1
|
Arrigoni R, Jirillo E, Caiati C. Pathophysiology of Doxorubicin-Mediated Cardiotoxicity. TOXICS 2025; 13:277. [PMID: 40278593 PMCID: PMC12031459 DOI: 10.3390/toxics13040277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025]
Abstract
Doxorubicin (DOX) is used for the treatment of various malignancies, including leukemias, lymphomas, sarcomas, and bladder, breast, and gynecological cancers in adults, adolescents, and children. However, DOX causes severe side effects in patients, such as cardiotoxicity, which encompasses heart failure, arrhythmia, and myocardial infarction. DOX-induced cardiotoxicity (DIC) is based on the combination of nuclear-mediated cardiomyocyte death and mitochondrial-mediated death. Oxidative stress, altered autophagy, inflammation, and apoptosis/ferroptosis represent the main pathogenetic mechanisms responsible for DIC. In addition, in vitro and in vivo models of DIC sirtuins (SIRT), and especially, SIRT 1 are reduced, and this event contributes to cardiac damage. In fact, SIRT 1 inhibits reactive oxygen species and NF-kB activation, thus improving myocardial oxidative stress and cardiac remodeling. Therefore, the recovery of SIRT 1 during DIC may represent a therapeutic strategy to limit DIC progression. Natural products, i.e., polyphenols, as well as nano formulations of DOX and iron chelators, are other potential compounds experimented with in models of DIC. At present, few clinical trials are available to confirm the efficacy of these products in DIC. The aim of this review is the description of the pathophysiology of DIC as well as potential drug targets to alleviate DIC.
Collapse
Affiliation(s)
- Roberto Arrigoni
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, 70124 Bari, Italy
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Carlo Caiati
- Unit of Cardiovascular Diseases, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
2
|
Adhab AH, Altalbawy FMA, Mahdi MS, Baldaniya L, Omar TM, Ganesan S, Juneja B, Pathak PK, Mansoor AS, Radi UK, Abd NS, Kadhim M. NADPH Oxidases in Cancer Therapy-Induced Cardiotoxicity: Mechanisms and Therapeutic Approaches. Cardiovasc Toxicol 2025; 25:631-649. [PMID: 39966326 DOI: 10.1007/s12012-025-09976-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/13/2025] [Indexed: 02/20/2025]
Abstract
Cancer therapy-induced cardiotoxicity remains a significant clinical challenge, limiting the efficacy of cancer treatments and impacting long-term survival and quality of life. NADPH oxidases, a family of enzymes that are able to generate reactive oxygen species (ROS), have emerged as key players in the pathogenesis of cardiotoxicity associated with various cancer therapies. This review comprehensively examines the role of NADPH oxidases in cancer therapy-induced cardiotoxicity, elucidating the underlying mechanisms and exploring potential therapeutic approaches. We discuss the structure and function of NADPH oxidases in the cardiovascular system and their involvement in cardiotoxicity induced by anthracyclines and ionizing radiation. The molecular mechanisms by which NADPH oxidase-derived ROS contribute to cardiac injury are explored, including direct oxidative damage, activation of pro-apoptotic pathways, mitochondrial dysfunction, vascular damage, inflammation, fibrosis, and others. Furthermore, we evaluate therapeutic strategies targeting NADPH oxidases, such as specific inhibitors, antioxidant therapies, natural products, and other cardioprotectors. The review also addresses current challenges in the field, including the need for isoform-specific targeting and the identification of reliable biomarkers. Finally, we highlight future research directions aimed at mitigating NADPH oxidase-mediated cardiotoxicity and alleviating cardiovascular side effects in cancer survivors. By synthesizing current knowledge and identifying knowledge gaps, this review provides a rationale for future studies and the development of novel cardioprotective strategies in cancer therapy.
Collapse
Affiliation(s)
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia.
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza, 12613, Egypt.
| | | | - Lalji Baldaniya
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Nineveh, Iraq
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Bhanu Juneja
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Piyus Kumar Pathak
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | | | - Usama Kadem Radi
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Nasr Saadoun Abd
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Munther Kadhim
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
3
|
Tayal R, Mannan A, Singh S, Dhiman S, Singh TG. Unveiling the Complexities: Exploring Mechanisms of Anthracyclineinduced Cardiotoxicity. Curr Cardiol Rev 2025; 21:42-77. [PMID: 39484769 PMCID: PMC12060933 DOI: 10.2174/011573403x322928241021100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 11/03/2024] Open
Abstract
The coexistence of cancer and heart disease, both prominent causes of illness and death, is further exacerbated by the detrimental impact of chemotherapy. Anthracycline-induced cardiotoxicity is an unfortunate side effect of highly effective therapy in treating different types of cancer; it presents a significant challenge for both clinicians and patients due to the considerable risk of cardiotoxicity. Despite significant progress in understanding these mechanisms, challenges persist in identifying effective preventive and therapeutic strategies, rendering it a subject of continued research even after three decades of intensive global investigation. The molecular targets and signaling pathways explored provide insights for developing targeted therapies, emphasizing the need for continued research to bridge the gap between preclinical understanding and clinical applications. This review provides a comprehensive exploration of the intricate mechanisms underlying anthracycline-induced cardiotoxicity, elucidating the interplay of various signaling pathways leading to adverse cellular events, including cardiotoxicity and death. It highlights the extensive involvement of pathways associated with oxidative stress, inflammation, apoptosis, and cellular stress responses, offering insights into potential and unexplored targets for therapeutic intervention in mitigating anthracycline-induced cardiac complications. A comprehensive understanding of the interplay between anthracyclines and these complexes signaling pathways is crucial for developing strategies to prevent or mitigate the associated cardiotoxicity. Further research is needed to outline the specific contributions of these pathways and identify potential therapeutic targets to improve the safety and efficacy of anthracycline-based cancer treatment. Ultimately, advancements in understanding anthracycline-induced cardiotoxicity mechanisms will facilitate the development of more efficacious preventive and treatment approaches, thereby improving outcomes for cancer patients undergoing anthracycline-based chemotherapy.
Collapse
Affiliation(s)
- Rohit Tayal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | | |
Collapse
|
4
|
Zhang J, Ding W, Yin Z, Liu S, Zhao M, Xu Y, Liu J, Pan W, Peng S, Wei C, Zheng Z, Qin JJ, Wan J, Wang M. Interleukin-12p40 deficiency attenuates myocardial ferroptosis in doxorubicin-induced chronic cardiomyopathy by inhibiting Th17 differentiation and interleukin-17A production. Cardiovasc Res 2024; 120:2117-2133. [PMID: 39298642 DOI: 10.1093/cvr/cvae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/07/2024] [Accepted: 08/06/2024] [Indexed: 09/22/2024] Open
Abstract
AIMS Interleukin (IL)-12p40 is a common subunit of the bioactive cytokines IL-12 and IL-23, and it also has its own intrinsic functional activity. However, its role in doxorubicin-induced chronic cardiomyopathy (DICCM) as well as the underlying mechanisms are still unknown. METHODS AND RESULTS In this study, we used IL-12p40-knockout mice, IL-23p19-knockout mice, Rag1-knockout mice, a ferroptosis inhibitor, recombinant IL-12 (rIL-12), rIL-23, rIL-12p40, rIL-12p80, and anti-IL17A to investigate the effects of IL-12p40 on DICCM and elucidate the underlying mechanisms. We found that myocardial ferroptosis were increased in DICCM and that the inhibition of ferroptosis protected against DICCM. The expression of IL-12p40 was upregulated, and IL-12p40 was predominantly expressed by CD4+ T cells in the hearts of mice with DICCM. IL-12p40 knockout attenuated cardiac dysfunction, fibrosis and ferroptosis in DICCM, and similar results were observed in the context of CD4+ T cell IL-12p40 deficiency in Rag1-/- mice. Treatment with rIL-23, but not rIL-12, rIL-12p40 monomer or rIL-12p80, abolished the protective effects of IL-12p40 knockout. Moreover, rIL-23 treatment and IL-23p19 knockout exacerbated and ameliorated DICCM, respectively. IL-12p40 knockout might protect against DICCM by inhibiting Th17 differentiation and IL-17A production but not Th1, Th2 and Treg differentiation. Neutralizing IL-17A with an antibody also attenuated cardiac dysfunction, fibrosis, and ferroptosis. The IL-12p40/Th17/IL-17A axis might promote cardiomyocyte ferroptosis by activating TNF receptor-associated factor 6 (TRAF6)/mitogen-activated protein kinase (MAPK)/P53 signalling in DICCM. CONCLUSION Interleukin-12p40 deficiency protects against DICCM by inhibiting Th17 differentiation and the production of IL-17A, which plays critical roles in cardiomyocyte ferroptosis in DICCM via activating TRAF6/MAPK/P53 signalling. Our study may provide novel insights for the identification of therapeutic targets for treating DICCM in the clinic.
Collapse
Affiliation(s)
- Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Wuhan, China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Siqi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Shanshan Peng
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
5
|
Zhang P, Liu Y, Zhan Y, Zou P, Cai X, Chen Y, Shao L. Circ-0006332 stimulates cardiomyocyte pyroptosis via the miR-143/TLR2 axis to promote doxorubicin-induced cardiac damage. Epigenetics 2024; 19:2380145. [PMID: 39018487 PMCID: PMC11259061 DOI: 10.1080/15592294.2024.2380145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024] Open
Abstract
Doxorubicin (DOX)-mediated cardiotoxicity can impair the clinical efficacy of chemotherapy, leading to heart failure (HF). Given the importance of circRNAs and miRNAs in HF, this paper intended to delineate the mechanism of the circular RNA 0006332 (circ -0,006,332)/microRNA (miR)-143/Toll-like receptor 2 (TLR2) axis in doxorubicin (DOX)-induced HF. The binding of miR-143 to circ -0,006,332 and TLR2 was assessed with the dual-luciferase assay, and the binding between miR-143 and circ -0,006,332 was determined with FISH, RIP, and RNA pull-down assays. miR-143 and/or circ -0,006,332 were overexpressed in rats and cardiomyocytes, followed by DOX treatment. In cardiomyocytes, miR-143 and TLR2 expression, cell viability, LDH release, ATP contents, and levels of IL-1β, IL-18, TNF-α, and pyroptosis-related molecules were examined. In rats, cardiac function, serum levels of cardiac enzymes, apoptosis, myocardial fibrosis, and levels of IL-1β, IL-18, TNF-α, TLR2, and pyroptosis-related molecules were detected. miR-143 diminished TLR2 expression by binding to TLR2, and circ -0,006,332 bound to miR-143 to downregulate miR-143 expression. miR-143 expression was reduced and TLR2 expression was augmented in DOX-induced cardiomyocytes. miR-143 inhibited DOX-induced cytotoxicity by suppressing pyroptosis in H9C2 cardiomyocytes. In DOX-induced rats, miR-143 reduced cardiac dysfunction, myocardial apoptosis, myocardial fibrosis, TLR2 levels, and pyroptosis. Furthermore, overexpression of circ -0,006,332 blocked these effects of miR-143 on DOX-induced cardiomyocytes and rats. Circ -0,006,332 stimulates cardiomyocyte pyroptosis by downregulating miR-143 and upregulating TLR2, thus promoting DOX-induced cardiac injury.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Neurology, Jiangxi Provincial People’s Hospital, The First Hospital Affiliated to Nanchang Medical College, Nanchang, Jiangxi, China
| | - Yuanyuan Liu
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital to Nanchang Medical College, Nanchang, Jiangxi, China
| | - Yuliang Zhan
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital to Nanchang Medical College, Nanchang, Jiangxi, China
| | - Pengtao Zou
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital to Nanchang Medical College, Nanchang, Jiangxi, China
| | - Xinyong Cai
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital to Nanchang Medical College, Nanchang, Jiangxi, China
| | - Yanmei Chen
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital to Nanchang Medical College, Nanchang, Jiangxi, China
| | - Liang Shao
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital to Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Bayer AL, Zambrano MA, Smolgovsky S, Robbe ZL, Ariza A, Kaur K, Sawden M, Avery A, London C, Asnani A, Alcaide P. Cytotoxic T cells drive doxorubicin-induced cardiac fibrosis and systolic dysfunction. NATURE CARDIOVASCULAR RESEARCH 2024; 3:970-986. [PMID: 39196030 DOI: 10.1038/s44161-024-00507-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 06/13/2024] [Indexed: 08/29/2024]
Abstract
Doxorubicin, the most prescribed chemotherapeutic drug, causes dose-dependent cardiotoxicity and heart failure. However, our understanding of the immune response elicited by doxorubicin is limited. Here we show that an aberrant CD8+ T cell immune response following doxorubicin-induced cardiac injury drives adverse remodeling and cardiomyopathy. Doxorubicin treatment in non-tumor-bearing mice increased circulating and cardiac IFNγ+CD8+ T cells and activated effector CD8+ T cells in lymphoid tissues. Moreover, doxorubicin promoted cardiac CD8+ T cell infiltration and depletion of CD8+ T cells in doxorubicin-treated mice decreased cardiac fibrosis and improved systolic function. Doxorubicin treatment induced ICAM-1 expression by cardiac fibroblasts resulting in enhanced CD8+ T cell adhesion and transformation, contact-dependent CD8+ degranulation and release of granzyme B. Canine lymphoma patients and human patients with hematopoietic malignancies showed increased circulating CD8+ T cells after doxorubicin treatment. In human cancer patients, T cells expressed IFNγ and CXCR3, and plasma levels of the CXCR3 ligands CXCL9 and CXCL10 correlated with decreased systolic function.
Collapse
Grants
- NIH K08 HL145019 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL162200 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL159907A U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- NIH R01 HL163172 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Springboard Tier 1 Tufts University
- HL144477 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 906361 American Heart Association (American Heart Association, Inc.)
- 3R01HL144477-04S1 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL144477 NHLBI NIH HHS
- 906561 American Heart Association (American Heart Association, Inc.)
- HL165725 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- NIH U01CA272268 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
Collapse
Affiliation(s)
| | | | | | | | - Abul Ariza
- CardioVascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Kuljeet Kaur
- Department of Immunology, Tufts University, Boston, MA, USA
| | - Machlan Sawden
- Department of Immunology, Tufts University, Boston, MA, USA
| | - Anne Avery
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, CO, USA
| | - Cheryl London
- Department of Immunology, Tufts University, Boston, MA, USA
- Cummings School of Veterinary Medicine, Tufts University, Boston, MA, USA
| | - Aarti Asnani
- CardioVascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Pilar Alcaide
- Department of Immunology, Tufts University, Boston, MA, USA.
| |
Collapse
|
7
|
Vitale R, Marzocco S, Popolo A. Role of Oxidative Stress and Inflammation in Doxorubicin-Induced Cardiotoxicity: A Brief Account. Int J Mol Sci 2024; 25:7477. [PMID: 39000584 PMCID: PMC11242665 DOI: 10.3390/ijms25137477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024] Open
Abstract
Cardiotoxicity is the main side effect of several chemotherapeutic drugs. Doxorubicin (Doxo) is one of the most used anthracyclines in the treatment of many tumors, but the development of acute and chronic cardiotoxicity limits its clinical usefulness. Different studies focused only on the effects of long-term Doxo administration, but recent data show that cardiomyocyte damage is an early event induced by Doxo after a single administration that can be followed by progressive functional decline, leading to overt heart failure. The knowledge of molecular mechanisms involved in the early stage of Doxo-induced cardiotoxicity is of paramount importance to treating and/or preventing it. This review aims to illustrate several mechanisms thought to underlie Doxo-induced cardiotoxicity, such as oxidative and nitrosative stress, inflammation, and mitochondrial dysfunction. Moreover, here we report data from both in vitro and in vivo studies indicating new therapeutic strategies to prevent Doxo-induced cardiotoxicity.
Collapse
Affiliation(s)
| | | | - Ada Popolo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (R.V.); (S.M.)
| |
Collapse
|
8
|
Wang S, Zhang X, Hou Y, Zhang Y, Chen J, Gao S, Duan H, Gu S, Yu S, Cai Y. SIRT6 activates PPARα to improve doxorubicin-induced myocardial cell aging and damage. Chem Biol Interact 2024; 392:110920. [PMID: 38395252 DOI: 10.1016/j.cbi.2024.110920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/26/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
The Sirtuins family, formally known as the Silent Information Regulator Factors, constitutes a highly conserved group of histone deacetylases. Recent studies have illuminated SIRT6's role in doxorubicin (DOX)-induced oxidative stress and apoptosis within myocardial cells. Nevertheless, the extent of SIRT6's impact on DOX-triggered myocardial cell aging and damage remains uncertain, with the associated mechanisms yet to be fully understood. In our research, we examined the influence of SIRT6 on DOX-induced cardiomyocyte senescence using β-galactosidase and γ-H2AX staining. Additionally, we gauged the mRNA expression of senescence-associated genes, namely p16, p21, and p53, through Real-time PCR. Employing ELISA assay kits, MDA, and total SOD activity assay kits, we measured inflammatory factors TNF-α, IL-6, and IL-1β, alongside oxidative stress-related indicators. The results unequivocally indicated that SIRT6 overexpression robustly inhibited DOX-induced cardiomyocyte senescence. Furthermore, we established that SIRT6 overexpression suppressed the inflammatory response and oxidative stress induced by DOX in cardiomyocytes. Conversely, silencing SIRT6 exacerbated DOX-induced cardiomyocyte injury. Our investigations further unveiled that SIRT6 upregulated the expression of genes CD36, CPT1, LCAD, MCAD associated with fatty acid oxidation through its interaction with PPARα, thereby exerting anti-aging effects. In vivo, the overexpression of SIRT6 was observed to restore DOX-induced declines in EF and FS to normal levels in mice. Echocardiography and HE staining revealed the restoration of cardiomyocyte alignment, affording protection against DOX-induced myocardial senescence and injury. The findings from this study suggest that SIRT6 holds significant promise as a therapeutic target for mitigating DOX-induced cardiomyopathy.
Collapse
Affiliation(s)
- Shulin Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xuan Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Afffliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yanhong Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Afffliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuliang Zhang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiamin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Afffliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shuhan Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Afffliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Huiying Duan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Afffliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shaoju Gu
- Laboratory Animal Centre, Guangzhou Medical University, Guangzhou, China.
| | - Shanshan Yu
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Yi Cai
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Afffliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Chiu HW, Wu CH, Lin WY, Wong WT, Tsai WC, Hsu HT, Ho CL, Cheng SM, Cheng CC, Yang SP, Li LH, Hua KF. The Angiotensin II Receptor Neprilysin Inhibitor LCZ696 Inhibits the NLRP3 Inflammasome By Reducing Mitochondrial Dysfunction in Macrophages and Alleviates Dextran Sulfate Sodium-induced Colitis in a Mouse Model. Inflammation 2024; 47:696-717. [PMID: 38319541 DOI: 10.1007/s10753-023-01939-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/12/2023] [Accepted: 11/24/2023] [Indexed: 02/07/2024]
Abstract
The intracellular sensor protein complex known as the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome plays a crucial role in regulating inflammatory diseases by overseeing the production of interleukin (IL)-1β and IL-18. Targeting its abnormal activation with drugs holds significant promise for inflammation treatment. This study highlights LCZ696, an angiotensin receptor-neprilysin inhibitor, as an effective suppressor of NLRP3 inflammasome activation in macrophages stimulated by ATP, nigericin, and monosodium urate. LCZ696 also reduces caspase-11 and GSDMD activation, lactate dehydrogenase release, propidium iodide uptake, and the extracellular release of NLRP3 and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) in ATP-activated macrophages, suggesting a potential mitigation of pyroptosis. Mechanistically, LCZ696 lowers mitochondrial reactive oxygen species and preserves mitochondrial integrity. Importantly, it does not significantly impact NLRP3, proIL-1β, inducible nitric oxide synthase, cyclooxygenase-2 expression, or NF-κB activation in lipopolysaccharide-activated macrophages. LCZ696 partially inhibits the NLRP3 inflammasome through the induction of autophagy. In an in vivo context, LCZ696 alleviates NLRP3-associated colitis in a mouse model by reducing colonic expression of IL-1β and tumor necrosis factor-α. Collectively, these findings suggest that LCZ696 holds significant promise as a therapeutic agent for ameliorating NLRP3 inflammasome activation in various inflammatory diseases, extending beyond its established use in hypertension and heart failure treatment.
Collapse
Affiliation(s)
- Hsiao-Wen Chiu
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Chun-Hsien Wu
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Yu Lin
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Ting Wong
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Wei-Che Tsai
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsien-Ta Hsu
- Division of Neurosurgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien, Taiwan
| | - Chen-Lung Ho
- Division of Wood Cellulose, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Shu-Meng Cheng
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Chung Cheng
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Ping Yang
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Lan-Hui Li
- Department of Laboratory Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan.
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
10
|
Yang X, Liu Z, Fang M, Zou T, Zhang Z, Meng X, Wang T, Meng H, Chen Y, Duan Y, Li Q. Novel pterostilbene derivatives ameliorate heart failure by reducing oxidative stress and inflammation through regulating Nrf2/NF-κB signaling pathway. Eur J Med Chem 2023; 258:115602. [PMID: 37406380 DOI: 10.1016/j.ejmech.2023.115602] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/14/2023] [Accepted: 06/25/2023] [Indexed: 07/07/2023]
Abstract
Pterostilbene is a demethylated resveratrol derivative with attractive anti-inflammatory, anti-tumor and anti-oxidative stress activities. However, the clinical use of pterostilbene is limited by its poor selectivity and druggability. Heart failure is a leading cause of morbidity and mortality worldwide, which is closely related to enhanced oxidative stress and inflammation. There is an urgent need for new effective therapeutic drugs that can reduce oxidative stress and inflammatory responses. Therefore, we designed and synthesized a series of novel pterostilbene chalcone and dihydropyrazole derivatives with antioxidant and anti-inflammatory activities by the molecular hybridization strategy. The preliminary anti-inflammatory activities and structure-activity relationships of these compounds were evaluated by nitric oxide (NO) inhibitory activity in lipopolysaccharide (LPS)-treated RAW264.7 cells, and compound E1 exhibited the most potent anti-inflammatory activities. Furthermore, pretreatment with compound E1 decreased reactive oxygen species (ROS) generation both in RAW264.7 and H9C2 cells by increasing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), as well as downstream antioxidant enzymes superoxide dismutase 1 (SOD1), catalase (CAT) and glutathione peroxidase 1 (GPX1). In addition, compound E1 also significantly inhibited LPS or doxorubicin (DOX)-induced inflammation in both RAW264.7 and H9C2 cells through reducing the expression of inflammatory cytokines by inhibiting nuclear factor-κB (NF-κB) signaling pathway. Moreover, we found that compound E1 improved DOX-induced heart failure by inhibiting inflammation and oxidative stress in mouse model, which is mediated by the potential of antioxidant and anti-inflammatory activities. In conclusion, this study demonstrated the novel pterostilbene dihydropyrazole derivative E1 was identified as a promising agent for heart failure treatment.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Zhigang Liu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Mengyuan Fang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Tingfeng Zou
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhen Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xianshe Meng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Tianxiang Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Huawen Meng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Qingshan Li
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
11
|
Wang W, Zhong X, Fang Z, Li J, Li H, Liu X, Yuan X, Huang W, Huang Z. Cardiac sirtuin1 deficiency exacerbates ferroptosis in doxorubicin-induced cardiac injury through the Nrf2/Keap1 pathway. Chem Biol Interact 2023; 377:110469. [PMID: 37030624 DOI: 10.1016/j.cbi.2023.110469] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/04/2023] [Accepted: 03/31/2023] [Indexed: 04/10/2023]
Abstract
Doxorubicin (DOX), a broad-spectrum chemotherapeutic agent for various cancers, has limited clinical application because of its serious cardiotoxicity, which is due to different mechanisms, including cardiac ferroptosis and oxidative stress. Some drugs, such as berberine or dioscin, show efficacy in impeding DOX-induced cardiotoxicity by activating Sirtuin 1 (Sirt1). However, there is no direct evidence to clarify the role of Sirt1 in DOX-induced cardiomyopathy and its underlying role in cardiac ferroptosis. In this study, C57BL/6 and cardiac-specific Sirt1-/- knockout mice were used as a DOX-induced cardiotoxicity model. We found that cardiac Sirt1 was downregulated, oxidative stress was increased and ferroptosis were obviously enhanced, as reflected by decreased Glutathione peroxidase 4 (GPX4) and increased Heme oxygenase 1 (Hmox-1), exposure to DOX treatment in mice and H9c2 cells compared with the control. And Sirt1 activation was resistant to cardiac injury induced by DOX, as observed the improvement of cardiac dysfunction, and the reduction of cardiac fibrosis. However, cardiac Sirt1 deficiency aggravated Dox-induced cardiac dysfunction and cardiac remodeling, further downregulated GPX4, upregulated Hmox-1 expression and increased ROS level. In addition, Sirt1-siRNA exacerbated DOX-induced cardiotoxicity in H9c2 cells, which is similar to the results obtained in vivo. Furthermore, DOX decrease Nrf2 translocation from the cytosol to the nucleus, and Sirt1 deficiency further restrain the process, as well as the downstream Keap1 pathways, in DOX-induced cardiotoxicity. This study provides direct evidence that Sirt1 plays a protective role in DOX-induced cardiotoxicity by mediating ferroptosis reduction via the Nrf2/Keap1 pathway.
Collapse
Affiliation(s)
- Weiqi Wang
- Department of Cardiology, The First Affiliated Hospital of WenZhou Medical College, 2 Fuxue Road, WenZhou, ZheJiang, 325000, PR China
| | - Xin Zhong
- Department of Cardiology, The First Affiliated Hospital of WenZhou Medical College, 2 Fuxue Road, WenZhou, ZheJiang, 325000, PR China
| | - Zimin Fang
- Department of Cardiology, The First Affiliated Hospital of WenZhou Medical College, 2 Fuxue Road, WenZhou, ZheJiang, 325000, PR China
| | - Jianmin Li
- Department of Pathology, The First Affiliated Hospital of WenZhou Medical College, 2 Fuxue Road, WenZhou, ZheJiang, 325000, PR China
| | - Hebo Li
- Department of Cardiology, The First Affiliated Hospital of WenZhou Medical College, 2 Fuxue Road, WenZhou, ZheJiang, 325000, PR China
| | - Xuesheng Liu
- Department of Cardiology, The First Affiliated Hospital of WenZhou Medical College, 2 Fuxue Road, WenZhou, ZheJiang, 325000, PR China
| | - Xindi Yuan
- Department of Cardiology, The First Affiliated Hospital of WenZhou Medical College, 2 Fuxue Road, WenZhou, ZheJiang, 325000, PR China
| | - Weijian Huang
- Department of Cardiology, The First Affiliated Hospital of WenZhou Medical College, 2 Fuxue Road, WenZhou, ZheJiang, 325000, PR China
| | - Zhouqing Huang
- Department of Cardiology, The First Affiliated Hospital of WenZhou Medical College, 2 Fuxue Road, WenZhou, ZheJiang, 325000, PR China.
| |
Collapse
|
12
|
Mohamed HE, Askar ME, Shaheen MA, Salama AE, Idris RA, Younis NN. Infliximab substantially re-silenced Wnt/β-catenin signaling and ameliorated doxorubicin-induced cardiomyopathy in rats. J Biochem Mol Toxicol 2023; 37:e23312. [PMID: 36636964 DOI: 10.1002/jbt.23312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/19/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023]
Abstract
The release of inflammatory cytokines, namely tumor necrosis factor-α (TNF-α), plays an important role in the pathogenesis of cardiomyopathy. TNF-α increases in plasma and in myocardium of heart failure patients. We aimed to investigate the role of TNF-α inhibitor (infliximab; IFX) in regulating dilated cardiomyopathy (DCM) induced in rats. DCM was induced in rats by doxorubicin (DOX; 3.5 mg. kg-1 , i.p) twice weekly for 3 weeks (21 mg. kg-1 cumulative dose). DCM rats were treated with RPL (1 mg. kg-1 orally, daily), IFX (5 mg. kg-1 ; i.p. once) or their combination for 4 weeks starting next day of last DOX dose. Echocardiography was conducted followed by a collection of blood and left ventricle (LV) for biochemical and histological investigations. DCM rats revealed deteriorated cardiac function (increased CK-MB activity, LVIDs, LVIDd, ESV, and EDV, while decreased EF% and FS%), hypertrophy (increased HW/TL, β-MHC, and α-actin), inflammation (increased IL-1β, IL-6, and TNF-α). The activation of Wnt/β-catenin along with increased gene expression of RAS components (RENIN, ACE, and AT1) were evident. LV architecture also revealed abnormalities and some degree of fibrosis. Treatment with RPL and/or IFX suppressed TNF-α and consequently improved most of these parameters suppressing Wnt/β-catenin/RAS axis. Combined RPL and IFX treatment was the best among all treatments. In conclusion, Wnt/β-catenin/RAS axis is implicated in DOX-induced cardiomyopathy. The upstream TNF-α was proved for the first time in-vivo to stimulate this axis where its inhibition by RPL or IFX prevented DCM. Targeting this axis at two points using RPL and IFX showed better therapeutic efficacy.
Collapse
Affiliation(s)
- Hoda E Mohamed
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mervat E Askar
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed A Shaheen
- Department of Histology and Cell Biology, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Alaa E Salama
- Department of Cardiology, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Reham A Idris
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Nahla N Younis
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
13
|
Yuan C, Wu Z, Jin C, Cao W, Dong Y, Chen J, Liu C. Qiangxin recipe improves doxorubicin-induced chronic heart failure by enhancing KLF5-mediated glucose metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154697. [PMID: 36805482 DOI: 10.1016/j.phymed.2023.154697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/25/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Qiangxin recipe (QXF) is a well-known Chinese herbal medicine commonly used in Asia for thousands of years to treat cardiovascular diseases, but its underlying mechanism remains unclear. PURPOSE This study aimed to illustrate whether Qiangxin Recipe (QXF) induce glucose metabolism and inhibit cardiomyocyte apoptosis by promoting the activation of the transcription factor Krüppel like factor 5 (KLF5). MATERIAL AND METHODS In vitro experiments, we constructed an H9C2 cardiomyocyte injury model using doxorubicin and used RNA-seq data analysis to detect the mechanism of QXF. In in vivo experiments, C57 BL/6 mice injected with doxorubicin (4 mg/kg every 6 days, for 30 days) to construct a CHF mouse model and randomly divided into to the normal control group, Dox group and Dox+QXF group (2.12 g/kg/day, 4.24 g/kg/day, for 30 days). Using Echocardiography, serum biochemical indices BNP, cTnl; and histopathological tests involving HE staining, Tunel staining and Immuno-dual fluorescence colocalization to analyze the therapeutic mechanism of QXF. RESULTS We verified that the Qiangxin recipe could reverse cardiomyocyte dying through enhancing glucose metabolism and reducing apoptosis to improve CHF. Mechanistically, we discovered that the Qiangxin recipe promoted the activation of transcription factor Krüppel-like factor 5 (KLF5) to induce glucose metabolism and inhibit apoptosis in cardiomyocytes. Further, we identified that KLF5 increased the promoter activity of hexokinase 2 (HK2) and B-cell CLL/lymphoma 2 (BCL2) genes, which further enhanced glucose metabolism and inhibited apoptosis of cardiomyocytes. CONCLUSIONS We highlighted the importance of KLF5-mediated signaling pathways in the treatment of CHF as shown by their participation in glucose metabolism and apoptosis in a doxorubicin-induced model of cardiomyocyte injury, as well as show that Qiangxin recipe can be used as a novel targeted therapy for the treatment of CHF. Compared with previous studies, we provide new ideas for the treatment of Doxorubicin-induced CHF from the perspective of energy metabolism.
Collapse
Affiliation(s)
- Chenyue Yuan
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhijiang Road, Shanghai 200071, China
| | - Zong Wu
- Centeral Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhijiang Road, Shanghai 200071, China
| | - Cuiliu Jin
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhijiang Road, Shanghai 200071, China
| | - Weiwei Cao
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhijiang Road, Shanghai 200071, China
| | - Yaorong Dong
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhijiang Road, Shanghai 200071, China.
| | - Jiahui Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University and Shanghai Institute of Cardiovascular Diseases, 179 Fenglin Road, Shanghai 200030, China; Shanghai Institute of Cardiovascular Diseases, 179 Fenglin Road, Shanghai 200030, China.
| | - Chenping Liu
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhijiang Road, Shanghai 200071, China.
| |
Collapse
|
14
|
Zhang M, Zou Y, Li Y, Wang H, Sun W, Liu B. The history and mystery of sacubitril/valsartan: From clinical trial to the real world. Front Cardiovasc Med 2023; 10:1102521. [PMID: 37057101 PMCID: PMC10086241 DOI: 10.3389/fcvm.2023.1102521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Heart failure is a serious threat to human health, with morbidity and mortality rates increasing despite the existence of multiple treatment options. Therefore, it is necessary to identify new therapeutic targets for this disease. Sacubitril/valsartan is a supramolecular sodium salt complex of the enkephalinase inhibitor prodrug sacubitril and the angiotensin receptor blocker valsartan. Its combined action increases endogenous natriuretic peptides while inhibiting the renin-angiotensin-aldosterone system and exerting cardioprotective effects. Clinical evidence suggests that sacubitril/valsartan is superior to conventional renin-angiotensin-aldosterone inhibitor therapy for patients with reduced ejection fraction heart failure who can tolerate angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers. The therapy reduces the risk of heart failure hospitalization, cardiovascular mortality, and all-cause mortality and has a better safety and tolerability record. This review describes the potential pathophysiological mechanisms of cardiomyocyte injury amelioration by sacubitril/valsartan. We explore the protective effects of sacubitril/valsartan and outline the therapeutic value in patients with heart failure by summarizing the results of recent large clinical trials. Furthermore, a preliminary outlook shows that sacubitril/valsartan may be effective at treating other diseases, and provides some exploratory observations that lay the foundation for future studies on this drug.
Collapse
Affiliation(s)
| | | | | | | | - Wei Sun
- Correspondence: Wei Sun Bin Liu
| | - Bin Liu
- Correspondence: Wei Sun Bin Liu
| |
Collapse
|
15
|
Shi S, Chen Y, Luo Z, Nie G, Dai Y. Role of oxidative stress and inflammation-related signaling pathways in doxorubicin-induced cardiomyopathy. Cell Commun Signal 2023; 21:61. [PMID: 36918950 PMCID: PMC10012797 DOI: 10.1186/s12964-023-01077-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/12/2023] [Indexed: 03/16/2023] Open
Abstract
Doxorubicin (DOX) is a powerful and commonly used chemotherapeutic drug, used alone or in combination in a variety of cancers, while it has been found to cause serious cardiac side effects in clinical application. More and more researchers are trying to explore the molecular mechanisms of DOX-induced cardiomyopathy (DIC), in which oxidative stress and inflammation are considered to play a significant role. This review summarizes signaling pathways related to oxidative stress and inflammation in DIC and compounds that exert cardioprotective effects by acting on relevant signaling pathways, including the role of Nrf2/Keap1/ARE, Sirt1/p66Shc, Sirt1/PPAR/PGC-1α signaling pathways and NOS, NOX, Fe2+ signaling in oxidative stress, as well as the role of NLRP3/caspase-1/GSDMD, HMGB1/TLR4/MAPKs/NF-κB, mTOR/TFEB/NF-κB pathways in DOX-induced inflammation. Hence, we attempt to explain the mechanisms of DIC in terms of oxidative stress and inflammation, and to provide a theoretical basis or new idea for further drug research on reducing DIC. Video Abstract.
Collapse
Affiliation(s)
- Saixian Shi
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Luzhou, 646000, Sichuan Province, China.,School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Ye Chen
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Luzhou, 646000, Sichuan Province, China.,School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Zhijian Luo
- Department of Ultrasound, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Guojun Nie
- The First Outpatient Department of People's Liberation Army Western Theater General Hospital, Chengdu, 610000, Sichuan Province, China
| | - Yan Dai
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Luzhou, 646000, Sichuan Province, China.
| |
Collapse
|
16
|
Gaytan SL, Lawan A, Chang J, Nurunnabi M, Bajpeyi S, Boyle JB, Han SM, Min K. The beneficial role of exercise in preventing doxorubicin-induced cardiotoxicity. Front Physiol 2023; 14:1133423. [PMID: 36969584 PMCID: PMC10033603 DOI: 10.3389/fphys.2023.1133423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Doxorubicin is a highly effective chemotherapeutic agent widely used to treat a variety of cancers. However, the clinical application of doxorubicin is limited due to its adverse effects on several tissues. One of the most serious side effects of doxorubicin is cardiotoxicity, which results in life-threatening heart damage, leading to reduced cancer treatment success and survival rate. Doxorubicin-induced cardiotoxicity results from cellular toxicity, including increased oxidative stress, apoptosis, and activated proteolytic systems. Exercise training has emerged as a non-pharmacological intervention to prevent cardiotoxicity during and after chemotherapy. Exercise training stimulates numerous physiological adaptations in the heart that promote cardioprotective effects against doxorubicin-induced cardiotoxicity. Understanding the mechanisms responsible for exercise-induced cardioprotection is important to develop therapeutic approaches for cancer patients and survivors. In this report, we review the cardiotoxic effects of doxorubicin and discuss the current understanding of exercise-induced cardioprotection in hearts from doxorubicin-treated animals.
Collapse
Affiliation(s)
- Samantha L. Gaytan
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Ahmed Lawan
- Department of Biological Sciences, College of Science, University of Alabama in Huntsville, Huntsville, AL, United States
| | - Jongwha Chang
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, United States
| | - Sudip Bajpeyi
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Jason B. Boyle
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Sung Min Han
- Department of Physiology and Aging, College of Medicine, Institute on Aging, University of Florida, Gainesville, FL, United States
- *Correspondence: Kisuk Min, ; Sung Min Han,
| | - Kisuk Min
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
- *Correspondence: Kisuk Min, ; Sung Min Han,
| |
Collapse
|
17
|
Qian H, Qian Y, Liu Y, Cao J, Wang Y, Yang A, Zhao W, Lu Y, Liu H, Zhu W. Identification of novel biomarkers involved in doxorubicin-induced acute and chronic cardiotoxicity, respectively, by integrated bioinformatics. Front Cardiovasc Med 2023; 9:996809. [PMID: 36712272 PMCID: PMC9874088 DOI: 10.3389/fcvm.2022.996809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Background The mechanisms of doxorubicin (DOX) cardiotoxicity were complex and controversial, with various contradictions between experimental and clinical data. Understanding the differences in the molecular mechanism between DOX-induced acute and chronic cardiotoxicity may be an ideal entry point to solve this dilemma. Methods Mice were injected intraperitoneally with DOX [(20 mg/kg, once) or (5 mg/kg/week, three times)] to construct acute and chronic cardiotoxicity models, respectively. Survival record and ultrasound monitored the cardiac function. The corresponding left ventricular (LV) myocardium tissues were analyzed by RNA-seq to identify differentially expressed genes (DEGs). Gene Ontology (GO), Kyoto Encyclopedia of Gene and Genome (KEGG), and Gene Set Enrichment Analysis (GSEA) found the key biological processes and signaling pathways. DOX cardiotoxicity datasets from the Gene expression omnibus (GEO) database were combined with RNA-seq to identify the common genes. Cytoscape analyzed the hub genes, which were validated by quantitative real-time PCR. ImmuCo and ImmGen databases analyzed the correlations between hub genes and immunity-relative markers in immune cells. Cibersort analyzed the immune infiltration and correlations between the hub genes and the immune cells. Logistic regression, receiver operator characteristic curve, and artificial neural network analysis evaluated the diagnosis ability of hub genes for clinical data in the GEO dataset. Results The survival curves and ultrasound monitoring demonstrated that cardiotoxicity models were constructed successfully. In the acute model, 788 DEGs were enriched in the activated metabolism and the suppressed immunity-associated signaling pathways. Three hub genes (Alas1, Atp5g1, and Ptgds) were upregulated and were negatively correlated with a colony of immune-activating cells. However, in the chronic model, 281 DEGs showed that G protein-coupled receptor (GPCR)-related signaling pathways were the critical events. Three hub genes (Hsph1, Abcb1a, and Vegfa) were increased in the chronic model. Furthermore, Hsph1 combined with Vegfa was positively correlated with dilated cardiomyopathy (DCM)-induced heart failure (HF) and had high accuracy in the diagnosis of DCM-induced HF (AUC = 0.898, P = 0.000). Conclusion Alas1, Atp5g1, and Ptgds were ideal biomarkers in DOX acute cardiotoxicity. However, Hsph1 and Vegfa were potential biomarkers in the myocardium in the chronic model. Our research, first, provided bioinformatics and clinical evidence for the discovery of the differences in mechanism and potential biomarkers of DOX-induced acute and chronic cardiotoxicity to find a therapeutic strategy precisely.
Collapse
Affiliation(s)
- Hongyan Qian
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China,Cancer Research Center Nantong, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Yi Qian
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China
| | - Yi Liu
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China
| | - Jiaxin Cao
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China
| | - Yuhang Wang
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China
| | - Aihua Yang
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China
| | - Wenjing Zhao
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China
| | - Yingnan Lu
- School of Overseas Education, Changzhou University, Changzhou, China
| | - Huanxin Liu
- Shanghai Labway Medical Laboratory, Shanghai, China
| | - Weizhong Zhu
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China,*Correspondence: Weizhong Zhu, ; orcid.org/0000-0002-8740-3210
| |
Collapse
|
18
|
Sobiborowicz-Sadowska AM, Kamińska K, Cudnoch-Jędrzejewska A. Neprilysin Inhibition in the Prevention of Anthracycline-Induced Cardiotoxicity. Cancers (Basel) 2023; 15:312. [PMID: 36612307 PMCID: PMC9818213 DOI: 10.3390/cancers15010312] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Anthracycline-induced cardiotoxicity (AIC) poses a clinical challenge in the management of cancer patients. AIC is characterized by myocardial systolic dysfunction and remodeling, caused by cardiomyocyte DNA damage, oxidative stress, mitochondrial dysfunction, or renin-angiotensin-aldosterone system (RAAS) dysregulation. In the past decade, after positive results of a PARADIGM-HF trial, a new class of drugs, namely angiotensin receptor/neprilysin inhibitors (ARNi), was incorporated into the management of patients with heart failure with reduced ejection fraction. As demonstrated in a variety of preclinical studies of cardiovascular diseases, the cardioprotective effects of ARNi administration are associated with decreased oxidative stress levels, the inhibition of myocardial inflammatory response, protection against mitochondrial damage and endothelial dysfunction, and improvement in the RAAS imbalance. However, data on ARNi's effectiveness in the prevention of AIC remains limited. Several reports of ARNi administration in animal models of AIC have shown promising results, as ARNi prevented ventricular systolic dysfunction and electrocardiographic changes and ameliorated oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, and the inflammatory response associated with anthracyclines. There is currently an ongoing PRADAII trial aimed to assess the efficacy of ARNi in patients receiving breast cancer treatment, which is expected to be completed by late 2025.
Collapse
Affiliation(s)
| | - Katarzyna Kamińska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland
| | | |
Collapse
|
19
|
Discovery of novel dihydropyrazole-stilbene derivatives for ameliorating heart failure through modulation of p38/NF-κB signaling pathway. Bioorg Chem 2022; 129:106206. [DOI: 10.1016/j.bioorg.2022.106206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
|
20
|
Liu X, Li D, Pi W, Wang B, Xu S, Yu L, Yao L, Sun Z, Jiang J, Mi Y. LCZ696 protects against doxorubicin-induced cardiotoxicity by inhibiting ferroptosis via AKT/SIRT3/SOD2 signaling pathway activation. Int Immunopharmacol 2022; 113:109379. [PMID: 36330913 DOI: 10.1016/j.intimp.2022.109379] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Doxorubicin (DOX) is an effective and widely used anticancer drug but has limited clinical applicability because of its cardiotoxicity. Ferroptosis plays a key role in DOX-induced cardiac damage and cardiomyocyte cell death. The inhibition of ferroptosis reverses DOX-induced cardiotoxicity (DIC). LCZ696, a first-in-class angiotensin receptor neprilysin inhibitor, protects against DIC. However, the mechanism of action of LCZ696, especially its effect on ferroptosis, is incompletely understood. This study investigates the cardioprotective effects of LCZ696 on DIC in vivo and in vitro.Cardiotoxicity was induced in Wistar rats by tail intravenous injection of 2.5 mg/kg DOX once a week for six weeks. Rats and H9c2 cells were treated with or without LCZ696 to determine the cardioprotective role and underlying mechanisms of LCZ696 against DIC. To assess the role of SIRT3 and correlated pathways in ferroptosis, SIRT3 knockout was performed using lentiviral vectors, and AKT was inhibited with LY294002. LCZ696 significantly attenuated DIC by decreasing the concentrations of lipid reactive oxygen species and malondialdehyde and increasing the levels of glutathione peroxidase-4 and reduced glutathione in cells and heart tissues. Moreover, LCZ696 remodeled myocardial structures and improved heart ventricular function in DOX-treated rats. LCZ696 treatment increased SIRT3 expression and deacetylated its target gene SOD2, and these changes were mediated by AKT activation. SIRT3 knockdown and AKT inhibition induced lipid peroxidation and reduced the protective effect of LCZ696 in H9c2 cells. Collectively,LCZ696 prevents DIC by inhibiting ferroptosis via AKT/SIRT3/SOD2 signaling pathway activation. Thus, LZC696 is a potential therapeutic strategy for DIC.
Collapse
Affiliation(s)
- Xiaoman Liu
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Danlei Li
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Wenhu Pi
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Affiliated Taizhou hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Bin Wang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Shasha Xu
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Lei Yu
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Lei Yao
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Zhenzhu Sun
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China.
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China.
| | - Yafei Mi
- Department of Cardiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China; Laboratory of Cardiovascular Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China.
| |
Collapse
|
21
|
Bhagat A, Shrestha P, Kleinerman ES. The Innate Immune System in Cardiovascular Diseases and Its Role in Doxorubicin-Induced Cardiotoxicity. Int J Mol Sci 2022; 23:ijms232314649. [PMID: 36498974 PMCID: PMC9739741 DOI: 10.3390/ijms232314649] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Innate immune cells are the early responders to infection and tissue damage. They play a critical role in the initiation and resolution of inflammation in response to insult as well as tissue repair. Following ischemic or non-ischemic cardiac injury, a strong inflammatory response plays a critical role in the removal of cell debris and tissue remodeling. However, persistent inflammation could be detrimental to the heart. Studies suggest that cardiac inflammation and tissue repair needs to be tightly regulated such that the timely resolution of the inflammation may prevent adverse cardiac damage. This involves the recognition of damage; activation and release of soluble mediators such as cytokines, chemokines, and proteases; and immune cells such as monocytes, macrophages, and neutrophils. This is important in the context of doxorubicin-induced cardiotoxicity as well. Doxorubicin (Dox) is an effective chemotherapy against multiple cancers but at the cost of cardiotoxicity. The innate immune system has emerged as a contributor to exacerbate the disease. In this review, we discuss the current understanding of the role of innate immunity in the pathogenesis of cardiovascular disease and dox-induced cardiotoxicity and provide potential therapeutic targets to alleviate the damage.
Collapse
|
22
|
Ye B, Shi X, Xu J, Dai S, Xu J, Fan X, Han B, Han J. Gasdermin D mediates doxorubicin-induced cardiomyocyte pyroptosis and cardiotoxicity via directly binding to doxorubicin and changes in mitochondrial damage. Transl Res 2022; 248:36-50. [PMID: 35545198 DOI: 10.1016/j.trsl.2022.05.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/25/2022] [Accepted: 05/03/2022] [Indexed: 12/21/2022]
Abstract
Doxorubicin (Dox), as a widely used anthracycline antitumor drug, can cause severe cardiotoxicity. Cardiomyocyte death and inflammation are involved in the pathophysiology of Dox-induced cardiotoxicity (DIC). Gasdermin D (GSDMD) is known as a key executioner of pyroptosis, which is a pro-inflammatory programmed cell death. We aimed to investigate the impact of GSDMD on DIC and systematically reveal its underlying mechanisms. Our findings indicated that Dox induced cardiomyocyte pyroptosis in a GSDMD-dependent manner by utilizing siRNA or overexpression-plasmid technique. We then generated GSDMD global knockout mice via CRISPR/Cas9 system and found that GSDMD deficiency reduced Dox-induced cardiomyopathy. Dox induced the activation of inflammatory caspases, which subsequently mediated GSDMD-N generation indirectly. Using molecular dynamics simulation and cell-free systems, we confirmed that Dox directly bound to GSDMD and facilitated GSDMD-N-mediated pyroptosis. Furthermore, GSDMD also mediated Dox-induced mitochondrial damage via Bnip3 and mitochondrial perforation in cardiomyocytes. These findings provide fresh insights into the mechanism of how Dox-engaged GSDMD orchestrates adverse cardiotoxicity and highlight the prospects of GSDMD as a potential target for DIC.
Collapse
Affiliation(s)
- Bozhi Ye
- Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, Zhejiang 325000, China
| | - Xiaowen Shi
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, China
| | - Jianjiang Xu
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, China
| | - Shanshan Dai
- Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, Zhejiang 325000, China
| | - Jiajun Xu
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, China
| | - Xiaoxi Fan
- Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, Zhejiang 325000, China
| | - Bingjiang Han
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, China
| | - Jibo Han
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, China.
| |
Collapse
|
23
|
Chunchai T, Arinno A, Ongnok B, Pantiya P, Khuanjing T, Prathumsap N, Maneechote C, Chattipakorn N, Chattipakorn SC. Ranolazine alleviated cardiac/brain dysfunction in doxorubicin-treated rats. Exp Mol Pathol 2022; 127:104818. [PMID: 35882281 DOI: 10.1016/j.yexmp.2022.104818] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 02/08/2023]
Abstract
Doxorubicin (Dox), a powerful chemotherapeutic agent, has been shown to cause cardiotoxicity and neurotoxicity. Ranolazine, a drug that is commonly used to treat patients with chronic angina, has been shown to reduce toxicity from Dox therapy. Therefore, the present study aims to investigate the mechanisms behind the protective effects of ranolazine on the heart and brain in Dox-treatment. Twenty-four male Wistar rats received 6 doses of either 0.9% normal saline (0.9% NSS, i.p., n = 8) or Dox (3 mg/kg, i.p., n = 16). All Dox-treated rats were assigned into 2 groups to receive vehicle (0.9% NSS, orally; n = 8) or ranolazine (305 mg/kg/day, orally; n = 8) for 30 consecutive days. Following the treatments, left ventricular (LV) function and cognition were determined. Animals were euthanized, then the heart and brain were collected for further analysis. Dox induced systemic oxidative stress/inflammation, and cardiac injury evidenced by mitochondrial dysfunction, mitochondrial dynamic imbalance, and apoptosis, resulting in LV dysfunction. Ranolazine significantly improved LV function via attenuating cardiac injury. Dox also caused brain pathologies as indicated by increased brain inflammation, impaired blood-brain barrier integrity, brain mitochondrial dysfunction, microglial dysmorphology, hippocampal dysplasticity, and increased apoptosis, resulting in cognitive decline. Ranolazine exerted neuroprotective effects by suppressing brain pathologies and restoring cognitive function. These findings suggest that ranolazine has a potential role in cardio- and neuro-protection against chemotherapy.
Collapse
Affiliation(s)
- Titikorn Chunchai
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Apiwan Arinno
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Benjamin Ongnok
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patcharapong Pantiya
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thawatchai Khuanjing
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nanthip Prathumsap
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayodom Maneechote
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
24
|
Wu Z, Chen H, Lin L, Lu J, Zhao Q, Dong Z, Hai X. Sacubitril/valsartan protects against arsenic trioxide induced cardiotoxicity in vivo and in vitro. Toxicol Res (Camb) 2022; 11:451-459. [PMID: 35782642 PMCID: PMC9244229 DOI: 10.1093/toxres/tfac018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abstract
The cardiotoxicity induced by arsenic trioxide (ATO) limits its clinical application in acute promyelocytic leukemia treatment. Sacubitril/valsartan (LCZ696) is an effective drug for the treatment of heart failure. In this study, we aimed to investigate the protective effect and mechanisms of LCZ696 against the ATO-induced cardiotoxicity in mice and H9c2 cells. We found that LCZ696 could alleviate the decrease of ejection fraction and fractional shortening induced by ATO, thereby improving mouse cardiac contractile function. LCZ696 could also reduce the myocardial enzyme, resist oxidative stress, mitigate myocardial fibrosis, and ameliorate myocardial structure, thereby alleviating myocardial damage caused by ATO. In addition, LCZ696 could significantly increase the cell viability and reduce the accumulation of reactive oxygen species in ATO-treated H9c2 cells. Besides, in vivo and in vitro studies have been found that LCZ696 could restore the expression of Bcl-2 and reduce Bax and Caspase-3 levels, inhibiting ATO-induced apoptosis. Meanwhile, LCZ696 decreased the levels of IL-1, IL-6, and TNF-α, alleviating the inflammatory injury caused by ATO. Furthermore, LCZ696 prevented NF-κB upregulation induced by ATO. Our findings revealed that LCZ696 has a considerable effect on preventing cardiotoxicity induced by ATO, which attributes to its capability to suppress oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Zhiqiang Wu
- Department of Pharmacy, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hongzhu Chen
- Department of Pharmacy, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Liwang Lin
- Department of Pharmacy, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jing Lu
- Department of Pharmacy, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Qilei Zhao
- Department of Pharmacy, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zengxiang Dong
- Department of Pharmacy, First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xin Hai
- Department of Pharmacy, First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
25
|
Zhang X, Gao Y, Wu H, Mao Y, Qi Y. LncRNA HOX transcript antisense RNA mitigates cardiac function injury in chronic heart failure via regulating microRNA-30a-5p to target KDM3A. J Cell Mol Med 2022; 26:1473-1485. [PMID: 35083842 PMCID: PMC8899154 DOI: 10.1111/jcmm.17160] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
Long noncoding RNA HOX transcript antisense RNA (HOTAIR) has been studied in multiple diseases, but the role of HOTAIR on chronic heart failure (CHF) through the regulation of microRNA (miR)‐30a‐5p and lysine‐specific demethylase 3A (KDM3A) remains unexplored. This research aims to probe the effects of HOTAIR on CHF progression via modulating miR‐30a‐5p to target KDM3A. CHF mouse model was established by intraperitoneal injection of doxorubicin. The CHF mice were then injected with high‐expressed HOTAIR, miR‐30a‐5p or KDM3A adenovirus vectors to determine the cardiac function, oxidative stress, inflammatory response, pathological change and cardiomyocyte apoptosis. HOTAIR, miR‐30a‐5p, KDM3A and Bcl‐2/adenovirus E1B 19kDa interacting protein 3 (BNIP3) expression in CHF mice was detected. The binding relations among HOTAIR, miR‐30a‐5p and KDM3A were validated. HOTAIR and KDM3A were depleted, while miR‐30a‐5p was augmented in CHF mice. The elevated HOTAIR or KDM3A or could improve cardiac function, mitigate oxidative stress and pathological change, reduce inflammatory factor levels and cardiomyocyte apoptosis, while the increased miR‐30a‐5p exerted opposite effects. The miR‐30a‐5p elevation could reverse the effects of enriched HOTAIR, while BNIP3 reduction abrogated the effects of KDM3A on CHF. HOTAIR sponged miR‐30a‐5p that targeted KDM3A. HOTAIR improves cardiac injury in CHF via modulating miR‐30a‐5p to target KDM3A. This study provides novel therapeutic strategies for CHF treatment.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Cardio-Vascular Surgery, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Yakun Gao
- Cardio-Vascular Surgery, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Hongyu Wu
- Cardio-Vascular Surgery, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Yong Mao
- Cardio-Vascular Surgery, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Yanqing Qi
- Cardio-Vascular Surgery, Ningbo First Hospital, Ningbo, Zhejiang, China
| |
Collapse
|