripartite motif containing 26 (TRIM26) as a critical endogenous suppressor of CCAAT/enhancer binding protein delta (C/EBPδ), and we also confirm that TRIM26 is an C/EBPδ-interacting partner protein that catalyses the ubiquitination degradation of C/EBPδ in hepatocytes. Hepatocyte-specific loss of Trim26 disrupts liver metabolic homeostasis, followed by glucose metabolic disorder, lipid accumulation, increased hepatic inflammation, and fibrosis, and dramatically facilitates NASH-related phenotype progression. Inversely, transgenic Trim26 overexpression attenuates the NASH-associated phenotype in a rodent or rabbit model. We provide mechanistic evidence that, in response to metabolic insults, TRIM26 directly interacts with C/EBPδ and promotes its ubiquitin proteasome degradation. Taken together, our present findings identify TRIM26 as a key suppressor over the course of NASH development.
Collapse
Affiliation(s)
- Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China.
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 400030, Chongqing, P. R. China.
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China.
| | - Xin Liu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, 250117, Jinan, P. R. China
| | - Li Han
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, 250117, Jinan, P. R. China
| | - Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 400030, Chongqing, P. R. China
| | - Yujie Zhang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Fufang Luo
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Zhongqin Wang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Xiaoqin Xue
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Liangyin Xiong
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Xin Wang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Qinqin Zhang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Xiaoxin Wang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Qin Tian
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Shuguang Zhang
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Science, 250117, Jinan, P. R. China
| | - Qingkun Meng
- Geriatrics Department, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250117, Jinan, P. R. China
| | - Xianling Dai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 400030, Chongqing, P. R. China
| | - Qin Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 400030, Chongqing, P. R. China
| | - Qiang Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Linfeng Hu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 400030, Chongqing, P. R. China
| | - Xi Liu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Gang Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Jing Luo
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, 400067, Chongqing, P. R. China
| | - Chunxiao Chang
- Geriatrics Department, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250117, Jinan, P. R. China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, 400030, Chongqing, P. R. China
| | - Jie Chai
- Geriatrics Department, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250117, Jinan, P. R. China
| | - Shengbin Shi
- New Drug Technology R&D Center, Nanjing Biomed Sciences Inc., 210003, Nanjing, P. R. China.
| | - Lianyi Han
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, 315211, Shanghai, China.
| |
Collapse
|
26
|
Zhang J, Zhang Y, Ren Z, Yan D, Li G. The role of TRIM family in metabolic associated fatty liver disease. Front Endocrinol (Lausanne) 2023; 14:1210330. [PMID: 37867509 PMCID: PMC10585262 DOI: 10.3389/fendo.2023.1210330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Metabolic associated fatty liver disease (MAFLD) ranks among the most prevalent chronic liver conditions globally. At present, the mechanism of MAFLD has not been fully elucidated. Tripartite motif (TRIM) protein is a kind of protein with E3 ubiquitin ligase activity, which participates in highly diversified cell activities and processes. It not only plays an important role in innate immunity, but also participates in liver steatosis, insulin resistance and other processes. In this review, we focused on the role of TRIM family in metabolic associated fatty liver disease. We also introduced the structure and functions of TRIM proteins. We summarized the TRIM family's regulation involved in the occurrence and development of metabolic associated fatty liver disease, as well as insulin resistance. We deeply discussed the potential of TRIM proteins as targets for the treatment of metabolic associated fatty liver disease.
Collapse
Affiliation(s)
- Jingyue Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yingming Zhang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Ze Ren
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Guiying Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
27
|
Lei S, Chen C, Han F, Deng J, Huang D, Qian L, Zhu M, Ma X, Lai M, Xu E, Zhang H. AMER1 deficiency promotes the distant metastasis of colorectal cancer by inhibiting SLC7A11- and FTL-mediated ferroptosis. Cell Rep 2023; 42:113110. [PMID: 37682704 DOI: 10.1016/j.celrep.2023.113110] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The crosstalk between ferroptosis and cancer metastasis remains unclear. Here, we identify AMER1 as a key regulator of ferroptosis. AMER1 loss causes resistance to ferroptosis in colorectal cancer (CRC) cells. Interestingly, AMER1-deficient CRC cells preferentially form distant metastases, while AMER1-naive CRC cells mainly invade lymph nodes. Moreover, the ferroptosis inhibitor liproxstatin-1 effectively promotes hematogenous transfer of AMER1-naive cells. Mechanistically, AMER1 binds to SLC7A11 and ferritin light chain (FTL) and recruits β-TrCP1/2, which degrade SLC7A11 and FTL by ubiquitination. Therefore, AMER1 deficiency increases cellular cystine levels but decreases the pool of labile free iron, thereby enhancing resistance to ferroptosis in CRC cells. Thus, AMER1 deficiency increases the survival of CRC cells in the blood under conditions of high oxidative stress and then promotes hematogenous metastasis of CRC. In conclusion, AMER1 mediates the crosstalk between ferroptosis and cancer metastasis, which provides a window of opportunity for treating metastatic colorectal cancer patients with AMER1 mutations.
Collapse
Affiliation(s)
- Siqin Lei
- Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou 310058, China
| | - Chaoyi Chen
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang Provincial Clinical Research Center for Cancer, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fengyan Han
- Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou 310058, China
| | - Jingwen Deng
- Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou 310058, China
| | - Dongdong Huang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lili Qian
- Cancer Center, Department of Pathology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Ming Zhu
- Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou 310058, China
| | - Xiaohui Ma
- Pharmacology & Toxicology Research Center, The State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co., Ltd., Tianjin 300410, China
| | - Maode Lai
- Department of Pathology, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy of the Chinese Academy of Medical Sciences (2019RU042), Hangzhou 310058, China; Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Enping Xu
- Department of Pathology, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy of the Chinese Academy of Medical Sciences (2019RU042), Hangzhou 310058, China; Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Honghe Zhang
- Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou 310058, China; Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
28
|
Tang R, Luo J, Zhu X, Miao P, Tang H, Jian Y, Ruan S, Ling F, Tang M. Recent progress in the effect of ferroptosis of HSCs on the development of liver fibrosis. Front Mol Biosci 2023; 10:1258870. [PMID: 37860583 PMCID: PMC10584331 DOI: 10.3389/fmolb.2023.1258870] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/04/2023] [Indexed: 10/21/2023] Open
Abstract
Fibrosis is a common pathological process that must take place for multiple chronic liver diseases to develop into cirrhosis and liver cancer. Liver fibrosis (LF) is regulated by various cytokines and signaling pathways in its occurrence and development. Ferroptosis is an important mode of cell death caused by iron-dependent oxidative damage and is regulated by iron metabolism and lipid peroxidation signaling pathways. In recent years, numerous studies have shown that ferroptosis is closely related to LF. As the main material secreted by the extracellular matrix, hepatic stellate cells (HSCs) are a general concern in the development of LF. Therefore, targeting HSC ferroptosis against LF is crucial. This review describes the current status of treating LF by inducing HSC ferroptosis that would aid studies in better understanding the current knowledge on ferroptosis in HSCs and the future research direction in this field.
Collapse
Affiliation(s)
- Rui Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Luo
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoxia Zhu
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Pengyu Miao
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Hong Tang
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yue Jian
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Sibei Ruan
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Feng Ling
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Mingxi Tang
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
29
|
Xia K, Zheng D, Wei Z, Liu W, Guo W. TRIM26 inhibited osteosarcoma progression through destabilizing RACK1 and thus inactivation of MEK/ERK signaling. Cell Death Dis 2023; 14:529. [PMID: 37591850 PMCID: PMC10435491 DOI: 10.1038/s41419-023-06048-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Osteosarcoma is a highly aggressive malignant tumor that is common in the pediatric population and has a high rate of disability and mortality. Recent studies have suggested that the tripartite motif-containing family genes (TRIMs) play critical roles in oncogenesis in several cancers. TRIM26, one of the TRIMs family genes, was more frequently reported to exert a tumor-suppressive role, while its detailed functional roles in the osteosarcoma progression were still unknown and require further investigation. Herein, we found that TRIM26 was markedly downregulated in osteosarcoma tissues and cells. Survival analysis revealed that higher expression of TRIM26 was associated with better prognosis and its expression was an independent protective factor in osteosarcoma. Functional analysis demonstrated that overexpression of TRIM26 inhibited osteosarcoma cell proliferation and invasion via inhibiting the EMT process and MEK/ERK signaling. In contrast, the silence of TRIM26 caused the opposite effect. RACK1, a member of the Trp-Asp repeat protein family, was identified as a novel target of TRIM26. TRIM26 could interact with RACK1 and accelerate the degradation of RACK1, thus inactivation of MEK/ERK signaling. Overexpression of RACK1 could attenuate the inhibitory effect of TRIM26 overexpression on p-MEK1/2 and p-ERK1/2, and silence of RACK1 could partly impair the effect of TRIM26 knockdown-induced upregulation of p-MEK1/2 and p-ERK1/2. Further, a series of gain- and loss-of-function experiments showed that decreased malignant behaviors including cell proliferation and invasion in TRIM26-upregulated cells were reversed when RACK1 was overexpressed, whereas RACK1 knockdown diminished the increased malignant phenotypes in TRIM26-silenced osteosarcoma cells. In conclusion, our study indicated that TRIM26 inhibited osteosarcoma progression via promoting proteasomal degradation of RACK1, thereby resulting in inactivation of MEK/ERK signaling, and impeding the EMT process.
Collapse
Affiliation(s)
- Kezhou Xia
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Di Zheng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhun Wei
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wenda Liu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Weichun Guo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
30
|
Xia L, Shen Y, Liu S, Du J. Iron overload triggering ECM-mediated Hippo/YAP pathway in follicle development: a hypothetical model endowed with therapeutic implications. Front Endocrinol (Lausanne) 2023; 14:1174817. [PMID: 37223010 PMCID: PMC10200985 DOI: 10.3389/fendo.2023.1174817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/12/2023] [Indexed: 05/25/2023] Open
Abstract
Disruption of iron homeostasis plays a negative role in follicle development. The dynamic changes in follicle growth are dependent on Hippo/YAP signaling and mechanical forces. However, little is known about the liaison between iron overload and the Hippo/YAP signalling pathway in term of folliculogenesis. Here, based on the available evidence, we established a hypothesized model linking excessive iron, extracellular matrix (ECM), transforming growth factor-β (TGF-β) and Hippo/Yes-associated protein (YAP) signal regarding follicle development. Hypothetically, the TGF-β signal and iron overload may play a synergistic role in ECM production via YAP. We speculate that the dynamic homeostasis of follicular iron interacts with YAP, increasing the risk of ovarian reserve loss and may enhance the sensitivity of follicles to accumulated iron. Hence, therapeutic interventions targeting iron metabolism disorders, and Hippo/YAP signal may alter the consequences of the impaired developmental process based on our hypothesis, which provides potential targets and inspiration for further drug discovery and development applied to clinical treatment.
Collapse
Affiliation(s)
- Lingjin Xia
- National Health Commission of the People's Republic of China (NHC) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China
| | - Yupei Shen
- National Health Commission of the People's Republic of China (NHC) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China
| | - Suying Liu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Du
- National Health Commission of the People's Republic of China (NHC) Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Wang J, Xiang Y, Fan M, Fang S, Hua Q. The Ubiquitin-Proteasome System in Tumor Metabolism. Cancers (Basel) 2023; 15:cancers15082385. [PMID: 37190313 DOI: 10.3390/cancers15082385] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Metabolic reprogramming, which is considered a hallmark of cancer, can maintain the homeostasis of the tumor environment and promote the proliferation, survival, and metastasis of cancer cells. For instance, increased glucose uptake and high glucose consumption, known as the "Warburg effect," play an essential part in tumor metabolic reprogramming. In addition, fatty acids are harnessed to satisfy the increased requirement for the phospholipid components of biological membranes and energy. Moreover, the anabolism/catabolism of amino acids, such as glutamine, cystine, and serine, provides nitrogen donors for biosynthesis processes, development of the tumor inflammatory environment, and signal transduction. The ubiquitin-proteasome system (UPS) has been widely reported to be involved in various cellular biological activities. A potential role of UPS in the metabolic regulation of tumor cells has also been reported, but the specific regulatory mechanism has not been elucidated. Here, we review the role of ubiquitination and deubiquitination modification on major metabolic enzymes and important signaling pathways in tumor metabolism to inspire new strategies for the clinical treatment of cancer.
Collapse
Affiliation(s)
- Jie Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuandi Xiang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Mengqi Fan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shizhen Fang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
32
|
Guo G, Yang W, Sun C, Wang X. Dissecting the potential role of ferroptosis in liver diseases: an updated review. Free Radic Res 2023; 57:282-293. [PMID: 37401821 DOI: 10.1080/10715762.2023.2232941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
Ferroptosis is a novel form of cell death, manifested by iron-dependent, non-apoptotic manner resulting from the intracellular accumulation of large clusters of reactive oxygen species (ROS) and lipid peroxides due to abnormal iron metabolism. Since the liver is the main organ of human body for storing iron, it is essential to perform in-depth investigation on the role and mechanistic basis of ferroptosis in the context of divergent liver diseases. We previously summarized the emerging role of ferroptosis among various liver diseases, however, the past few years have been a surge in research establishing ferroptosis as the molecular basis or treatment option. This review article concentrated on the accumulating research progress of ferroptosis in a range of liver diseases such as acute liver injury/failure (ALI/ALF), immune-mediated hepatitis, alcoholic liver disease (ALD), nonalcoholic fatty liver disease and liver fibrosis. Ferroptosis may be a promising target for the prevention and treatment of various liver diseases, providing a strategy for exploring new therapeutic avenues for these entities.
Collapse
Affiliation(s)
- Gaoyue Guo
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Wanting Yang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
- Department of Gastroenterology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| | - Xiaoyu Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
33
|
Xu L, Zhang M, Pan J, Xu X, Zhang Y, Han X, Yin L, Chen L, Ren J, Yu J, Zhang Y, Liang G, Zhang Y. Doxofylline ameliorates liver fibrosis by regulating the ferroptosis signaling pathway. Front Pharmacol 2023; 14:1135366. [PMID: 37007035 PMCID: PMC10063813 DOI: 10.3389/fphar.2023.1135366] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Liver fibrosis, a compensatory repair response to chronic liver injury, is caused by various pathogenic factors, and hepatic stellate cell (HSC) activation and phenotypic transformation are regarded as key events in its progression. Ferroptosis, a novel form of programmed cell death, is also closely related to different pathological processes, including those associated with liver diseases. Here, we investigated the effect of doxofylline (DOX), a xanthine derivative with potent anti-inflammatory activity, on liver fibrosis as well as the associated mechanism. Our results indicated that in mice with CCl4-induced liver fibrosis, DOX attenuated hepatocellular injury and the levels of liver fibrosis indicators, inhibited the TGF-β/Smad signaling pathway, and significantly downregulated the expression of HSC activation markers, both in vitro and in vivo. Furthermore, inducing ferroptosis in activated HSCs was found to be critical for its anti-liver fibrosis effect. More importantly, ferroptosis inhibition using the specific inhibitor, deferoxamine (DFO) not only abolished DOX-induced ferroptosis, but also led to resistance to the anti-liver fibrosis effect of DOX in HSCs. In summary, our results showed an association between the protective effect of DOX against liver fibrosis and HSC ferroptosis. Thus, DOX may be a promising anti-hepatic fibrosis agent.
Collapse
Affiliation(s)
- Lenan Xu
- Affiliated Yongkang First People’s Hospital, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Meiling Zhang
- Affiliated Yongkang First People’s Hospital, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Junzhi Pan
- Affiliated Yongkang First People’s Hospital, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiangwei Xu
- Affiliated Yongkang First People’s Hospital, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yawen Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xue Han
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lina Yin
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lingfeng Chen
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Juan Ren
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jie Yu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yanmei Zhang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Guang Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Guang Liang, ; Yi Zhang,
| | - Yi Zhang
- Affiliated Yongkang First People’s Hospital, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
- *Correspondence: Guang Liang, ; Yi Zhang,
| |
Collapse
|
34
|
Xiang X, Gao J, Su D, Shi D. The advancements in targets for ferroptosis in liver diseases. Front Med (Lausanne) 2023; 10:1084479. [PMID: 36999078 PMCID: PMC10043409 DOI: 10.3389/fmed.2023.1084479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
Ferroptosis is a type of regulated cell death caused by iron overload and lipid peroxidation, and its core is an imbalance of redox reactions. Recent studies showed that ferroptosis played a dual role in liver diseases, that was, as a therapeutic target and a pathogenic factor. Therefore, herein, we summarized the role of ferroptosis in liver diseases, reviewed the part of available targets, such as drugs, small molecules, and nanomaterials, that acted on ferroptosis in liver diseases, and discussed the current challenges and prospects.
Collapse
Affiliation(s)
- Xiaohong Xiang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xiaohong Xiang
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danyang Su
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Doudou Shi
- Department of Geriatrics, The Ninth Hospital of Xi'an, Xi'an, Shaanxi, China
| |
Collapse
|
35
|
Wang W, Lei Y, Zhang G, Li X, Yuan J, Li T, Zhong W, Zhang Y, Tan X, Song G. USP39 stabilizes β-catenin by deubiquitination and suppressing E3 ligase TRIM26 pre-mRNA maturation to promote HCC progression. Cell Death Dis 2023; 14:63. [PMID: 36707504 PMCID: PMC9883245 DOI: 10.1038/s41419-023-05593-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/28/2023]
Abstract
Ubiquitin-specific protease 39(USP39) plays an important role in modulating pre-mRNA splicing and ubiquitin-proteasome dependent proteolysis as a member of conserved deubiquitylation family. Accumulating evidences prove that USP39 participates in the development of hepatocellular carcinoma (HCC). However, little is known about the mechanism especially deubiquitinating target of USP39 in regulating hepatocellular carcinoma (HCC) growth. Here, we prove that USP39 promotes HCC cell proliferation and migration by directly deubiquitin β-catenin, a key molecular of Wnt/β-catenin signaling pathway whose abnormal expression or activation results in several tumors, following its co-localization with USP39. In this process, the expression of E3 ligase TRIM26, which is proved to restrain HCC in our previous research, shows a decreasing trend. We further demonstrate that TRIM26 pre-mRNA splicing and maturation is inhibited by USP39, accompanied by its reduction of ubiquitinating β-catenin, facilitating HCC progression indirectly. In summary, our data reveal a novel mechanism in the progress of HCC that USP39 promotes the proliferation and migration of HCC through increasing β-catenin level via both direct deubiquitination and reducing TRIM26 pre-mRNA maturation and splicing, which may provide a new idea and target for clinical treatment of HCC.
Collapse
Affiliation(s)
- Weiwei Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Yongbin Lei
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Gongye Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaomei Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Jiahui Yuan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Tingting Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Wei Zhong
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Yuqi Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Xuemei Tan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Gang Song
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
36
|
Li L, Zhu Z. Pharmacological modulation of ferroptosis as a therapeutic target for liver fibrosis. Front Pharmacol 2023; 13:1071844. [PMID: 36703745 PMCID: PMC9871257 DOI: 10.3389/fphar.2022.1071844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023] Open
Abstract
Liver fibrosis, which is characterized by the excessive deposition of extracellular matrix (ECM) materials (primarily fibrillar collagen-I), is an abnormal repair reaction and pathological outcome of chronic liver diseases caused by alcohol abuse, non-alcoholic fatty liver disease, and chronic hepatitis B and C virus infections. Liver fibrosis often progresses to liver cirrhosis and hepatocellular carcinoma. Ferroptosis, characterized by lipid peroxidation, is a form of iron-dependent non-apoptotic cell death, and recent studies have reported that ferroptosis contribute to the development of liver fibrosis. Moreover, several agents have demonstrated therapeutic effects in experimental liver fibrosis models by inducing hepatic stellate cell (HSCs) ferroptosis. This review delineates the specific mechanism by which ferroptosis contributes to the development of liver fibrosis. Specifically, we focused on the different types of therapeutic agents that can induce HSCs ferroptosis and summarize their pharmacological effectiveness for liver fibrosis treatment. We suggest that HSCs ferroptosis may be a potential useful target of novel therapies for preventing and treating liver fibrosis.
Collapse
Affiliation(s)
- Le Li
- Liver Transplantation Center, Clinical Research Center for Pediatric Liver Transplantation, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China,Department of hepatobiliary surgery, Chifeng Municipal Hospital, Chifeng, China
| | - Zhijun Zhu
- Liver Transplantation Center, Clinical Research Center for Pediatric Liver Transplantation, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China,*Correspondence: Zhijun Zhu,
| |
Collapse
|
37
|
Wang C, Su Z, Xu J, Ko C. Danshensu attenuated lipopolysaccharide-induced LX-2 and T6 cells activation through regulation of ferroptosis. Food Sci Nutr 2023; 11:344-349. [PMID: 36655094 PMCID: PMC9834887 DOI: 10.1002/fsn3.3065] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 01/21/2023] Open
Abstract
Liver fibrosis and cirrhosis are primarily caused by the activation of hepatic stellate cells (HSCs), regardless of their etiology. Collagen type I (collagen I) and connective tissue growth factor (CTGF) is produced more readily by activated HSCs. Consequently, identifying the molecular and cellular mechanisms responsible for HSCs activation is essential to better understand its mechanism of action and therapeutic potential. Cell death is caused by iron-dependent lipid peroxidation during ferroptosis. Ferroptosis plays an important role in the survival of activated HSCs and could contribute to the development of innovative prevention and treatment strategies for liver fibrosis. Danshensu (Dan) is a pure molecule extracted from the Salvia miltiorrhiza herb that protects against liver damage. However, Dan's effect on attenuating HSCs activation by regulating ferroptosis remains unclear. The results of this study indicated that lipopolysaccharide (LPS)-induced LX-2 and T6 cells activation occurs through the upregulation of collagen I, CTGF, Gpx4, and SLC7A11. Interestingly, Dan attenuated LPS-induced liver fibrosis in those cells by upregulating collagen I, CTGF, Gpx4, and SLC7A11 and by increasing lipid reactive oxygen species accumulation. Furthermore, the results also showed that the ferroptosis inhibitor liproxstatin attenuated the overproduction of lipid reactive oxygen species in LPS-activated LX-2 cells. We conclude that Dan attenuates LPS-induced HSC activation during liver fibrosis by regulating ferroptosis in LX-2 and T6 cells.
Collapse
Affiliation(s)
- Changting Wang
- Department of General SurgeryThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| | - Zhiming Su
- Department of General SurgeryThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| | - Jian‐Hua Xu
- Department of Tumor SurgeryThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
| | - Chih‐Yuan Ko
- Department of Clinical NutritionThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouChina
- School of Public HealthFujian Medical UniversityFuzhouFujianChina
| |
Collapse
|
38
|
Sun Y, He L, Guo P, Li F, Wang B, Zhang Y, An K, Peng M. F-box and WD repeat domain containing 7 inhibits the activation of hepatic stellate cells by degrading delta-like ligand 1 to block Notch signaling pathway. Open Med (Wars) 2023; 18:20230634. [PMID: 37082613 PMCID: PMC10111210 DOI: 10.1515/med-2023-0634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 04/22/2023] Open
Abstract
Hepatic fibrosis (HF) is a precursor of liver cirrhosis, and activated hepatic stellate cells are an important driver of fibrosis. F-box and WD repeat domain containing 7 (FBXW7) expression level is down-regulated in HF, but the underlying mechanism is yet to be elucidated. The interaction between FBXW7 and delta-like ligand 1 (DLL1) was predicted. LX-2 cells were subjected to transfection of FBXW7/DLL1 silencing or overexpression plasmid. The expressions of FBXW7 and DLL1 in HF in vitro were measured by quantitative reverse transcription polymerase chain reaction and western blot. The LX-2 cell cycle, viability, proliferation, and ubiquitination were determined by flow cytometry, cell counting kit-8, colony formation, and ubiquitination assays, respectively. FBXW7 overexpression suppressed the cell viability and proliferation, facilitated cell cycle arrest, and down-regulated α-smooth muscle actin (α-SMA), Collagen I, and DLL1 protein levels, but FBXW7 silencing did the opposite. DLL1 was bound to and ubiquitin-dependently degraded by FBXW7 overexpression. DLL1 overexpression promoted the cell viability and proliferation, accelerated cell cycle, and up-regulated the levels of α-SMA, Collagen I, NOTCH2, NOTCH3, and HES1, but these trends were reversed by FBXW7 overexpression. To sum up, FBXW7 overexpression suppresses the progression of HF in vitro by ubiquitin-dependently degrading DLL1.
Collapse
Affiliation(s)
- Yufeng Sun
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, No. 215, West Heping Road, Shijiazhuang, Hebei, 050000, China
| | - Lili He
- Department of Emergency, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei, China
| | - Peiran Guo
- College of Integrated Traditional Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fenghua Li
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, No. 215, West Heping Road, Shijiazhuang, Hebei, 050000, China
| | - Bo Wang
- Department of Emergency, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yifan Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Shijiazhuang First Hospital, Shijiazhuang, Hebei, China
| | - Kai An
- Department of Rehabilitation, Shijiazhuang First Hospital, Shijiazhuang, Hebei, China
| | - Ming Peng
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
39
|
Jiang C, He L, Xiao S, Wu W, Zhao Q, Liu F. E3 Ubiquitin Ligase RNF125 Suppresses Immune Escape in Head and Neck Squamous Cell Carcinoma by Regulating PD-L1 Expression. Mol Biotechnol 2022; 65:891-903. [DOI: 10.1007/s12033-022-00587-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
|
40
|
Ferroptosis: Shedding Light on Mechanisms and Therapeutic Opportunities in Liver Diseases. Cells 2022; 11:cells11203301. [PMID: 36291167 PMCID: PMC9600232 DOI: 10.3390/cells11203301] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Cell death is a vital physiological or pathological phenomenon in the development process of the organism. Ferroptosis is a kind of newly-discovered regulated cell death (RCD), which is different from other RCD patterns, such as apoptosis, necrosis and autophagy at the morphological, biochemical and genetic levels. It is a kind of iron-dependent mode of death mediated by lipid peroxides and lipid reactive oxygen species aggregation. Noteworthily, the number of studies focused on ferroptosis has been increasing exponentially since ferroptosis was first found in 2012. The liver is the organ that stores the most iron in the human body. Recently, it was frequently found that there are different degrees of iron metabolism disorder and lipid peroxidation and other ferroptosis characteristics in various liver diseases. Numerous investigators have discovered that the progression of various liver diseases can be affected via the regulation of ferroptosis, which may provide a potential therapeutic strategy for clinical hepatic diseases. This review aims to summarize the mechanism and update research progress of ferroptosis, so as to provide novel promising directions for the treatment of liver diseases.
Collapse
|
41
|
Wu Y, Zhang C, Guo M, Hu W, Qiu Y, Li M, Xu D, Wu P, Sun J, Shi R, Zhang Z, Jiang K. Targeting pancreatic stellate cells in chronic pancreatitis: Focus on therapeutic drugs and natural compounds. Front Pharmacol 2022; 13:1042651. [PMID: 36339568 PMCID: PMC9627273 DOI: 10.3389/fphar.2022.1042651] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/10/2022] [Indexed: 11/21/2022] Open
Abstract
Chronic pancreatitis (CP) is a precancerous illness linked to pancreatic ductal adenocarcinoma (PDAC), although the evolutionary mechanism is uncertain. CP is distinguished by severe fibrosis caused by the activation of pancreatic stellate cells (PSCs). The current clinical therapeutic protocol for CP lacks specific therapeutic medicines for the prevention and suppression of inflammation and fibrosis aggravating in CP. More research on specifically targeting PSCs would help facilitate the development of novel therapies for pancreatic fibrosis. Notably, using natural compounds from medicinal plants as new antifibrotic agents has become a focus of recent research and is widely employed as an alternative and complementary approach. Our goal was to shed light on the role of PSCs in the development of CP and provide a focused update on the new potential therapeutic strategies against PSCs in CP models. Future studies can refer to these possible strategies for drug design, bioavailability, pharmacokinetics, and other issues to obtain better clinical outcomes for treating CP.
Collapse
Affiliation(s)
- Yang Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chun Zhang
- Gastroenterology Department, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Mei Guo
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weikang Hu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yangling Qiu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengran Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dong Xu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Sun
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Run Shi
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
42
|
Bioinformatics Identification of Ferroptosis-Associated Biomarkers and Therapeutic Compounds in Psoriasis. JOURNAL OF ONCOLOGY 2022; 2022:3818216. [PMID: 36276287 PMCID: PMC9581596 DOI: 10.1155/2022/3818216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/15/2022] [Accepted: 08/20/2022] [Indexed: 11/18/2022]
Abstract
Purpose. Psoriasis is closely linked to ferroptosis. This study aimed to identify potential ferroptosis-associated genes in psoriasis using bioinformatics. Methods. Data from the GSE30999 dataset was downloaded from the Gene Expression Omnibus (GEO), and the ferroptosis-associated genes were retrieved from FerrDb. The differentially expressed ferroptosis-associated genes were identified using Venn diagrams. Subsequently, a network of protein-protein interactions (PPIs) between psoriasis targets and ferroptosis-associated genes was constructed based on the STRING database and analyzed by Cytoscape software. The Metascape portal conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Moreover, the expression of ferroptosis-related genes was verified in the GSE13355 dataset. Finally, the verified genes were used to predict the therapeutic drugs for psoriasis using the DGIdb/CMap database. SwissDock was used to examine ligand docking, and UCSF Chimera displayed the results visually. Results. Among 85 pairs of psoriasis lesion (LS) and no-lesion (NL) samples from patients, 19 ferroptosis-associated genes were found to be differentially expressed (3 upregulated genes and 16 downregulated genes). Based on the PPI results, these ferroptosis-associated genes interact with each other. The GO and KEGG enrichment analysis of differentially expressed ferroptosis-related genes indicated several enriched terms related to the oxidative stress response. The GSE13355 dataset verified the results of the bioinformatics analysis obtained from the GSE30999 dataset regarding SLC7A5, SLC7A11, and CHAC1. Psoriasis-related compounds corresponding to SLC7A5 and SLC7A11 were also identified, including Melphalan, Quisqualate, Riluzole, and Sulfasalazine. Conclusion. We identified 3 differentially expressed ferroptosis-related genes through bioinformatics analysis. SLC7A5, SLC7A11, and CHAC1 may affect the development of psoriasis by regulating ferroptosis. These results open new avenues in understanding the treatment of psoriasis.
Collapse
|
43
|
Meng Y, Sun H, Li Y, Zhao S, Su J, Zeng F, Deng G, Chen X. Targeting Ferroptosis by Ubiquitin System Enzymes: A Potential Therapeutic Strategy in Cancer. Int J Biol Sci 2022; 18:5475-5488. [PMID: 36147464 PMCID: PMC9461661 DOI: 10.7150/ijbs.73790] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Ferroptosis is a novel type of regulated cell death driven by the excessive accumulation of iron-dependent lipid peroxidation. Therapy-resistant tumor cells, particularly those in the mesenchymal-like state and prone to metastasis, are highly susceptible to ferroptosis, suggesting that induction of ferroptosis in tumor cells is a promising strategy for cancer therapy. Although ferroptosis is regulated at various levels, ubiquitination is key to post-translational regulation of ferroptotic cell death. E3 ubiquitin ligases (E3s) and deubiquitinating enzymes (DUBs) are the most remarkable ubiquitin system enzymes, whose dysregulation accounts for the progression of multiple cancers. E3s are involved in the attachment of ubiquitin to substrates for their degradation, and this process is reversed by DUBs. Accumulating evidence has highlighted the important role of ubiquitin system enzymes in regulating the sensitivity of ferroptosis. Herein, we will portray the regulatory networks of ferroptosis mediated by E3s or DUBs and discuss opportunities and challenges for incorporating this regulation into cancer therapy.
Collapse
Affiliation(s)
- Yu Meng
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huiyan Sun
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yayun Li
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuang Zhao
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Su
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Furong Zeng
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guangtong Deng
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
44
|
Zhang Y, Li M, Guo Y, Liu S, Tao Y. The Organelle-Specific Regulations and Epigenetic Regulators in Ferroptosis. Front Pharmacol 2022; 13:905501. [PMID: 35784729 PMCID: PMC9247141 DOI: 10.3389/fphar.2022.905501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Ferroptosis is fairly different from other types of cell-death in biochemical processes, morphological changes and genetics as a special programmed cell-death. Here we summarize the current literatures on ferroptosis, including the cascade reaction of key material metabolism in the process, dysfunction of organelles, the relationship between different organelles and the way positive and negative key regulatory factors to affect ferroptosis in the epigenetic level. Based on material metabolism or epigenetic regulation, it is obvious that the regulatory network of ferroptosis is interrelated and complex.
Collapse
Affiliation(s)
- Yixuan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Mingrui Li
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yiming Guo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yongguang Tao,
| |
Collapse
|
45
|
Zhou J, Tan Y, Wang R, Li X. Role of Ferroptosis in Fibrotic Diseases. J Inflamm Res 2022; 15:3689-3708. [PMID: 35783244 PMCID: PMC9248952 DOI: 10.2147/jir.s358470] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022] Open
Abstract
Ferroptosis is a unique and pervasive form of regulated cell death driven by iron-dependent phospholipid peroxidation. It results from disturbed cellular metabolism and imbalanced redox homeostasis and is regulated by various cellular metabolic pathways. Recent preclinical studies have revealed that ferroptosis may be an attractive therapeutic target in fibrotic diseases, such as liver fibrosis, pulmonary fibrosis, kidney fibrosis, and myocardial fibrosis. This review summarizes the latest knowledge on the regulatory mechanism of ferroptosis and its roles in fibrotic diseases. These updates may provide a novel perspective for the treatment of fibrotic diseases as well as future research.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Yuan Tan
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Rurong Wang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Xuehan Li
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Correspondence: Xuehan Li, Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, Sichuan Province, 610041, People’s Republic of China, Tel +86 18980099133, Email
| |
Collapse
|
46
|
Liu Y, Zhou L, Xu Y, Li K, Zhao Y, Qiao H, Xu Q, Zhao J. Heat Shock Proteins and Ferroptosis. Front Cell Dev Biol 2022; 10:864635. [PMID: 35478955 PMCID: PMC9035830 DOI: 10.3389/fcell.2022.864635] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/23/2022] [Indexed: 01/08/2023] Open
Abstract
Ferroptosis is a new form of regulatory cell death named by Dixon in 2012, which is characterized by the accumulation of lipid peroxides and iron ions. Molecular chaperones are a class of evolutionarily conserved proteins in the cytoplasm. They recognize and bind incompletely folded or assembled proteins to help them fold, transport or prevent their aggregation, but they themselves do not participate in the formation of final products. As the largest number of molecular chaperones, heat shock proteins can be divided into five families: HSP110 (HSPH), HSP90 (HSPC), HSP70 (HSPA), HSP40 (DNAJ) and small heat shock proteins (HSPB). Different heat shock proteins play different roles in promoting or inhibiting ferroptosis in different diseases. It is known that ferroptosis is participated in tumors, nervous system diseases, renal injury and ischemia-reperfusion injury. However, there are few reviews about the relationship of heat shock proteins and ferroptosis. In this study, we systematically summarize the roles of heat shock proteins in the occurrence of ferroptosis, and predict the possible mechanisms of different families of heat shock proteins in the development of ferroptosis.
Collapse
Affiliation(s)
- Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
- *Correspondence: Ying Liu, ; Jie Zhao,
| | - Lin Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Yunfei Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Kexin Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Yao Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Haoduo Qiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Qing Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Ying Liu, ; Jie Zhao,
| |
Collapse
|
47
|
Shen M, Guo M, Li Y, Wang Y, Qiu Y, Shao J, Zhang F, Xu X, Yin G, Wang S, Chen A, Zhang Z, Zheng S. m 6A methylation is required for dihydroartemisinin to alleviate liver fibrosis by inducing ferroptosis in hepatic stellate cells. Free Radic Biol Med 2022; 182:246-259. [PMID: 35248719 DOI: 10.1016/j.freeradbiomed.2022.02.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 01/07/2023]
Abstract
Activation of hepatic stellate cells (HSCs) is a central event in the development of liver fibrosis, and the elimination of activated HSCs is considered to be an effective anti-fibrotic strategy. Here, we report that dihydroartemisinin (DHA) prevented the activation of HSCs via ferroptosis pathway. Importantly, DHA treatment increased the level of autophagy in HSCs. The inhibition of autophagy by 3-MA dramatically abolished the DHA-induced ferroptosis in HSCs. Mechanistically, the up-regulated m6A modification is essential for the activation of autophagy by DHA through the reduction of fat mass and obesity-associated gene (FTO). Down-regulation of m6A modification by FTO overexpression could impair autophagy and the classical ferroptotic events. Interestingly, the m6A modification of BECN1 mRNA was evidently up-regulated compared with other autophagy-related genes. More importantly, YTHDF1 was identified as a key m6A reader protein for BECN1 mRNA stability, and knockdown of YTHDF1 could prevent DHA-induced HSC ferroptosis. Noteworthy, YTH domain was essential for YTHDF1 to prolong the half-life of BECN1 mRNA in DHA-induced HSC ferroptosis. In mice, DHA treatment alleviated liver fibrosis by triggering HSC ferroptosis. HSC-specific inhibition of m6A modification and autophagy could impair DHA-induced HSC ferroptosis in murine liver fibrosis. Overall, these results provided novel implications to reveal the molecular mechanism of DHA-induced ferroptosis, by which pointed to m6A modification-dependent ferroptosis as a potential target for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Min Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mei Guo
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujia Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yingqian Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yangling Qiu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xuefen Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guoping Yin
- Department of Anesthesiology, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Shijun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250035, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, St Louis, MO, 63104, USA
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
48
|
Xu R, Wu J, Luo Y, Wang Y, Tian J, Teng W, Zhang B, Fang Z, Li Y. Sanguinarine represses the growth and metastasis of non-small cell lung cancer by facilitating ferroptosis. Curr Pharm Des 2022; 28:760-768. [PMID: 35176976 DOI: 10.2174/1381612828666220217124542] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sanguinarine (SAG), a natural benzophenanthridine alkaloid derived from the root of Sanguinaria canadensis Linn. (Bloodroot), possesses a potential anticancer activity. Lung carcinoma is the chief cause of malignancy-related mortality in China. Non-small cell lung carcinoma (NSCLC) is the main subtype of lung carcinoma and accounts for about eighty-five percent of this disease. Current treatment in controlling and curing NSCLC remains deficient. AIM OF THE STUDY The role and underlying mechanism of SAG in repressing the growth and metastasis of NSCLC was explored. MATERIALS AND METHODS The role of SAG in regulating the proliferation and invasion of NSCLC cells was evaluated in vitro and in a xenograft model. After treatment with SAG, Fe2+ concentration, reactive oxygen species (ROS) levels, malondialdehyde (MDA), and glutathione (GSH) content in NSCLC cells were assessed to evaluate the effect of SAG on facilitating ferroptosis. RESULTS SAG exhibited a dose- and time- dependent cytotoxicity in A549 and H3122 cells. SAG treatment effectively repressed the growth and metastasis of NSCLC in a xenograft model. We for the first time verified that SAG triggered ferroptosis of NSCLC cells, as evidenced by increased Fe2+ concentration, ROS level, and MDA content, and decreased GSH content. Mechanistically, SAG decreased the protein stability of glutathione peroxide 4 (GPX4) through E3 ligase STUB1-mediated ubiquitination and degradation of endogenous GPX4. GPX4 overexpression restored the proliferation and invasion of NSCLC cells treated with SAG through inhibiting ferroptosis. CONCLUSIONS SAG inhibits the growth and metastasis of NSCLC by regulating STUB1/GPX4-dependent ferroptosis.
Collapse
Affiliation(s)
- Rongzhong Xu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Jianchun Wu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yingbin Luo
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yuli Wang
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Jianhui Tian
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Wenjing Teng
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Bo Zhang
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Zhihong Fang
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yan Li
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| |
Collapse
|
49
|
Wan Y, Gu C, Kong J, Sui J, Zuo L, Song Y, Chen J. Long noncoding RNA ADAMTS9-AS1 represses ferroptosis of endometrial stromal cells by regulating the miR-6516-5p/GPX4 axis in endometriosis. Sci Rep 2022; 12:2618. [PMID: 35173188 PMCID: PMC8850595 DOI: 10.1038/s41598-022-04963-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/22/2021] [Indexed: 12/18/2022] Open
Abstract
Endometriosis (EMs) is one of the most frequent diseases of reproductive-age women and is characterized by the growth of endometrial tissues beyond the uterus. The enhanced proliferative and migratory potential of endometrial stromal cells (ESCs) plays an important role in the progression of EMs. Mounting studies have demonstrated that long noncoding RNAs (lncRNAs) exert an important role in regulating the development and progression of EMs. Given the aberrant expression of lncRNA ADAMTS9-AS1 in ectopic endometrium (ecEM), we investigated the biological effect of ADAMTS9-AS1 on ESC proliferation and migration and explored the underlying mechanism. The current data showed that ADAMTS9-AS1 expression was significantly upregulated in ecEM compared with eutopic endometrium (euEM) in patients with EMs and in a murine model of EMs. Functionally, ADAMTS9-AS1 knockdown in ectopic ESCs (EESCs) decreased cell viability and migration, whereas ADAMTS9-AS1 overexpression in normal ESCs (NESCs) enhanced cell viability and migration. More importantly, the effect of ADAMTS9-AS1 inhibition on decreasing ESC viability was significantly blocked by ferrostatin-1 (Fer-1, a ferroptosis inhibitor), and ADAMTS9-AS1 overexpression repressed erastin (a ferroptosis activator)-induced cell death. Furthermore, the regulatory role of ADAMTS9-AS1 in ferroptosis was defined and evidenced by increased reactive oxygen species (ROS) levels and malonyl dialdehyde (MDA) content and decreased expression of glutathione peroxidase 4 (GPX4) after ADAMTS9-AS1 inhibition. Mechanistically, ADAMTS9-AS1 functioned as a competing endogenous RNA (ceRNA) by sponging miR-6516-5p to derepress the expression of GPX4, the critical repressor of ferroptosis. Taken together, these results demonstrate that upregulated ADAMTS9-AS1 accelerates ESC proliferation and migration by regulating miR-6516-5p/GPX4-dependent ferroptosis and may be a potential target for the treatment of EMs.
Collapse
Affiliation(s)
- Yiting Wan
- Department of Gynecology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 274 Middle Zhijiang Road, Shanghai, 200071, China
| | - Cancan Gu
- Department of Gynecology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 274 Middle Zhijiang Road, Shanghai, 200071, China
| | - Jueying Kong
- Department of Gynecology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 274 Middle Zhijiang Road, Shanghai, 200071, China
| | - Jin Sui
- Department of Gynecology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 274 Middle Zhijiang Road, Shanghai, 200071, China
| | - Ling Zuo
- Department of Gynecology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 274 Middle Zhijiang Road, Shanghai, 200071, China
| | - Yanhua Song
- Department of Gynecology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 274 Middle Zhijiang Road, Shanghai, 200071, China.
| | - Jing Chen
- Department of Gynecology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 274 Middle Zhijiang Road, Shanghai, 200071, China.
| |
Collapse
|
50
|
Qu X, Sun Z, Wang Y, Ong HS. Zoledronic acid promotes osteoclasts ferroptosis by inhibiting FBXO9-mediated p53 ubiquitination and degradation. PeerJ 2022; 9:e12510. [PMID: 35003915 PMCID: PMC8684721 DOI: 10.7717/peerj.12510] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022] Open
Abstract
Bisphosphonates (BPs)-related osteonecrosis of jaw (BRONJ) is a severe complication of the long-term administration of BPs. The development of BRONJ is associated with the cell death of osteoclasts, but the underlying mechanism remains unclear. In the current study, the role of Zoledronic acid (ZA), a kind of bisphosphonates, in suppressing the growth of osteoclasts was investigated and its underlying mechanism was explored. The role of ZA in regulating osteoclasts function was evaluated in the RANKL-induced cell model. Cell viability was assessed by cell counting kit-8 (CCK-8) assay and fluorescein diacetate (FDA)-staining. We confirmed that ZA treatment suppressed cell viability of osteoclasts. Furthermore, ZA treatment led to osteoclasts death by facilitating osteoclasts ferroptosis, as evidenced by increased Fe2+, ROS, and malonyldialdehyde (MDA) level, and decreased glutathione peroxidase 4 (GPX4) and glutathione (GSH) level. Next, the gene expression profiles of alendronate- and risedronate-treated osteoclasts were obtained from Gene Expression Omnibus (GEO) dataset, and 18 differentially expressed genes were identified using venn diagram analysis. Among these 18 genes, the expression of F-box protein 9 (FBXO9) was inhibited by ZA treatment. Knockdown of FBXO9 resulted in osteoclasts ferroptosis. More important, FBXO9 overexpression repressed the effect of ZA on regulating osteoclasts ferroptosis. Mechanistically, FBXO9 interacted with p53 and decreased the protein stability of p53. Collectively, our study showed that ZA induced osteoclast cells ferroptosis by triggering FBXO9-mediated p53 ubiquitination and degradation.
Collapse
Affiliation(s)
- Xingzhou Qu
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, SH, Shanghai, China
| | - Zhaoqi Sun
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, SH, Shanghai, China
| | - Yang Wang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, SH, Shanghai, China
| | - Hui Shan Ong
- Department of Oral and Maxillofacial-Head & Neck Oncology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, SH, Shanghai, China
| |
Collapse
|