1
|
Bennett C, Pettikiriarachchi A, McLean ARD, Harding R, Blewitt ME, Seillet C, Pasricha SR. Serum iron and transferrin saturation variation are circadian regulated and linked to the harmonic circadian oscillations of erythropoiesis and hepatic Tfrc expression in mice. Am J Hematol 2024; 99:2075-2083. [PMID: 39152780 DOI: 10.1002/ajh.27447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/28/2024] [Accepted: 07/21/2024] [Indexed: 08/19/2024]
Abstract
Serum iron has long been thought to exhibit diurnal variation and is subsequently considered an unreliable biomarker of systemic iron status. Circadian regulation (endogenous ~24-h periodic oscillation of a biologic function) governs many critical physiologic processes. It is unknown whether serum iron levels are regulated by circadian machinery; likewise, the circadian nature of key players of iron homeostasis is unstudied. Here we show that serum iron, transferrin saturation (TSAT), hepatic transferrin receptor (TFR1) gene (Tfrc) expression, and erythropoietic activity exhibit circadian rhythms. Daily oscillations of serum iron, TSAT, hepatic Tfrc expression, and erythropoietic activity are maintained in mice housed in constant darkness, where oscillation reflects an endogenous circadian period. Oscillations of serum iron, TSAT, hepatic Tfrc, and erythropoietic activity were ablated when circadian machinery was disrupted in Bmal1 knockout mice. Interestingly, we find that circadian oscillations of erythropoietic activity and hepatic Tfrc expression are maintained in opposing phase, likely allowing for optimized usage and storage of serum iron whilst maintaining adequate serum levels and TSAT. This study provides the first confirmatory evidence that serum iron is circadian regulated, discerns circadian rhythms of TSAT, a widely used clinical marker of iron status, and uncovers liver-specific circadian regulation of TFR1, a major player in cellular iron uptake.
Collapse
Affiliation(s)
- Cavan Bennett
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Anne Pettikiriarachchi
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Alistair R D McLean
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca Harding
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Marnie E Blewitt
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Cyril Seillet
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Sant-Rayn Pasricha
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Diagnostic Haematology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Clinical Haematology at the Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Liang R, Lin M, Menon V, Qiu J, Menon A, Breda L, Arif T, Rivella S, Ghaffari S. Elevated CDKN1A (P21) mediates β-thalassemia erythroid apoptosis, but its loss does not improve β-thalassemic erythropoiesis. Blood Adv 2023; 7:6873-6885. [PMID: 37672319 PMCID: PMC10685172 DOI: 10.1182/bloodadvances.2022007655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
β-thalassemias are common hemoglobinopathies due to mutations in the β-globin gene that lead to hemolytic anemias. Premature death of β-thalassemic erythroid precursors results in ineffective erythroid maturation, increased production of erythropoietin (EPO), expansion of erythroid progenitor compartment, extramedullary erythropoiesis, and splenomegaly. However, the molecular mechanism of erythroid apoptosis in β-thalassemia is not well understood. Using a mouse model of β-thalassemia (Hbbth3/+), we show that dysregulated expression of the FOXO3 transcription factor is implicated in β-thalassemia erythroid apoptosis. In Foxo3-/-/Hbbth3/+ mice, erythroid apoptosis is significantly reduced, whereas erythroid cell maturation, and red blood cell and hemoglobin production are substantially improved even with elevated reactive oxygen species in double-mutant erythroblasts. However, persistence of elevated reticulocytes and splenomegaly suggests that ineffective erythropoiesis is not resolved in Foxo3-/-/Hbbth3/+. We found the cell cycle inhibitor Cdkn1a (cyclin-dependent kinase inhibitor p21), a FOXO3 target gene, is markedly upregulated in both mouse and patient-derived β-thalassemic erythroid precursors. Double-mutant p21/Hbbth3/+ mice exhibited embryonic lethality with only a fraction of mice surviving to weaning. Notably, studies in adult mice displayed greatly reduced apoptosis and circulating Epo in erythroid compartments of surviving p21-/-/Hbbth3/+ mice relative to Hbbth3/+ mice, whereas ineffective erythroid cell maturation, extramedullary erythropoiesis, and splenomegaly were not modified. These combined results suggest that mechanisms that control β-thalassemic erythroid cell survival and differentiation are uncoupled from ineffective erythropoiesis and involve a molecular network including FOXO3 and P21. Overall, these studies provide a new framework for investigating ineffective erythropoiesis in β-thalassemia.
Collapse
Affiliation(s)
- Raymond Liang
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
- Developmental and Stem Cell Biology Multidisciplinary Training, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Miao Lin
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Vijay Menon
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jiajing Qiu
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anagha Menon
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
- Developmental and Stem Cell Biology Multidisciplinary Training, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Laura Breda
- Division of Hematology, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Tasleem Arif
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Stefano Rivella
- Division of Hematology, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Saghi Ghaffari
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
- Developmental and Stem Cell Biology Multidisciplinary Training, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
3
|
Omata K, Nomura I, Hirata A, Yonezuka Y, Muto H, Kuriki R, Jimbo K, Ogasa K, Kato T. Isolation and evaluation of erythroid progenitors in the livers of larval, froglet, and adult Xenopus tropicalis. Biol Open 2023; 12:bio059862. [PMID: 37421150 PMCID: PMC10399205 DOI: 10.1242/bio.059862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023] Open
Abstract
Xenopus liver maintains erythropoietic activity from the larval to the adult stage. During metamorphosis, thyroid hormone mediates apoptosis of larval-type erythroid progenitors and proliferation of adult-type erythroid progenitors, and a globin switch occurs during this time. In addition, the whole-body mass and the liver also change; however, whether there is a change in the absolute number of erythroid progenitors is unclear. To isolate and evaluate erythroid progenitors in the Xenopus liver, we developed monoclonal ER9 antibodies against the erythropoietin receptor (EPOR) of Xenopus. ER9 recognized erythrocytes, but not white blood cells or thrombocytes. The specificity of ER9 for EPOR manifested as its inhibitory effect on the proliferation of a Xenopus EPOR-expressing cell line. Furthermore, ER9 recognition was consistent with epor gene expression. ER9 staining with Acridine orange (AO) allowed erythrocyte fractionation through fluorescence-activated cell sorting. The ER9+ and AO-red (AOr)high fractions were highly enriched in erythroid progenitors and primarily localized to the liver. The method developed using ER9 and AO was also applied to larvae and froglets with different progenitor populations from adult frogs. The liver to body weight and the number of ER9+ AOrhigh cells per unit body weight were significantly higher in adults than in larvae and froglets, and the number of ER9+ AOrhigh cells per unit liver weight was the highest in froglets. Collectively, our results show increased erythropoiesis in the froglet liver and demonstrate growth-dependent changes in erythropoiesis patterns in specific organs of Xenopus.
Collapse
Affiliation(s)
- Kazuki Omata
- Department of Biology, School of Education, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Ikki Nomura
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Akito Hirata
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Yuka Yonezuka
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Hiroshi Muto
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Ryo Kuriki
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Kirin Jimbo
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Koujin Ogasa
- Department of Biology, School of Education, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Takashi Kato
- Department of Biology, School of Education, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| |
Collapse
|
4
|
Han H, Rim YA, Ju JH. Recent updates of stem cell-based erythropoiesis. Hum Cell 2023; 36:894-907. [PMID: 36754940 PMCID: PMC9908308 DOI: 10.1007/s13577-023-00872-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 01/28/2023] [Indexed: 02/10/2023]
Abstract
Blood transfusions are now an essential part of modern medicine. Transfusable red blood cells (RBCs) are employed in various therapeutic strategies; however, the processes of blood donation, collection, and administration still involve many limitations. Notably, a lack of donors, the risk of transfusion-transmitted disease, and recent pandemics such as COVID-19 have prompted us to search for alternative therapeutics to replace this resource. Originally, RBC production was attempted via the ex vivo differentiation of stem cells. However, a more approachable and effective cell source is now required for broader applications. As a viable alternative, pluripotent stem cells have been actively used in recent research. In this review, we discuss the basic concepts related to erythropoiesis, as well as early research using hematopoietic stem cells ex vivo, and discuss the current trend of in vitro erythropoiesis using human-induced pluripotent stem cells.
Collapse
Affiliation(s)
- Heeju Han
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, , Seoul, Republic of Korea ,Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeri Alice Rim
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Ji Hyeon Ju
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. .,Division of Rheumatology, Department of Internal Medicine, Institute of Medical Science, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Schönung M, Hartmann M, Krämer S, Stäble S, Hakobyan M, Kleinert E, Aurich T, Cobanoglu D, Heidel FH, Fröhling S, Milsom MD, Schlesner M, Lutsik P, Lipka DB. Dynamic DNA methylation reveals novel cis-regulatory elements in mouse hematopoiesis. Exp Hematol 2023; 117:24-42.e7. [PMID: 36368558 DOI: 10.1016/j.exphem.2022.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Differentiation of hematopoietic stem and progenitor cells to terminally differentiated immune cells is accompanied by large-scale remodeling of the DNA methylation landscape. Although significant insights into the molecular mechanisms of hematopoietic tissue regeneration were derived from mouse models, profiling of DNA methylation has been hampered by high cost or low resolution using available methods. The recent development of the Infinium Mouse Methylation BeadChip (MMBC) array facilitates methylation profiling of the mouse genome at a single CpG resolution at affordable cost. We extended the RnBeads package to provide a computational framework for the analysis of MMBC data. This framework was applied to a newly generated reference map of mouse hematopoiesis encompassing nine different cell types. Analysis of dynamically regulated CpG sites showed progressive and unidirectional DNA methylation changes from hematopoietic stem and progenitor cells to differentiated hematopoietic cells and allowed the identification of lineage- and cell type-specific DNA methylation programs. Comparison with previously published catalogs of cis-regulatory elements (CREs) revealed 12,856 novel putative CREs that were dynamically regulated by DNA methylation (mdCREs). These mdCREs were predominantly associated with patterns of cell type-specific DNA hypomethylation and could be identified as epigenetic control regions regulating the expression of key hematopoietic genes during differentiation. In summary, we established an analysis pipeline for MMBC data sets and provide a DNA methylation atlas of mouse hematopoiesis. This resource allowed us to identify novel putative CREs involved in hematopoiesis and will serve as a platform to study epigenetic regulation of normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Maximilian Schönung
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Mark Hartmann
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephen Krämer
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany; Biomedical Informatics, Data Mining and Data Analytics, Faculty of Applied Computer Science and Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Sina Stäble
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany
| | - Mariam Hakobyan
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Emely Kleinert
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany
| | - Theo Aurich
- Division of Experimental Hematology, German Cancer Research Center, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Defne Cobanoglu
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany; Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Florian H Heidel
- Innere Medizin C, Universitätsmedizin Greifswald, Greifswald, Germany; Leibniz Institute on Aging, Fritz-Lipmann-Institute, Jena, Germany
| | - Stefan Fröhling
- Division of Translational Medical Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany
| | - Michael D Milsom
- Division of Experimental Hematology, German Cancer Research Center, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Matthias Schlesner
- Biomedical Informatics, Data Mining and Data Analytics, Faculty of Applied Computer Science and Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center, Heidelberg, Germany.
| | - Daniel B Lipka
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany; Faculty of Medicine, Otto-von-Guericke-University, Magdeburg, Germany.
| |
Collapse
|
6
|
Phadke I, Pouzolles M, Machado A, Moraly J, Gonzalez-Menendez P, Zimmermann VS, Kinet S, Levine M, Violet PC, Taylor N. Vitamin C deficiency reveals developmental differences between neonatal and adult hematopoiesis. Front Immunol 2022; 13:898827. [PMID: 36248829 PMCID: PMC9562198 DOI: 10.3389/fimmu.2022.898827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
Hematopoiesis, a process that results in the differentiation of all blood lineages, is essential throughout life. The production of 1x1012 blood cells per day, including 200x109 erythrocytes, is highly dependent on nutrient consumption. Notably though, the relative requirements for micronutrients during the perinatal period, a critical developmental window for immune cell and erythrocyte differentiation, have not been extensively studied. More specifically, the impact of the vitamin C/ascorbate micronutrient on perinatal as compared to adult hematopoiesis has been difficult to assess in animal models. Even though humans cannot synthesize ascorbate, due to a pseudogenization of the L-gulono-γ-lactone oxidase (GULO) gene, its generation from glucose is an ancestral mammalian trait. Taking advantage of a Gulo-/- mouse model, we show that ascorbic acid deficiency profoundly impacts perinatal hematopoiesis, resulting in a hypocellular bone marrow (BM) with a significant reduction in hematopoietic stem cells, multipotent progenitors, and hematopoietic progenitors. Furthermore, myeloid progenitors exhibited differential sensitivity to vitamin C levels; common myeloid progenitors and megakaryocyte-erythrocyte progenitors were markedly reduced in Gulo-/- pups following vitamin C depletion in the dams, whereas granulocyte-myeloid progenitors were spared, and their frequency was even augmented. Notably, hematopoietic cell subsets were rescued by vitamin C repletion. Consistent with these data, peripheral myeloid cells were maintained in ascorbate-deficient Gulo-/- pups while other lineage-committed hematopoietic cells were decreased. A reduction in B cell numbers was associated with a significantly reduced humoral immune response in ascorbate-depleted Gulo-/- pups but not adult mice. Erythropoiesis was particularly sensitive to vitamin C deprivation during both the perinatal and adult periods, with ascorbate-deficient Gulo-/- pups as well as adult mice exhibiting compensatory splenic differentiation. Furthermore, in the pathological context of hemolytic anemia, vitamin C-deficient adult Gulo-/- mice were not able to sufficiently increase their erythropoietic activity, resulting in a sustained anemia. Thus, vitamin C plays a pivotal role in the maintenance and differentiation of hematopoietic progenitors during the neonatal period and is required throughout life to sustain erythroid differentiation under stress conditions.
Collapse
Affiliation(s)
- Ira Phadke
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Marie Pouzolles
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Alice Machado
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Josquin Moraly
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Pedro Gonzalez-Menendez
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Valérie S. Zimmermann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Sandrina Kinet
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Mark Levine
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Mark Levine, ; Pierre-Christian Violet, ; Naomi Taylor,
| | - Pierre-Christian Violet
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Mark Levine, ; Pierre-Christian Violet, ; Naomi Taylor,
| | - Naomi Taylor
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- *Correspondence: Mark Levine, ; Pierre-Christian Violet, ; Naomi Taylor,
| |
Collapse
|
7
|
Wu Q, Zhang J, Lucas D. Anatomy of Hematopoiesis and Local Microenvironments in the Bone Marrow. Where to? Front Immunol 2021; 12:768439. [PMID: 34858426 PMCID: PMC8632041 DOI: 10.3389/fimmu.2021.768439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022] Open
Abstract
The shape and spatial organization -the anatomy- of a tissue profoundly influences its function. Knowledge of the anatomical relationships between parent and daughter cells is necessary to understand differentiation and how the crosstalk between the different cells in the tissue leads to physiological maintenance and pathological perturbations. Blood cell production takes place in the bone marrow through the progressive differentiation of stem cells and progenitors. These are maintained and regulated by a heterogeneous microenvironment composed of stromal and hematopoietic cells. While hematopoiesis has been studied in extraordinary detail through functional and multiomics approaches, much less is known about the spatial organization of blood production and how local cues from the microenvironment influence this anatomy. Here, we discuss some of the studies that revealed a complex anatomy of hematopoiesis where discrete local microenvironments spatially organize and regulate specific subsets of hematopoietic stem cells and/or progenitors. We focus on the open questions in the field and discuss how new tools and technological advances are poised to transform our understanding of the anatomy of hematopoiesis.
Collapse
Affiliation(s)
- Qingqing Wu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, United States
| | - Jizhou Zhang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, United States
| | - Daniel Lucas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|