1
|
Dougherty MW, Hoffmann RM, Hernandez MC, Airan Y, Gharaibeh RZ, Herzon SB, Yang Y, Jobin C. Genome-scale CRISPR/Cas9 screening reveals the role of PSMD4 in colibactin-mediated cell cycle arrest. mSphere 2025; 10:e0069224. [PMID: 39918307 PMCID: PMC11934320 DOI: 10.1128/msphere.00692-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/14/2025] [Indexed: 03/26/2025] Open
Abstract
Colibactin is a genotoxic secondary metabolite produced by certain Enterobacteriaceae strains that populate the intestine and produces a specific mutational signature in human colonocytes. However, the host pathways involved in colibactin response remain unclear. To address this gap, we performed genome-wide CRISPR/Cas9 knockout screens and RNA sequencing utilizing live pks+ bacteria and a synthetic colibactin analog. We identified 20 enriched genes with a MAGeCK score of >2.0 in both screens, including proteasomal subunits (e.g., PSMG4 and PSMD4), RNA processing factors (e.g., SF1 and PRPF8), and RNA polymerase III (e.g., CRCP), and validated the role of PSMD4 in colibactin sensitization. PSMD4 knockout in HEK293T and HT-29 cells promoted cell viability and ameliorated G2-M cell cycle arrest but did not affect the amount of phosphorylated H2AX foci after exposure to synthetic colibactin 742. Consistent with these observations, PSMD4-/- cells had a significantly higher colony formation rate and bigger colony size than control cells after 742 exposure. These findings suggest that PSMD4 regulates cell cycle arrest following colibactin-induced DNA damage and that cells with PSMD4 deficiency may continue to replicate despite DNA damage, potentially increasing the risk of malignant transformation. IMPORTANCE Colibactin has been implicated as a causative agent of colorectal cancer. However, colibactin-producing bacteria are also present in many healthy individuals, leading to the hypothesis that some aspects of colibactin regulation or host response dictate the molecule's carcinogenic potential. Elucidating the host-response pathways involved in dictating cell fate after colibactin intoxication has been difficult, partially due to an inability to isolate the molecule. This study provides the first high-throughput CRISPR/Cas9 screening to identify genes conferring colibactin sensitivity. Here, we utilize both bacterial infection and a synthetic colibactin analog to identify genes directly involved in colibactin response. These findings provide insight into how differences in gene expression may render certain individuals more vulnerable to colibactin-initiated tumor formation after DNA damage.
Collapse
Affiliation(s)
- Michael W. Dougherty
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Ryan M. Hoffmann
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Maria C. Hernandez
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Yougant Airan
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Raad Z. Gharaibeh
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Seth B. Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Departments of Pharmacology, Yale University, New Haven, Connecticut, USA
| | - Ye Yang
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Christian Jobin
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
- Department of Infectious Diseases and Immunology, University of Florida College of Medicine, Gainesville, Florida, USA
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
2
|
Laussu J, Michel D, Magne L, Segonds S, Marguet S, Hamel D, Quaranta-Nicaise M, Barreau F, Mas E, Velay V, Bugarin F, Ferrand A. Deciphering the interplay between biology and physics with a finite element method-implemented vertex organoid model: A tool for the mechanical analysis of cell behavior on a spherical organoid shell. PLoS Comput Biol 2025; 21:e1012681. [PMID: 39792958 PMCID: PMC11771887 DOI: 10.1371/journal.pcbi.1012681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 01/27/2025] [Accepted: 11/27/2024] [Indexed: 01/12/2025] Open
Abstract
Understanding the interplay between biology and mechanics in tissue architecture is challenging, particularly in terms of 3D tissue organization. Addressing this challenge requires a biological model enabling observations at multiple levels from cell to tissue, as well as theoretical and computational approaches enabling the generation of a synthetic model that is relevant to the biological model and allowing for investigation of the mechanical stresses experienced by the tissue. Using a monolayer human colon epithelium organoid as a biological model, freely available tools (Fiji, Cellpose, Napari, Morphonet, or Tyssue library), and the commercially available Abaqus FEM solver, we combined vertex and FEM approaches to generate a comprehensive viscoelastic finite element model of the human colon organoid and demonstrated its flexibility. We imaged human colon organoid development for 120 hours, following the evolution of the organoids from an immature to a mature morphology. According to the extracted architectural/geometric parameters of human colon organoids at various stages of tissue architecture establishment, we generated organoid active vertex models. However, this approach did not consider the mechanical aspects involved in the organoids' morphological evolution. Therefore, we applied a finite element method considering mechanical loads mimicking osmotic pressure, external solicitation, or active contraction in the vertex model by using the Abaqus FEM solver. Integration of finite element analysis (FEA) into the vertex model achieved a better fit with the biological model. Therefore, the FEM model provides a basis for depicting cell shape, tissue deformation, and cellular-level strain due to imposed stresses. In conclusion, we demonstrated that a combination of vertex and FEM approaches, combining geometrical and mechanical parameters, improves modeling of alterations in organoid morphology over time and enables better assessment of the mechanical cues involved in establishing the architecture of the human colon epithelium.
Collapse
Affiliation(s)
- Julien Laussu
- Institut Clément Ader, Université Fédérale de Toulouse Midi-Pyrénées, Institut Clément Ader–CNRS UMR 5312 –UPS/INSA/Mines Albi/ISAE, Toulouse, France
- IRSD—Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Deborah Michel
- IRSD—Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Léa Magne
- Institut Clément Ader, Université Fédérale de Toulouse Midi-Pyrénées, Institut Clément Ader–CNRS UMR 5312 –UPS/INSA/Mines Albi/ISAE, Toulouse, France
- IRSD—Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Stephane Segonds
- Institut Clément Ader, Université Fédérale de Toulouse Midi-Pyrénées, Institut Clément Ader–CNRS UMR 5312 –UPS/INSA/Mines Albi/ISAE, Toulouse, France
| | - Steven Marguet
- Institut Clément Ader, Université Fédérale de Toulouse Midi-Pyrénées, Institut Clément Ader–CNRS UMR 5312 –UPS/INSA/Mines Albi/ISAE, Toulouse, France
| | - Dimitri Hamel
- IRSD—Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Muriel Quaranta-Nicaise
- IRSD—Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Frederick Barreau
- IRSD—Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Emmanuel Mas
- IRSD—Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
- Gastroenterology, Hepatology, Nutrition, Diabetology and Hereditary Metabolic Diseases Unit, Hôpital des Enfants, CHU de Toulouse, Toulouse, France
| | - Vincent Velay
- Institut Clément Ader (ICA), Université de Toulouse, CNRS, IMT Mines Albi, INSA, ISAE-SUPAERO, UPS, Campus Jarlard, Albi, France
| | - Florian Bugarin
- Institut Clément Ader, Université Fédérale de Toulouse Midi-Pyrénées, Institut Clément Ader–CNRS UMR 5312 –UPS/INSA/Mines Albi/ISAE, Toulouse, France
| | - Audrey Ferrand
- IRSD—Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| |
Collapse
|
3
|
Permain J, Hock B, Eglinton T, Purcell R. Functional links between the microbiome and the molecular pathways of colorectal carcinogenesis. Cancer Metastasis Rev 2024; 43:1463-1474. [PMID: 39340753 PMCID: PMC11554747 DOI: 10.1007/s10555-024-10215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Colorectal cancer (CRC) is a common cancer, with a concerning rise in early-onset CRC cases, signalling a shift in disease epidemiology. Whilst our understanding of the molecular underpinnings of CRC has expanded, the complexities underlying its initiation remain elusive, with emerging evidence implicating the microbiome in CRC pathogenesis. This review synthesizes current knowledge on the intricate interplay between the microbiome, tumour microenvironment (TME), and molecular pathways driving CRC carcinogenesis. Recent studies have reported how the microbiome may modulate the TME and tumour immune responses, consequently influencing cancer progression, and whilst specific bacteria have been linked with CRC, the underlying mechanisms remains poorly understood. By elucidating the functional links between microbial landscapes and carcinogenesis pathways, this review offers insights into how bacteria orchestrate diverse pathways of CRC development, shedding light on potential therapeutic targets and personalized intervention strategies.
Collapse
Affiliation(s)
- Jessica Permain
- Department of Surgery and Critical Care, University of Otago, Christchurch, New Zealand
| | - Barry Hock
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Timothy Eglinton
- Department of Surgery and Critical Care, University of Otago, Christchurch, New Zealand
| | - Rachel Purcell
- Department of Surgery and Critical Care, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
4
|
Srinivas K, Ghatak S, Puro KU, Hussain Z, Prasad MCB, Milton AAP, Pakyntein CL, Bhargavi D, Das S, Angappan M, Lyngdoh V, Khan S, Kader NA, Ramshon U. Differential Cytotoxic Effects of Cell-Free Supernatants of Emerging Pathogens Escherichia albertii and Escherichia fergusonii on Four Cell Lines Reveal Vero Cells as a Putative Candidate for Cytotoxicity Analysis. Microorganisms 2024; 12:2370. [PMID: 39597758 PMCID: PMC11596466 DOI: 10.3390/microorganisms12112370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Escherichia albertii and Escherichia fergusonii are recognized as emerging pathogens with zoonotic potential. Despite their increasing importance, there is a paucity of data on the cytotoxicity of these two pathogens. Therefore, in the present study, we investigated the cytotoxic potentials of the cell-free supernatants from 10 E. albertii and 15 E. fergusonii isolates for their cytotoxic effects on four different cell lines (CHO, Vero, HeLa, and MDCK). All E. albertii isolates (100%) and all but one E. fergusonii (93.33%) were cytotoxic. E. albertii isolates produced similar cytotoxicity titres across the cell lines, whereas the Vero cell was found to be the most sensitive to toxins produced by E. fergusonii (p < 0.05), followed by HeLa and CHO cells. MDCK was the least sensitive cell line to E. fergusonii toxins (p < 0.05). PCR detection of cytotoxicity-associated genes (cdtB, stx1, and stx2) indicated uniform possession of cdtB gene by all E. albertii isolates, while stx1 and stx2 genes were harboured neither by E. albertii, nor E. fergusonii. Taken together, our results provided experimental evidence of the cytotoxic effects of these two emerging pathogens, and Vero cells were identified as an optimal candidate to study the cytotoxic effects of E. albertii and E. fergusonii.
Collapse
Affiliation(s)
- Kandhan Srinivas
- Division of Veterinary Public Health, ICAR—Indian Veterinary Research Institute, Bareilly 243122, India; (K.S.); (D.B.); (M.A.)
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam 793103, India; (K.-u.P.); (Z.H.); (M.C.B.P.); (C.L.P.); (S.D.); (V.L.); (S.K.); (N.A.K.); (U.R.)
| | - Sandeep Ghatak
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam 793103, India; (K.-u.P.); (Z.H.); (M.C.B.P.); (C.L.P.); (S.D.); (V.L.); (S.K.); (N.A.K.); (U.R.)
| | - Kekungu-u Puro
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam 793103, India; (K.-u.P.); (Z.H.); (M.C.B.P.); (C.L.P.); (S.D.); (V.L.); (S.K.); (N.A.K.); (U.R.)
| | - Zakir Hussain
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam 793103, India; (K.-u.P.); (Z.H.); (M.C.B.P.); (C.L.P.); (S.D.); (V.L.); (S.K.); (N.A.K.); (U.R.)
| | - Mosuri Chendu Bharat Prasad
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam 793103, India; (K.-u.P.); (Z.H.); (M.C.B.P.); (C.L.P.); (S.D.); (V.L.); (S.K.); (N.A.K.); (U.R.)
| | - Arockiasamy Arun Prince Milton
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam 793103, India; (K.-u.P.); (Z.H.); (M.C.B.P.); (C.L.P.); (S.D.); (V.L.); (S.K.); (N.A.K.); (U.R.)
| | - Careen Liza Pakyntein
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam 793103, India; (K.-u.P.); (Z.H.); (M.C.B.P.); (C.L.P.); (S.D.); (V.L.); (S.K.); (N.A.K.); (U.R.)
| | - Dadimi Bhargavi
- Division of Veterinary Public Health, ICAR—Indian Veterinary Research Institute, Bareilly 243122, India; (K.S.); (D.B.); (M.A.)
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam 793103, India; (K.-u.P.); (Z.H.); (M.C.B.P.); (C.L.P.); (S.D.); (V.L.); (S.K.); (N.A.K.); (U.R.)
| | - Samir Das
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam 793103, India; (K.-u.P.); (Z.H.); (M.C.B.P.); (C.L.P.); (S.D.); (V.L.); (S.K.); (N.A.K.); (U.R.)
| | - Madesh Angappan
- Division of Veterinary Public Health, ICAR—Indian Veterinary Research Institute, Bareilly 243122, India; (K.S.); (D.B.); (M.A.)
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam 793103, India; (K.-u.P.); (Z.H.); (M.C.B.P.); (C.L.P.); (S.D.); (V.L.); (S.K.); (N.A.K.); (U.R.)
| | - Vanita Lyngdoh
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam 793103, India; (K.-u.P.); (Z.H.); (M.C.B.P.); (C.L.P.); (S.D.); (V.L.); (S.K.); (N.A.K.); (U.R.)
| | - Sabia Khan
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam 793103, India; (K.-u.P.); (Z.H.); (M.C.B.P.); (C.L.P.); (S.D.); (V.L.); (S.K.); (N.A.K.); (U.R.)
| | - Nur Abdul Kader
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam 793103, India; (K.-u.P.); (Z.H.); (M.C.B.P.); (C.L.P.); (S.D.); (V.L.); (S.K.); (N.A.K.); (U.R.)
| | - Umjerksiar Ramshon
- Division of Animal and Fisheries Sciences, ICAR Research Complex for NEH Region, Umiam 793103, India; (K.-u.P.); (Z.H.); (M.C.B.P.); (C.L.P.); (S.D.); (V.L.); (S.K.); (N.A.K.); (U.R.)
| |
Collapse
|
5
|
Metsäniitty M, Hasnat S, Öhman C, Salo T, Eklund KK, Oscarsson J, Salem A. Zebrafish larvae as a model for studying the impact of oral bacterial vesicles on tumor cell growth and metastasis. Hum Cell 2024; 37:1696-1705. [PMID: 39138804 PMCID: PMC11481661 DOI: 10.1007/s13577-024-01114-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
Oral bacteria naturally secrete extracellular vesicles (EVs), which have attracted attention for their promising biomedical applications including cancer therapeutics. However, our understanding of EV impact on tumor progression is hampered by limited in vivo models. In this study, we propose a facile in vivo platform for assessing the effect of EVs isolated from different bacterial strains on oral cancer growth and dissemination using the larval zebrafish model. EVs were isolated from: wild-type Aggregatibacter actinomycetemcomitans and its mutant strains lacking the cytolethal distending toxin (CDT) or lipopolysaccharide (LPS) O-antigen; and wild-type Porphyromonas gingivalis. Cancer cells pretreated with EVs were xenotransplanted into zebrafish larvae, wherein tumor growth and metastasis were screened. We further assessed the preferential sites for the metastatic foci development. Interestingly, EVs from the CDT-lacking A. actinomycetemcomitans resulted in an increased tumor growth, whereas EVs lacking the lipopolysaccharide O-antigen reduced the metastasis rate. P. gingivalis-derived EVs showed no significant effects. Cancer cells pretreated with EVs from the mutant A. actinomycetemcomitans strains tended to metastasize less often to the head and tail compared to the controls. In sum, the proposed approach provided cost- and labor-effective yet efficient model for studying bacterial EVs in oral carcinogenesis, which can be easily extended for other cancer types. Furthermore, our results support the notion that these nanosized particles may represent promising targets in cancer therapeutics.
Collapse
Affiliation(s)
- Marjut Metsäniitty
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014, Helsinki, Finland
| | - Saika Hasnat
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014, Helsinki, Finland
| | - Carina Öhman
- Oral Microbiology, Department of Odontology, Umeå University, 90187, Umeå, Sweden
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014, Helsinki, Finland
| | - Kari K Eklund
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, 00014, Helsinki, Finland
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014, Helsinki, Finland
| | - Jan Oscarsson
- Oral Microbiology, Department of Odontology, Umeå University, 90187, Umeå, Sweden
| | - Abdelhakim Salem
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014, Helsinki, Finland.
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
6
|
Randall-Demllo S, Al-Qadami G, Raposo AE, Ma C, Priebe IK, Hor M, Singh R, Fung KYC. Ex Vivo Intestinal Organoid Models: Current State-of-the-Art and Challenges in Disease Modelling and Therapeutic Testing for Colorectal Cancer. Cancers (Basel) 2024; 16:3664. [PMID: 39518102 PMCID: PMC11544769 DOI: 10.3390/cancers16213664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Despite improvements in participation in population-based screening programme, colorectal cancer remains a major cause of cancer-related mortality worldwide. Targeted interventions are desirable to reduce the health and economic burden of this disease. Two-dimensional monolayers of colorectal cancer cell lines represent the traditional in vitro models for disease and are often used for diverse purposes, including the delineation of molecular pathways associated with disease aetiology or the gauging of drug efficacy. The lack of complexity in such models, chiefly the limited epithelial cell diversity and differentiation, attenuated mucus production, lack of microbial interactions and mechanical stresses, has driven interest in the development of more holistic and physiologically relevant in vitro model systems. In particular, established ex vivo patient-derived explant and patient-derived tumour xenograft models have been supplemented by progress in organoid and microfluidic organ-on-a-chip cultures. Here, we discuss the applicability of advanced culturing technologies, such as organoid systems, as models for colorectal cancer and for testing chemotherapeutic drug sensitivity and efficacy. We highlight current challenges associated with organoid technologies and discuss their future for more accurate disease modelling and personalized medicine.
Collapse
Affiliation(s)
- Sarron Randall-Demllo
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Adelaide 5000, Australia; (S.R.-D.); (G.A.-Q.)
| | - Ghanyah Al-Qadami
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Adelaide 5000, Australia; (S.R.-D.); (G.A.-Q.)
| | - Anita E. Raposo
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Westmead 2145, Australia; (A.E.R.); (C.M.)
| | - Chenkai Ma
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Westmead 2145, Australia; (A.E.R.); (C.M.)
| | - Ilka K. Priebe
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Adelaide 5000, Australia; (S.R.-D.); (G.A.-Q.)
| | - Maryam Hor
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Adelaide 5000, Australia; (S.R.-D.); (G.A.-Q.)
| | - Rajvinder Singh
- Division of Gastroenterology, Lyell McEwin Hospital, Adelaide 5112, Australia
| | - Kim Y. C. Fung
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Westmead 2145, Australia; (A.E.R.); (C.M.)
| |
Collapse
|
7
|
Azzi-Martin L, Touffait-Calvez V, Everaert M, Jia R, Sifré E, Seeneevassen L, Varon C, Dubus P, Ménard A. Cytolethal Distending Toxin Modulates Cell Differentiation and Elicits Epithelial to Mesenchymal Transition. J Infect Dis 2024; 229:1688-1701. [PMID: 38416880 DOI: 10.1093/infdis/jiae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/29/2024] [Accepted: 02/27/2024] [Indexed: 03/01/2024] Open
Abstract
BACKGROUND The bacterial genotoxin, cytolethal distending toxin (CDT), causes DNA damage in host cells, a risk factor for carcinogenesis. Previous studies have shown that CDT induces phenotypes reminiscent of epithelial to mesenchymal transition (EMT), a process involved in cancer initiation and progression. METHODS We investigated different steps of EMT in response to Helicobacter hepaticus CDT and its active CdtB subunit using in vivo and in vitro models. RESULTS Most of the steps of the EMT process were induced by CDT/CdtB and observed throughout the study in murine and epithelial cell culture models. CdtB induced cell-cell junction disassembly, causing individualization of cells and acquisition of a spindle-like morphology. The key transcriptional regulators of EMT (SNAIL and ZEB1) and some EMT markers were upregulated at both RNA and protein levels in response to CDT/CdtB. CdtB increased the expression and proteolytic activity of matrix metalloproteinases, as well as cell migration. A range of these results were confirmed in Helicobacter hepaticus-infected and xenograft murine models. In addition, colibactin, a genotoxic metabolite produced by Escherichia coli, induced EMT-like effects in cell culture. CONCLUSIONS Overall, these data show that infection with genotoxin-producing bacteria elicits EMT process activation, supporting their role in tumorigenesis.
Collapse
Affiliation(s)
- Lamia Azzi-Martin
- Bordeaux Institute of Oncology, UMR1312, INSERM, University of Bordeaux, Bordeaux, France
- Unité de Formation et de Recherche des Sciences Médicales, University of Bordeaux, Bordeaux, France
| | | | - Maude Everaert
- Bordeaux Institute of Oncology, UMR1312, INSERM, University of Bordeaux, Bordeaux, France
| | - Ruxue Jia
- Bordeaux Institute of Oncology, UMR1312, INSERM, University of Bordeaux, Bordeaux, France
| | - Elodie Sifré
- Bordeaux Institute of Oncology, UMR1312, INSERM, University of Bordeaux, Bordeaux, France
| | - Lornella Seeneevassen
- Bordeaux Institute of Oncology, UMR1312, INSERM, University of Bordeaux, Bordeaux, France
| | - Christine Varon
- Bordeaux Institute of Oncology, UMR1312, INSERM, University of Bordeaux, Bordeaux, France
- Unité de Formation et de Recherche des Sciences Médicales, University of Bordeaux, Bordeaux, France
| | - Pierre Dubus
- Bordeaux Institute of Oncology, UMR1312, INSERM, University of Bordeaux, Bordeaux, France
- Unité de Formation et de Recherche des Sciences Médicales, University of Bordeaux, Bordeaux, France
- Institut de Pathologie et de Biologie du Cancer, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Armelle Ménard
- Bordeaux Institute of Oncology, UMR1312, INSERM, University of Bordeaux, Bordeaux, France
| |
Collapse
|
8
|
Pan SY, Zhou CB, Deng JW, Zhou YL, Liu ZH, Fang JY. The effects of pks + Escherichia coli and bile acid in colorectal tumorigenesis among people with cholelithiasis or cholecystectomy. J Gastroenterol Hepatol 2024; 39:868-879. [PMID: 38220146 DOI: 10.1111/jgh.16462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 11/20/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND AND AIM Patients with cholelithiasis (CL) or cholecystectomy (CE) would have more chances of getting colorectal adenoma (CRA) or cancer (CRC). We aimed to figure out the effects of gut microbiota and bile acid on colorectal neoplasm in CL and CE patients. METHODS This was a retrospective observational study that recruited 514 volunteers, including 199 people with normal gallbladders (normal), 152 CL, and 163 CE patients. Discovery cohort was established to explore the difference in gut microbiota through 16S rRNA and metagenomics sequencing. Validation cohort aimed to verify the results through quantitative polymerase chain reaction (qPCR). RESULTS Significant enrichment of Escherichia coli was found in patients with cholelithiasis or cholecystectomy both in the discovery cohort (16S rRNA sequencing, PNormal-CL = 0.013, PNormal-CE = 0.042; metagenomics sequencing, PNormal-CE = 0.026) and validation cohort (PNormal-CL < 0.0001, PNormal-CE < 0.0001). Pks+ E. coli was found enriched in CL and CE patients through qPCR (in discovery cohort: PNormal-CE = 0.018; in validation cohort: PNormal-CL < 0.0001, PNormal-CE < 0.0001). The differences in bile acid metabolism were found both through Tax4Fun analysis of 16S rRNA sequencing (Ko00120, primary bile acid biosynthesis, PNormal-CE = 0.014; Ko00121, secondary bile acid biosynthesis, PNormal-CE = 0.010) and through metagenomics sequencing (map 00121, PNormal-CE = 0.026). The elevation of serum total bile acid of CE patients was also found in validation cohort (PNormal-CE < 0.0001). The level of serum total bile acid was associated with the relative abundance of pks+ E. coli (r = 0.1895, P = 0.0012). CONCLUSIONS E. coli, especially pks+ species, was enriched in CL and CE patients. Pks+ E. coli and bile acid metabolism were found associated with CRA and CRC in people after cholecystectomy.
Collapse
Affiliation(s)
- Si-Yuan Pan
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Digestive Disease, Shanghai, China
- State Key, Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Disease, Shanghai, China
| | - Cheng-Bei Zhou
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Digestive Disease, Shanghai, China
- State Key, Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Disease, Shanghai, China
| | - Jia-Wen Deng
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Digestive Disease, Shanghai, China
- State Key, Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Disease, Shanghai, China
| | - Yi-Lu Zhou
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Digestive Disease, Shanghai, China
- State Key, Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Disease, Shanghai, China
| | - Zhu-Hui Liu
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Digestive Disease, Shanghai, China
- State Key, Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Disease, Shanghai, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute of Digestive Disease, Shanghai, China
- State Key, Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Disease, Shanghai, China
| |
Collapse
|
9
|
Ciernikova S, Sevcikova A, Mladosievicova B, Mego M. Microbiome in Cancer Development and Treatment. Microorganisms 2023; 12:24. [PMID: 38257851 PMCID: PMC10819529 DOI: 10.3390/microorganisms12010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Targeting the microbiome, microbiota-derived metabolites, and related pathways represents a significant challenge in oncology. Microbiome analyses have confirmed the negative impact of cancer treatment on gut homeostasis, resulting in acute dysbiosis and severe complications, including massive inflammatory immune response, mucosal barrier disruption, and bacterial translocation across the gut epithelium. Moreover, recent studies revealed the relationship between an imbalance in the gut microbiome and treatment-related toxicity. In this review, we provide current insights into the role of the microbiome in tumor development and the impact of gut and tumor microbiomes on chemo- and immunotherapy efficacy, as well as treatment-induced late effects, including cognitive impairment and cardiotoxicity. As discussed, microbiota modulation via probiotic supplementation and fecal microbiota transplantation represents a new trend in cancer patient care, aiming to increase bacterial diversity, alleviate acute and long-term treatment-induced toxicity, and improve the response to various treatment modalities. However, a more detailed understanding of the complex relationship between the microbiome and host can significantly contribute to integrating a microbiome-based approach into clinical practice. Determination of causal correlations might lead to the identification of clinically relevant diagnostic and prognostic microbial biomarkers. Notably, restoration of intestinal homeostasis could contribute to optimizing treatment efficacy and improving cancer patient outcomes.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia;
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia;
| | - Beata Mladosievicova
- Institute of Pathological Physiology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, 833 10 Bratislava, Slovakia;
| |
Collapse
|
10
|
Benešová I, Křížová Ľ, Kverka M. Microbiota as the unifying factor behind the hallmarks of cancer. J Cancer Res Clin Oncol 2023; 149:14429-14450. [PMID: 37555952 PMCID: PMC10590318 DOI: 10.1007/s00432-023-05244-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
The human microbiota is a complex ecosystem that colonizes body surfaces and interacts with host organ systems, especially the immune system. Since the composition of this ecosystem depends on a variety of internal and external factors, each individual harbors a unique set of microbes. These differences in microbiota composition make individuals either more or less susceptible to various diseases, including cancer. Specific microbes are associated with cancer etiology and pathogenesis and several mechanisms of how they drive the typical hallmarks of cancer were recently identified. Although most microbes reside in the distal gut, they can influence cancer initiation and progression in distant tissues, as well as modulate the outcomes of established cancer therapies. Here, we describe the mechanisms by which microbes influence carcinogenesis and discuss their current and potential future applications in cancer diagnostics and management.
Collapse
Affiliation(s)
- Iva Benešová
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague 4-Krč, Czech Republic
| | - Ľudmila Křížová
- Department of Oncology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Miloslav Kverka
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague 4-Krč, Czech Republic.
| |
Collapse
|
11
|
Wang LW, Ruan H, Wang BM, Qin Y, Zhong WL. Microbiota regulation in constipation and colorectal cancer. World J Gastrointest Oncol 2023; 15:776-786. [PMID: 37275451 PMCID: PMC10237018 DOI: 10.4251/wjgo.v15.i5.776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023] Open
Abstract
The relevance of constipation to the development and progression of colorectal cancer (CRC) is currently a controversial issue. Studies have shown that changes in the composition of the gut microbiota, a condition known as ecological imbalance, are correlated with an increasing number of common human diseases, including CRC and constipation. CRC is the second leading cause of cancer-related deaths worldwide, and constipation has been receiving widespread attention as a risk factor for CRC. Early colonoscopy screening of constipated patients, with regular follow-ups and timely intervention, can help detect early intestinal lesions and reduce the risks of developing colorectal polyps and CRC. As an important regulator of the intestinal microenvironment, the gut microbiota plays a critical role in the onset and progression of CRC. An increasing amount of evidence supports the thought that gut microbial composition and function are key determinants of CRC development and progression, with alterations inducing changes in the expression of host genes, metabolic regulation, and local and systemic immunological responses. Furthermore, constipation greatly affects the composition of the gut microbiota, which in turn influences the susceptibility to intestinal diseases such as CRC. However, the crosstalk between the gut microbiota, constipation, and CRC is still unclear.
Collapse
Affiliation(s)
- Li-Wei Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hao Ruan
- China Resources Biopharmaceutical Company Limited, Beijing 100029, China
| | - Bang-Mao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yuan Qin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Wei-Long Zhong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
12
|
Mei S, Deng Z, Chen Y, Ning D, Guo Y, Fan X, Wang R, Meng Y, Zhou Q, Tian X. Dysbiosis: The first hit for digestive system cancer. Front Physiol 2022; 13:1040991. [PMID: 36483296 PMCID: PMC9723259 DOI: 10.3389/fphys.2022.1040991] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/01/2022] [Indexed: 03/01/2025] Open
Abstract
Gastrointestinal cancer may be associated with dysbiosis, which is characterized by an alteration of the gut microbiota. Understanding the role of gut microbiota in the development of gastrointestinal cancer is useful for cancer prevention and gut microbiota-based therapy. However, the potential role of dysbiosis in the onset of tumorigenesis is not fully understood. While accumulating evidence has demonstrated the presence of dysbiosis in the intestinal microbiota of both healthy individuals and patients with various digestive system diseases, severe dysbiosis is often present in patients with digestive system cancer. Importantly, specific bacteria have been isolated from the fecal samples of these patients. Thus, the association between dysbiosis and the development of digestive system cancer cannot be ignored. A new model describing this relationship must be established. In this review, we postulate that dysbiosis serves as the first hit for the development of digestive system cancer. Dysbiosis-induced alterations, including inflammation, aberrant immune response, bacteria-produced genotoxins, and cellular stress response associated with genetic, epigenetic, and/or neoplastic changes, are second hits that speed carcinogenesis. This review explains the mechanisms for these four pathways and discusses gut microbiota-based therapies. The content included in this review will shed light on gut microbiota-based strategies for cancer prevention and therapy.
Collapse
Affiliation(s)
- Si Mei
- Department of Physiology, Faculty of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhe Deng
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yating Chen
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Dimin Ning
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yinmei Guo
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xingxing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Ruoyu Wang
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Liver Diseases, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuelin Meng
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qing Zhou
- Department of Andrology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xuefei Tian
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
13
|
Lai YR, Chang YF, Ma J, Chiu CH, Kuo ML, Lai CH. From DNA Damage to Cancer Progression: Potential Effects of Cytolethal Distending Toxin. Front Immunol 2021; 12:760451. [PMID: 34868002 PMCID: PMC8634426 DOI: 10.3389/fimmu.2021.760451] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022] Open
Abstract
Cytolethal distending toxin (CDT), one of the most important genotoxins, is produced by several gram-negative bacteria and is involved in bacterial pathogenesis. Recent studies have shown that bacteria producing this peculiar genotoxin target host DNA, which potentially contributes to development of cancer. In this review, we highlighted the recent studies focusing on the idea that CDT leads to DNA damage, and the cells with inappropriately repaired DNA continue cycling, resulting in cancer development. Understanding the detailed mechanisms of genotoxins that cause DNA damage might be useful for targeting potential markers that drive cancer progression and help to discover new therapeutic strategies to prevent diseases caused by pathogens.
Collapse
Affiliation(s)
- Yi-Ru Lai
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Fang Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jason Ma
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Ming-Ling Kuo
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chih-Ho Lai
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taiwan.,Department of Microbiology, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|