1
|
Gairola K, Singh G, Bahuguna A, Pujari R, Kesharwani RK, Dubey SK. Computational simulation guided prediction of the inhibitory effect of curcumin, diallyl sulfide and its conjugates on ALDH1A1 to target breast cancer stem cells (BCSCs). J Biomol Struct Dyn 2025:1-14. [PMID: 40418669 DOI: 10.1080/07391102.2025.2506720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/26/2024] [Indexed: 05/28/2025]
Abstract
. Despite the significant advancements in clinical and laboratory research, breast cancer remains a formidable challenge due to its high incidence, recurrence and mortality rate. The emerging paradigm emphasizes the pivotal role of cancer stem cells in compelling cancer initiation and recurrence attributed to the resistance against conventional radio and chemotherapy, thereby leading to poor prognosis and disease relapse post-treatment. Aldehyde dehydrogenase (ALDH1A1) is the putative stemness biomarker in breast cancer stem cells. It has been attributed to drug resistance in chemotherapy, especially against the drugs derived from aldehydic intermediate in action mechanism, cell differentiation and oxidative stress response. Since time immemorial, natural products have been employed in traditional medicine systems for their therapeutic and chemopreventive properties. Curcumin, an active polyphenol present in turmeric, plays a significant role in impeding the growth of BCSCs. However, the clinical efficacy of curcumin is restrained due to its poor bioavailability, limited absorption, rapid metabolism, and systemic elimination. To address this challenge, efforts have been directed towards synthesizing curcumin conjugates with diallyl sulfide to enhance its bioavailability. Computational tools such as molecular docking, molecular dynamics simulations and end-state MMGBSA binding free-energy calculations were employed to predict the optimal binding of curcumin conjugates with ALDH1A1 and provide valuable insights into their potential binding affinity and therapeutic efficacy. The enhanced bioavailability of curcumin may be attributed to the enhanced therapeutic activity against the BCSCs. Furthermore, synthesizing curcumin conjugates holds promise in cancer Chemoprevention. .
Collapse
Affiliation(s)
- Kanchan Gairola
- Department of Biochemistry, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Gagandeep Singh
- Section of Microbiology, Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, India
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| | - Ananya Bahuguna
- Department of Biochemistry, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Rohit Pujari
- Department of Biochemistry, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Rajesh Kumar Kesharwani
- Department of Computer Application, Nehru Gram Bharati (Deemed to be University), Prayagraj, India
| | - Shiv Kumar Dubey
- Department of Biochemistry, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| |
Collapse
|
2
|
Chen W, Wang YJ. Multifaceted roles of OCT4 in tumor microenvironment: biology and therapeutic implications. Oncogene 2025; 44:1213-1229. [PMID: 40229384 DOI: 10.1038/s41388-025-03408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
OCT4 (Octamer-binding transcription factor 4, encoded by the POU5F1 gene) is a master transcription factor for maintaining the self-renewal and pluripotency of pluripotent stem cells, as well as a pioneer factor regulating epigenetics-driven cell reprogramming and cell fate conversion. It is also detected in a variety of cancer tissues and particularly in a small subpopulation of cancer cells known as cancer stem cells (CSCs). Accumulating evidence has revealed that CSCs are a dynamic population, exhibiting shift between multipotency and differentiation states, or quiescence and proliferation states. Such cellular plasticity of CSCs is profoundly influenced by dynamic interplay between CSCs and the tumor microenvironment (TME). Here, we review recent evidence showing that OCT4 expressed in CSCs plays a multifaceted role in shaping the TME by interacting with the cellular TME components, including cancer-associated fibroblasts, tumor endothelial cells, tumor-infiltrating immune cells, as well as the non-cellular TME components, such as extracellular matrix (ECM), metabolites, soluble factors (e.g., growth factors, cytokines and chemokines), and intra-tumoral microbiota. Together, OCT4 regulates crucial processes encompassing ECM remodeling, epithelial-mesenchymal transition, metabolic reprogramming, angiogenesis, and immune responses. The complex and bidirectional interactions between OCT4-expressing CSCs and the TME create a supportive niche for tumor growth, invasion, and resistance to therapy. Better understanding OCT4's roles in such interactions can provide deeper insights into potential therapeutic strategies and targets for disrupting the supportive environment of tumors. The emerging therapies targeting OCT4 in CSCs might hold promise to resensitize therapeutic-resistant cancer cells, and to eradicate all cancer cells when combined with other therapies targeting the bulk of differentiated cancer cells as well as the TME.
Collapse
Affiliation(s)
- Wenjie Chen
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Peng Z, Yao H, Li J, Shen S, Chen G, Cao M, Liu J. Peptide-functionalized gold nanostars-assisted single-cell Raman spectra for molecular analysis of tumor metastasis based on cancer stem cells. Talanta 2025; 286:127525. [PMID: 39765086 DOI: 10.1016/j.talanta.2025.127525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 03/03/2025]
Abstract
Cancer is one of the most fatal diseases threatening public health globally, and tumor metastasis causes greater than 90 % of cancer-associated deaths, presenting huge challenges for detection and efficient treatment of various human cancers. Cancer stem cells (CSCs) are a rare population of cancer cells and increasing evidences indicated CSCs are the driving force of tumor metastasis. In this study, a p-AuNSs-assisted single-cell Raman spectra has been established, to extract and amplify of CSCs fingerprints with single cell sensitivity. The gathered rich molecular information was further assigned according to the characteristic Raman peaks, and the results revealed a huge difference in the expression of molecules between CSCs and cancer cells, such as nucleic acids, proteins, saccharides and lipids. Furthermore, multiple data analysis algorithms including PCA, SVM, RF and KNN, were employed to reveal the fundamental characteristics and classification of CSCs and cancer cells based on the whole p-AuNSs-assisted single-cell Raman spectra. This work is beneficial for not only providing deep insights for molecular behaviors of tumor metastasis based on CSCs, but also could obtain significant information to aid medical diagnosis and to design effective CSCs-based therapeutic intervention clinically.
Collapse
Affiliation(s)
- Zhiyi Peng
- School of Pharmaceutical Sciences, Nanjing Tech University, 30th Puzhu South Road, Nanjing, 211816, China
| | - Han Yao
- School of Pharmaceutical Sciences, Nanjing Tech University, 30th Puzhu South Road, Nanjing, 211816, China
| | - Junqi Li
- Nanjing Jinling High School International Department, No.169 Zhongshan Road, Nanjing, 210005, China
| | - Shuwei Shen
- School of Pharmaceutical Sciences, Nanjing Tech University, 30th Puzhu South Road, Nanjing, 211816, China
| | - Guoguang Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, 30th Puzhu South Road, Nanjing, 211816, China.
| | - Meng Cao
- Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Jia Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, 30th Puzhu South Road, Nanjing, 211816, China.
| |
Collapse
|
4
|
Wang PX, Zhong YC, Duan B, Cheng JW, Sun YF, Zheng WJ, Zhou KQ, Xu Y, Peng HX, Jin WX, Li HM, Sun XJ, Guo W, Zhou J, Liu Q, Fan J, Yang XR. Exploring morphological heterogeneity of circulating tumor cells: machine learning-based approach for cell identification and prognostic implications. Sci Bull (Beijing) 2025:S2095-9273(25)00433-5. [PMID: 40348669 DOI: 10.1016/j.scib.2025.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/28/2024] [Accepted: 03/31/2025] [Indexed: 05/14/2025]
Affiliation(s)
- Peng-Xiang Wang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Yu-Chen Zhong
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Bin Duan
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian-Wen Cheng
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Yun-Fan Sun
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Wen-Jing Zheng
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Kai-Qian Zhou
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Yang Xu
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | | | | | - Hai-Min Li
- Dunwill Med-Tech, Shanghai 200032, China
| | | | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian Zhou
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Qi Liu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Jia Fan
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China.
| | - Xin-Rong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China.
| |
Collapse
|
5
|
Ahmadi Y, Faiq T, Abolhasani S. Impact of G1 phase kinetics on the acquisition of stemness in cancer cells: the critical role of cyclin D. Mol Biol Rep 2025; 52:230. [PMID: 39951181 DOI: 10.1007/s11033-025-10351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 02/07/2025] [Indexed: 05/09/2025]
Abstract
Cancer stem cells (CSCs) represent a unique subpopulation of cells with the ability to self-renew and differentiate, thereby sustaining tumor growth and contributing to disease recurrence. Although CSCs predominantly reside in the G0 phase, their stem-like properties, such as the expression of specific CD markers, self-renewal, differentiation potential, tumor initiation, drug resistance, and increased invasive and metastatic potential, manifest during their active proliferative phase. Rapidly dividing cells exhibit alterations in their cell cycle, often characterized by shortened or bypassed G1 phases, a phenomenon observed in both embryonic stem cells and cancerous cells. Dysregulation of cell cycle control is a hallmark of cancer, leading to uncontrolled cellular proliferation and tumorigenesis. Disruption in key regulatory proteins, signaling pathways, and cell cycle checkpoints-particularly during the G1 phase-enables cancer cells to escape normal proliferation restrictions. The rapid cell-cycle progression can impair the timely degradation of proteins critical for cell cycle regulation, particularly cyclin D, thereby compromising proper cell cycle control. Therefore these proteins may be passed to daughter cells, promoting further rounds of rapid cycles. Additionally, cyclin D is often overexpressed in cancer cells, further exacerbating uncontrolled proliferation. These mechanisms may underpin key properties of CSCs, including rapid proliferation and their stem-like traits. This review examines the relationship between G1 phase kinetics and the acquisition of stem-like characteristics, emphasizing how rapid G1 phase progression and transitions between dormancy and active proliferation contribute to the emergence of CSC traits.
Collapse
Affiliation(s)
- Yasin Ahmadi
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, Kurdistan Region, Iraq.
| | - Tahran Faiq
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, Kurdistan Region, Iraq
| | - Sakhavat Abolhasani
- Department of Basic Sciences and Health, Sarab Faculty of Medical Sciences, Sarab, East Azerbaijan, Iran.
- Sarab School of Medical Sciences and Health Services, Sarab, East Azerbaijan, Iran.
| |
Collapse
|
6
|
Liang QL, Liu H, Wang T, Lau CH, Wang J, Mo ZY, Zhou ZM, Zhou ZY, Zhu H, Chen G, Tong S. UV radiation enhanced encapsulation of superparamagnetic iron oxide nanoparticles (MNPs) in microparticles derived from tumor repopulating cells. Biochem Biophys Res Commun 2024; 741:151050. [PMID: 39586131 DOI: 10.1016/j.bbrc.2024.151050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Extracellular vesicles (EVs) such as microparticles secreted by the cells can be manipulated and used for delivering therapeutic drugs to target and eradicate cancer cells. However, high encapsulation efficiency and mass production of the microparticles remain difficult to achieve. Efficient and targeted delivery to cancer cells is another hurdle to be addressed. To overcome these issues, we integrated superparamagnetic iron oxide nanoparticles (MNPs) with microparticles. First of all, exposure of highly aggressive tumor-repopulating cells (TRC) to UV radiation dramatically improved microparticle production. These TRC cells were selected from diverse cancer cell lines that are 3D culturing in soft fibrin gel. These microparticles derived from 3D-cultured TRCs have lower membrane stiffness than 2D-cultured cells. Ferrozine assay showed that endocytosis and encapsulation of MNPs during microparticle production were higher in 3D-cultured TRC cells than in 2D cultured cells. Packaging of MNPs into microparticles also enhanced cellular uptake of MNPs without inducing cytotoxicity to treated cells. Compared to the naked MNPs, ex vivo fluorescence imaging shows that mice tail-vein injected with microparticle-encapsulated MNPs displayed continuous increments of intratumoral accumulation of MNPs. Furthermore, MRI images revealed a higher T2 contrast and an uneven distribution of the T2 contrast in the tumor of mice tail-vein injected with microparticle-encapsulated MNPs than naked MNPs. This study provides a new platform for cancer imaging by integrating MNPs and microparticles derived from tumor-repopulating cells.
Collapse
Affiliation(s)
- Qing-Le Liang
- Department of Clinical Laboratory Medicine, Chongqing University Jiangjin Hospital, Chongqing, China
| | - He Liu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tao Wang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
| | - Cia-Hin Lau
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China
| | - Jianchao Wang
- Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Zheng-Ying Mo
- Department of Oncology, Tai-He Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zhang-Ming Zhou
- Department of Neurosurgery, Dujiangyan Medical Center, Chengdu, China
| | - Zhe-Yu Zhou
- Department of Radiology, Tai-He Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Haibao Zhu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong, China; Shantou Key Laboratory of Marine Microbial Resources and Interactions with Environment, Shantou University, Shantou, Guangdong, China.
| | - Gang Chen
- Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China.
| | - Sheng Tong
- Department of Biomedical Engineering, University of Kentucky, USA.
| |
Collapse
|
7
|
Nguyen MH, Nguyen TYN, Le THN, Le TNT, Chau NTN, Le TMH, Huy Nguyen BQ. Medicinal plants as a potential resource for the discovery of novel structures towards cancer drug resistance treatment. Heliyon 2024; 10:e39229. [PMID: 39492898 PMCID: PMC11530815 DOI: 10.1016/j.heliyon.2024.e39229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/23/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Despite extensive research in chemotherapy, global cancer concerns persist, exacerbated by the challenge of drug resistance, which imposes economic and medical burdens. Natural compounds, particularly secondary metabolites from medicinal plants, present promising avenues for overcoming cancer drug resistance due to their diverse structures and essential pharmacological effects. This review provides a comprehensive exploration of cancer cell resistance mechanisms and target actions for reversing resistance and highlights the in vitro and in vivo efficacy of noteworthy alkaloids, flavonoids, and other compounds, emphasizing their potential as therapeutic agents. The molecular properties supporting ligand interactions are thoroughly examined, providing a robust theoretical foundation. The review concludes by discussing methods including quantitative structure-activity relationships and molecular docking, offering insights into screening potential candidates. Current trends in clinical treatment, contributing to a holistic understanding of the multifaceted approaches to address cancer drug resistance are also outlined.
Collapse
Affiliation(s)
- Minh Hien Nguyen
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh city, Viet Nam
| | - Thi Yen Nhi Nguyen
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh city, Viet Nam
- Faculty of Applied Science, Ho Chi Minh City University of Technology, Vietnam National University Ho Chi Minh City, 268 Ly Thuong Kiet Street Ward 14, District 10, Ho Chi Minh City, Viet Nam
| | - Thien Han Nguyen Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Thi Ngoc Tam Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Ngoc Trong Nghia Chau
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Tu Manh Huy Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, Viet Nam
| | - Bui Quoc Huy Nguyen
- The University of Danang - VN-UK Institute for Research and Executive Education, 41 Le Duan Street, Hai Chau 1 Ward, Hai Chau District, Danang City, Viet Nam
| |
Collapse
|
8
|
Kongtanawanich K, Prasopporn S, Jamnongsong S, Thongsin N, Payungwong T, Okada S, Hokland M, Wattanapanitch M, Jirawatnotai S. A live single-cell reporter system reveals drug-induced plasticity of a cancer stem cell-like population in cholangiocarcinoma. Sci Rep 2024; 14:22619. [PMID: 39349745 PMCID: PMC11442615 DOI: 10.1038/s41598-024-73581-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
Cancer stem cells (CSC) play an important role in carcinogenesis and are acknowledged to be responsible for chemoresistance in cholangiocarcinoma (CCA). Studying CCA CSC has been challenging, due to lack of consensus CSC markers, and to their plastic nature. Since dual expression of the core pluripotent factors SOX2/OCT4 has been shown to correlate with poor outcome in CCA patients, we selected the SOX2/OCT4 activating short half-life GFP-based live reporter (SORE6-dsCopGFP) to study CSC dynamics at the single-cell level. Transduction of five human CCA cell lines resulted in the expression of 1.8-13.1% GFP-positive (SORE6POS) cells. By live imaging, we found that SORE6POS CCA cells possess self-renewal capacity and that they can be induced to differentiate. Significantly, the SORE6POS cells were highly tumorigenic, both in vitro and in vivo, thus implicating the characteristics of primary CSCs. When we then analyzed for selected CSC-related markers, we found that the majority of both CD133+/CD44+, and CD133+/LGR5+ CCA cells were SORE6POS cells. Exposing transduced cells to standard CCA chemotherapy revealed higher growth rate inhibition at 50% (GR50s) for SORE6POS cells compared to GFP-negative (SORE6NEG) ones indicating that these CSC-like cells were more resistant to the treatment. Moreover, the chemotherapy induced SORE6POS from SORE6NEG cells, while retaining the existing SORE6POS population. Finally, treatment of transduced cells with CDK4/6 inhibitors in vitro for 3 days resulted in a lowered CSC number in the culture. Thus, applying a live reporter system allowed us to elucidate the stem cell diversity and drug-induced plasticity of CCA CSCs. These findings have clear implications for future management of such patients.
Collapse
Affiliation(s)
| | - Sunisa Prasopporn
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supawan Jamnongsong
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nontaphat Thongsin
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tongchai Payungwong
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | | | - Methichit Wattanapanitch
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Siwanon Jirawatnotai
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand.
| |
Collapse
|
9
|
Hernández-Magaña A, Bensussen A, Martínez-García JC, Álvarez-Buylla ER. A Boolean model explains phenotypic plasticity changes underlying hepatic cancer stem cells emergence. NPJ Syst Biol Appl 2024; 10:99. [PMID: 39223160 PMCID: PMC11369243 DOI: 10.1038/s41540-024-00422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
In several carcinomas, including hepatocellular carcinoma, it has been demonstrated that cancer stem cells (CSCs) have enhanced invasiveness and therapy resistance compared to differentiated cancer cells. Mathematical-computational tools could be valuable for integrating experimental results and understanding the phenotypic plasticity mechanisms for CSCs emergence. Based on the literature review, we constructed a Boolean model that recovers eight stable states (attractors) corresponding to the gene expression profile of hepatocytes and mesenchymal cells in senescent, quiescent, proliferative, and stem-like states. The epigenetic landscape associated with the regulatory network was analyzed. We observed that the loss of p53, p16, RB, or the constitutive activation of β-catenin and YAP1 increases the robustness of the proliferative stem-like phenotypes. Additionally, we found that p53 inactivation facilitates the transition of proliferative hepatocytes into stem-like mesenchymal phenotype. Thus, phenotypic plasticity may be altered, and stem-like phenotypes related to CSCs may be easier to attain following the mutation acquisition.
Collapse
Affiliation(s)
- Alexis Hernández-Magaña
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Antonio Bensussen
- Departamento de Control Automático, Cinvestav-IPN, Ciudad de México, México
| | | | - Elena R Álvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México.
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
10
|
Datta N, Vp S, Parvathy K, A S S, Maliekal TT. ALDH1A1 as a marker for metastasis initiating cells: A mechanistic insight. Exp Cell Res 2024; 442:114213. [PMID: 39173941 DOI: 10.1016/j.yexcr.2024.114213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
Since metastasis accounts for the majority of cancer morbidity and mortality, attempts are focused to block metastasis and metastasis initiating cellular programs. It is generally believed that hypoxia, reactive oxygen species (ROS) and the dysregulated redox pathways regulate metastasis. Although induction of epithelial to mesenchymal transition (EMT) can initiate cell motility to different sites other than the primary site, the initiation of a secondary tumor at a distant site depends on self-renewal property of cancer stem cell (CSC) property. That subset of metastatic cells possessing CSC property are referred to as metastasis initiating cells (MICs). Among the different cellular intermediates regulating metastasis in response to hypoxia by inducing EMT and self-renewal property, ALDH1A1 is a critical molecule, which can be used as a marker for MICs in a wide variety of malignancies. The cytosolic ALDHs can irreversibly convert retinal to retinoic acid (RA), which initiates RA signaling, important for self-renewal and EMT. The metastasis permissive tumor microenvironment increases the expression of ALDH1A1, primarily through HIF1α, and leads to metabolic reprograming through OXPHOS regulation. The ALDH1A1 expression and its high activity can reprogram the cancer cells with the transcriptional upregulation of several genes, involved in EMT through RA signaling to manifest hybrid EMT or Hybrid E/M phenotype, which is important for acquiring the characteristics of MICs. Thus, the review on this topic highlights the use of ALDH1A1 as a marker for MICs, and reporters for the marker can be effectively used to trace the population in mouse models, and to screen drugs that target MICs.
Collapse
Affiliation(s)
- Nandini Datta
- Cancer Research, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala, 695014, India
| | - Snijesh Vp
- Division of Molecular Medicine, St. John's Research Institute, St John's National Academy of Health Sciences, Bangalore, 560034, India
| | - K Parvathy
- Cancer Research, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala, 695014, India
| | - Sneha A S
- Cancer Research, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala, 695014, India
| | - Tessy Thomas Maliekal
- Cancer Research, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala, 695014, India; Regional Centre for Biotechnology, Faridabad, Haryana 121001, India.
| |
Collapse
|
11
|
Hernández-Magaña A, Bensussen A, Martínez-García JC, Álvarez-Buylla ER. Engineering principles for rationally design therapeutic strategies against hepatocellular carcinoma. Front Mol Biosci 2024; 11:1404319. [PMID: 38939509 PMCID: PMC11208463 DOI: 10.3389/fmolb.2024.1404319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
The search for new therapeutic strategies against cancer has favored the emergence of rationally designed treatments. These treatments have focused on attacking cell plasticity mechanisms to block the transformation of epithelial cells into cancerous cells. The aim of these approaches was to control particularly lethal cancers such as hepatocellular carcinoma. However, they have not been able to control the progression of cancer for unknown reasons. Facing this scenario, emerging areas such as systems biology propose using engineering principles to design and optimize cancer treatments. Beyond the possibilities that this approach might offer, it is necessary to know whether its implementation at a clinical level is viable or not. Therefore, in this paper, we will review the engineering principles that could be applied to rationally design strategies against hepatocellular carcinoma, and discuss whether the necessary elements exist to implement them. In particular, we will emphasize whether these engineering principles could be applied to fight hepatocellular carcinoma.
Collapse
Affiliation(s)
| | - Antonio Bensussen
- Departamento de Control Automático, Cinvestav-IPN, Ciudad de México, Mexico
| | | | - Elena R. Álvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
12
|
Frezzetti D, Caridi V, Marra L, Camerlingo R, D’Alessio A, Russo F, Dotolo S, Rachiglio AM, Esposito Abate R, Gallo M, Maiello MR, Morabito A, Normanno N, De Luca A. The Impact of Inadequate Exposure to Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors on the Development of Resistance in Non-Small-Cell Lung Cancer Cells. Int J Mol Sci 2024; 25:4844. [PMID: 38732063 PMCID: PMC11084975 DOI: 10.3390/ijms25094844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancer (NSCLC) patients treated with EGFR-tyrosine kinase inhibitors (TKIs) inevitably develop resistance through several biological mechanisms. However, little is known on the molecular mechanisms underlying acquired resistance to suboptimal EGFR-TKI doses, due to pharmacodynamics leading to inadequate drug exposure. To evaluate the effects of suboptimal EGFR-TKI exposure on resistance in NSCLC, we obtained HCC827 and PC9 cell lines resistant to suboptimal fixed and intermittent doses of gefitinib and compared them to cells exposed to higher doses of the drug. We analyzed the differences in terms of EGFR signaling activation and the expression of epithelial-mesenchymal transition (EMT) markers, whole transcriptomes byRNA sequencing, and cell motility. We observed that the exposure to low doses of gefitinib more frequently induced a partial EMT associated with an induced migratory ability, and an enhanced transcription of cancer stem cell markers, particularly in the HCC827 gefitinib-resistant cells. Finally, the HCC827 gefitinib-resistant cells showed increased secretion of the EMT inducer transforming growth factor (TGF)-β1, whose inhibition was able to partially restore gefitinib sensitivity. These data provide evidence that different levels of exposure to EGFR-TKIs in tumor masses might promote different mechanisms of acquired resistance.
Collapse
Affiliation(s)
- Daniela Frezzetti
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| | - Vincenza Caridi
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| | - Laura Marra
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| | - Rosa Camerlingo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| | - Amelia D’Alessio
- Laboratory of Toxicology Analysis, Department for the Treatment of Addictions, ASL Salerno, 84124 Salerno, Italy;
| | - Francesco Russo
- Institute of Endocrinology and Experimental Oncology, National Research Council of Italy, 80131 Naples, Italy;
| | - Serena Dotolo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| | - Anna Maria Rachiglio
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| | - Riziero Esposito Abate
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| | - Marianna Gallo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| | - Monica Rosaria Maiello
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| | - Alessandro Morabito
- Thoracic Department, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy;
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| | - Antonella De Luca
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (D.F.); (V.C.); (L.M.); (R.C.); (S.D.); (A.M.R.); (R.E.A.); (M.G.); (M.R.M.); (A.D.L.)
| |
Collapse
|
13
|
Cruz SM, Iranpur KR, Judge SJ, Ames E, Sturgill IR, Farley LE, Darrow MA, Crowley JS, Monjazeb AM, Murphy WJ, Canter RJ. Low-Dose Sorafenib Promotes Cancer Stem Cell Expansion and Accelerated Tumor Progression in Soft Tissue Sarcomas. Int J Mol Sci 2024; 25:3351. [PMID: 38542325 PMCID: PMC10969893 DOI: 10.3390/ijms25063351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 08/03/2024] Open
Abstract
The cancer stem cell (CSC) hypothesis postulates that heterogeneous human cancers harbor a population of stem-like cells which are resistant to cytotoxic therapies, thus providing a reservoir of relapse following conventional therapies like chemotherapy and radiation (RT). CSCs have been observed in multiple human cancers, and their presence has been correlated with worse clinical outcomes. Here, we sought to evaluate the impact of drug dosing of the multi-tyrosine kinase inhibitor, sorafenib, on CSC and non-CSCs in soft tissue sarcoma (STS) models, hypothesizing differential effects of sorafenib based on dose and target cell population. In vitro, human cancer cell lines and primary STS from surgical specimens were exposed to escalating doses of sorafenib to determine cell viability and expression of CSC marker aldehyde dehydrogenase (ALDH). In vivo, ALDHbright CSCs were isolated, exposed to sorafenib, and xenograft growth and survival analyses were performed. We observed that sarcoma CSCs appear to paradoxically respond to the tyrosine kinase inhibitor sorafenib at low doses with increased proliferation and stem-like function of CSCs, whereas anti-viability effects dominated at higher doses. Importantly, STS patients receiving neoadjuvant sorafenib and RT on a clinical trial (NCT00864032) showed increased CSCs post therapy, and higher ALDH scores post therapy were associated with worse metastasis-free survival. These data suggest that low-dose sorafenib may promote the CSC phenotype in STS with clinically significant effects, including increased tumor growth and higher rates of metastasis formation in sarcoma patients.
Collapse
Affiliation(s)
- Sylvia M. Cruz
- Division of Surgical Oncology, Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Khurshid R. Iranpur
- Division of Surgical Oncology, Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Sean J. Judge
- Division of Surgical Oncology, Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Erik Ames
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Ian R. Sturgill
- Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lauren E. Farley
- Division of Surgical Oncology, Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Morgan A. Darrow
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Jiwon Sarah Crowley
- Division of Surgical Oncology, Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Arta M. Monjazeb
- Department of Radiation Oncology, University of California Davis, Sacramento, CA 95817, USA
| | - William J. Murphy
- Department of Dermatology, University of California Davis, Sacramento, CA 95817, USA;
| | - Robert J. Canter
- Division of Surgical Oncology, Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
14
|
Ruz-Caracuel I, Pedraza-Arevalo S, Alonso-Gordoa T, Molina-Cerrillo J, Earl J, Sainz B. Everything you ever wanted to know about cancer stem cells in neuroendocrine neoplasms but were afraid to ask. ENDOCRINE ONCOLOGY (BRISTOL, ENGLAND) 2024; 4:e240006. [PMID: 39822777 PMCID: PMC11737516 DOI: 10.1530/eo-24-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/28/2024] [Accepted: 10/30/2024] [Indexed: 01/19/2025]
Abstract
While the role of cancer stem cells (CSCs) in tumorigenesis, chemoresistance, metastasis, and relapse has been extensively studied in solid tumors, such as adenocarcinomas or sarcomas, the same cannot be said for neuroendocrine neoplasms (NENs). While lagging, CSCs have been described in numerous NENs, including gastrointestinal and pancreatic NENs (PanNENs), and they have been found to play critical roles in tumor initiation, progression, and treatment resistance. However, it seems that there is still skepticism regarding the role of CSCs in NENs, even in light of studies that support the CSC model in these tumors and the therapeutic benefits of targeting them. For example, in lung neuroendocrine carcinoids, a high percentage of CSCs have been found in atypical carcinoids, suggesting the presence of CSCs in these cancers. In PanNENs, CSCs marked by aldehyde dehydrogenases or CD90 have been identified, and targeting CSCs with inhibitors of molecular pathways has shown therapeutic potential. Overall, while evidence exists for the presence of CSCs in NENs, either the CSC field has neglected NENs or the NEN field has not fully embraced the CSC model. Both might apply and/or may be a consequence of the fact that NENs are a relatively rare and heterogeneous tumor entity, with confusing histology and nomenclature to match. Regardless, this review intends to summarize our current knowledge of CSCs in NENs and highlight the importance of understanding the role of CSCs in the biology of these rare tumors, with a special focus on developing targeted therapies to improve patients' outcomes.
Collapse
Affiliation(s)
- Ignacio Ruz-Caracuel
- Pathology Department, Hospital
Universitario Ramón y Cajal, Madrid,
Spain
- Molecular Pathology of Cancer
Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación
Sanitaria (IRYCIS), Madrid,
Spain
- Centro de Investigación
Biomédica en Red, CIBERONC, ISCIII, Madrid,
Spain
| | - Sergio Pedraza-Arevalo
- Maimonides Biomedical Research
Institute of Córdoba (IMIBIC), Cordoba,
Spain
- Department of Cell Biology,
Physiology, and Immunology, University of Córdoba,
Cordoba, Spain
- Reina Sofía University
Hospital (HURS), Cordoba,
Spain
| | - Teresa Alonso-Gordoa
- Molecular Pathology of Cancer
Group, Area 3 Cancer, Instituto Ramón y Cajal de Investigación
Sanitaria (IRYCIS), Madrid,
Spain
- Medical Oncology Department,
Hospital Universitario Ramón y Cajal, Madrid,
Spain
| | | | - Julie Earl
- Centro de Investigación
Biomédica en Red, CIBERONC, ISCIII, Madrid,
Spain
- Biomarkers and Personalized
Approach to Cancer (BIOPAC) Group, Area 3 Cancer, Instituto Ramón y Cajal
de Investigación Sanitaria (IRYCIS), Madrid,
Spain
| | - Bruno Sainz
- Centro de Investigación
Biomédica en Red, CIBERONC, ISCIII, Madrid,
Spain
- Biomarkers and Personalized
Approach to Cancer (BIOPAC) Group, Area 3 Cancer, Instituto Ramón y Cajal
de Investigación Sanitaria (IRYCIS), Madrid,
Spain
- Department of Cancer, Instituto
de Investigaciones Biomédicas (IIBm) Sols-Morreale
(CSIC-UAM), Madrid, Spain
| |
Collapse
|
15
|
Świerczewska M, Sterzyńska K, Ruciński M, Andrzejewska M, Nowicki M, Januchowski R. The response and resistance to drugs in ovarian cancer cell lines in 2D monolayers and 3D spheroids. Biomed Pharmacother 2023; 165:115152. [PMID: 37442067 DOI: 10.1016/j.biopha.2023.115152] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023] Open
Abstract
Ovarian cancer is the most common type of gynecologic cancer. One of the leading causes of high mortality is chemoresistance, developed primarily or during treatment. Different mechanisms of drug resistance appear at the cellular and cancer tissue organization levels. We examined the differences in response to the cytotoxic drugs CIS, MTX, DOX, VIN, PAC, and TOP using 2D (two-dimensional) and 3D (three-dimensional) culture methods. We tested the drug-sensitive ovarian cancer cell line W1 and established resistant cell lines to appropriate cytotoxic drugs. The following qualitative and quantitative methods were used to assess: 1) morphology - inverted microscope and hematoxylin & eosin staining; 2) viability - MTT assay; 3) gene expression - a quantitative polymerase chain reaction; 4) identification of proteins - immunohistochemistry, and immunofluorescence. Our results indicate that the drug-sensitive and drug-resistant cells cultured in 3D conditions exhibit stronger resistance than the cells cultured in 2D conditions. A traditional 2D model shows that drug resistance of cancer cells is caused mainly by changes in the expression of genes encoding ATP-binding cassette transporter proteins, components of the extracellular matrix, "new" established genes related to drug resistance in ovarian cancer cell lines, and universal marker of cancer stem cells. Whereas in a 3D model, the drug resistance in spheroids can be related to other mechanisms such as the structure of the spheroid (dense or loose), the cell type (necrotic, quiescent, proliferating cells), drug concentrations or drug diffusion into the dense cellular/ECM structure.
Collapse
Affiliation(s)
- Monika Świerczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznan, Poland.
| | - Karolina Sterzyńska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznan, Poland.
| | - Marcin Ruciński
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznan, Poland.
| | - Małgorzata Andrzejewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznan, Poland.
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznan, Poland.
| | - Radosław Januchowski
- Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Góra, Poland.
| |
Collapse
|
16
|
Gillespie MS, Ward CM, Davies CC. DNA Repair and Therapeutic Strategies in Cancer Stem Cells. Cancers (Basel) 2023; 15:1897. [PMID: 36980782 PMCID: PMC10047301 DOI: 10.3390/cancers15061897] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
First-line cancer treatments successfully eradicate the differentiated tumour mass but are comparatively ineffective against cancer stem cells (CSCs), a self-renewing subpopulation thought to be responsible for tumour initiation, metastasis, heterogeneity, and recurrence. CSCs are thus presented as the principal target for elimination during cancer treatment. However, CSCs are challenging to drug target because of numerous intrinsic and extrinsic mechanisms of drug resistance. One such mechanism that remains relatively understudied is the DNA damage response (DDR). CSCs are presumed to possess properties that enable enhanced DNA repair efficiency relative to their highly proliferative bulk progeny, facilitating improved repair of double-strand breaks induced by radiotherapy and most chemotherapeutics. This can occur through multiple mechanisms, including increased expression and splicing fidelity of DNA repair genes, robust activation of cell cycle checkpoints, and elevated homologous recombination-mediated DNA repair. Herein, we summarise the current knowledge concerning improved genome integrity in non-transformed stem cells and CSCs, discuss therapeutic opportunities within the DDR for re-sensitising CSCs to genotoxic stressors, and consider the challenges posed regarding unbiased identification of novel DDR-directed strategies in CSCs. A better understanding of the DDR mediating chemo/radioresistance mechanisms in CSCs could lead to novel therapeutic approaches, thereby enhancing treatment efficacy in cancer patients.
Collapse
Affiliation(s)
- Matthew S. Gillespie
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.S.G.)
- School of Cancer Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Ciara M. Ward
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.S.G.)
| | - Clare C. Davies
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.S.G.)
| |
Collapse
|
17
|
Bano A, Stevens JH, Modi PS, Gustafsson JÅ, Strom AM. Estrogen Receptor β4 Regulates Chemotherapy Resistance and Induces Cancer Stem Cells in Triple Negative Breast Cancer. Int J Mol Sci 2023; 24:ijms24065867. [PMID: 36982940 PMCID: PMC10058198 DOI: 10.3390/ijms24065867] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Triple Negative Breast Cancer (TNBC) has the worst prognosis among all breast cancers, and survival in patients with recurrence is rarely beyond 12 months due to acquired resistance to chemotherapy, which is the standard of care for these patients. Our hypothesis is that Estrogen Receptor β1 (ERβ1) increases response to chemotherapy but is opposed by ERβ4, which it preferentially dimerizes with. The role of ERβ1 and ERβ4 in influencing chemotherapy sensitivity has never been studied before. CRISPR/CAS9 was used to truncate ERβ1 Ligand Binding Domain (LBD) and knock down the exon unique to ERβ4. We show that the truncated ERβ1 LBD in a variety of mutant p53 TNBC cell lines, where ERβ1 ligand dependent function was inactivated, had increased resistance to Paclitaxel, whereas the ERβ4 knockdown cell line was sensitized to Paclitaxel. We further show that ERβ1 LBD truncation, as well as treatment with ERβ1 antagonist 2-phenyl-3-(4-hydroxyphenyl)-5,7-bis(trifluoromethyl)-pyrazolo[1,5-a] pyrimidine (PHTPP), leads to increase in the drug efflux transporters. Hypoxia Inducible Factors (HIFs) activate factors involved in pluripotency and regulate the stem cell phenotype, both in normal and cancer cells. Here we show that the ERβ1 and ERβ4 regulate these stem cell markers like SOX2, OCT4, and Nanog in an opposing manner; and we further show that this regulation is mediated by HIFs. We show the increase of cancer cell stemness due to ERβ1 LBD truncation is attenuated when HIF1/2α is knocked down by siRNA. Finally, we show an increase in the breast cancer stem cell population due to ERβ1 antagonist using both ALDEFLUORTM and SOX2/OCT4 response element (SORE6) reporters in SUM159 and MDA-MB-231 cell lines. Since most TNBC cancers are ERβ4 positive, while only a small proportion of TNBC patients are ERβ1 positive, we believe that simultaneous activation of ERβ1 with agonists and inactivation of ERβ4, in combination with paclitaxel, can be more efficacious and yield better outcome for chemotherapy resistant TNBC patients.
Collapse
Affiliation(s)
- Ayesha Bano
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, Science & Engineering Research Center, University of Houston, Houston, TX 77204, USA
| | - Jessica H Stevens
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, Science & Engineering Research Center, University of Houston, Houston, TX 77204, USA
| | | | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, Science & Engineering Research Center, University of Houston, Houston, TX 77204, USA
- Department of BioSciences and Nutrition, Karolinska Institutet, 171 77 Huddinge, Sweden
| | - Anders M Strom
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, Science & Engineering Research Center, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
18
|
Tsochantaridis I, Roupas A, Mohlin S, Pappa A, Voulgaridou GP. The Concept of Cancer Stem Cells: Elaborating on ALDH1B1 as an Emerging Marker of Cancer Progression. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010197. [PMID: 36676146 PMCID: PMC9863106 DOI: 10.3390/life13010197] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
Cancer is a multifactorial, complex disease exhibiting extraordinary phenotypic plasticity and diversity. One of the greatest challenges in cancer treatment is intratumoral heterogeneity, which obstructs the efficient eradication of the tumor. Tumor heterogeneity is often associated with the presence of cancer stem cells (CSCs), a cancer cell sub-population possessing a panel of stem-like properties, such as a self-renewal ability and multipotency potential. CSCs are associated with enhanced chemoresistance due to the enhanced efflux of chemotherapeutic agents and the existence of powerful antioxidant and DNA damage repair mechanisms. The distinctive characteristics of CSCs make them ideal targets for clinical therapeutic approaches, and the identification of efficient and specific CSCs biomarkers is of utmost importance. Aldehyde dehydrogenases (ALDHs) comprise a wide superfamily of metabolic enzymes that, over the last years, have gained increasing attention due to their association with stem-related features in a wide panel of hematopoietic malignancies and solid cancers. Aldehyde dehydrogenase 1B1 (ALDH1B1) is an isoform that has been characterized as a marker of colon cancer progression, while various studies suggest its importance in additional malignancies. Here, we review the basic concepts related to CSCs and discuss the potential role of ALDH1B1 in cancer development and its contribution to the CSC phenotype.
Collapse
Affiliation(s)
- Ilias Tsochantaridis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Angelos Roupas
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Sofie Mohlin
- Division of Pediatrics, Clinical Sciences, Lund Stem Cell Center, Lund University Cancer Center, 22384 Lund, Sweden
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Georgia-Persephoni Voulgaridou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Correspondence:
| |
Collapse
|
19
|
Moya-Garcia CR, Okuyama H, Sadeghi N, Li J, Tabrizian M, Li-Jessen NYK. In vitro models for head and neck cancer: Current status and future perspective. Front Oncol 2022; 12:960340. [PMID: 35992863 PMCID: PMC9381731 DOI: 10.3389/fonc.2022.960340] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/29/2022] [Indexed: 12/12/2022] Open
Abstract
The 5-year overall survival rate remains approximately 50% for head and neck (H&N) cancer patients, even though new cancer drugs have been approved for clinical use since 2016. Cancer drug studies are now moving toward the use of three-dimensional culture models for better emulating the unique tumor microenvironment (TME) and better predicting in vivo response to cancer treatments. Distinctive TME features, such as tumor geometry, heterogenous cellularity, and hypoxic cues, notably affect tissue aggressiveness and drug resistance. However, these features have not been fully incorporated into in vitro H&N cancer models. This review paper aims to provide a scholarly assessment of the designs, contributions, and limitations of in vitro models in H&N cancer drug research. We first review the TME features of H&N cancer that are most relevant to in vitro drug evaluation. We then evaluate a selection of advanced culture models, namely, spheroids, organotypic models, and microfluidic chips, in their applications for H&N cancer drug research. Lastly, we propose future opportunities of in vitro H&N cancer research in the prospects of high-throughput drug screening and patient-specific drug evaluation.
Collapse
Affiliation(s)
| | - Hideaki Okuyama
- School of Communication Sciences and Disorders, McGill University, Montreal, QC, Canada
- Department of Otolaryngology – Head & Neck Surgery, Kyoto University, Kyoto, Japan
| | - Nader Sadeghi
- Department of Otolaryngology – Head and Neck Surgery, McGill University, Montreal, QC, Canada
- Research Institute of McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Jianyu Li
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- Department of Mechanical Engineering, McGill University, Montreal, QC, Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
- *Correspondence: Maryam Tabrizian, ; Nicole Y. K. Li-Jessen,
| | - Nicole Y. K. Li-Jessen
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- School of Communication Sciences and Disorders, McGill University, Montreal, QC, Canada
- Department of Otolaryngology – Head and Neck Surgery, McGill University, Montreal, QC, Canada
- Research Institute of McGill University Health Center, McGill University, Montreal, QC, Canada
- *Correspondence: Maryam Tabrizian, ; Nicole Y. K. Li-Jessen,
| |
Collapse
|
20
|
Ducos B, Bensimon D, Scerbo P. Vertebrate Cell Differentiation, Evolution, and Diseases: The Vertebrate-Specific Developmental Potential Guardians VENTX/ NANOG and POU5/ OCT4 Enter the Stage. Cells 2022; 11:cells11152299. [PMID: 35892595 PMCID: PMC9331430 DOI: 10.3390/cells11152299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 01/02/2023] Open
Abstract
During vertebrate development, embryonic cells pass through a continuum of transitory pluripotent states that precede multi-lineage commitment and morphogenesis. Such states are referred to as “refractory/naïve” and “competent/formative” pluripotency. The molecular mechanisms maintaining refractory pluripotency or driving the transition to competent pluripotency, as well as the cues regulating multi-lineage commitment, are evolutionarily conserved. Vertebrate-specific “Developmental Potential Guardians” (vsDPGs; i.e., VENTX/NANOG, POU5/OCT4), together with MEK1 (MAP2K1), coordinate the pluripotency continuum, competence for multi-lineage commitment and morphogenesis in vivo. During neurulation, vsDPGs empower ectodermal cells of the neuro-epithelial border (NEB) with multipotency and ectomesenchyme potential through an “endogenous reprogramming” process, giving rise to the neural crest cells (NCCs). Furthermore, vsDPGs are expressed in undifferentiated-bipotent neuro-mesodermal progenitor cells (NMPs), which participate in posterior axis elongation and growth. Finally, vsDPGs are involved in carcinogenesis, whereby they confer selective advantage to cancer stem cells (CSCs) and therapeutic resistance. Intriguingly, the heterogenous distribution of vsDPGs in these cell types impact on cellular potential and features. Here, we summarize the findings about the role of vsDPGs during vertebrate development and their selective advantage in evolution. Our aim to present a holistic view regarding vsDPGs as facilitators of both cell plasticity/adaptability and morphological innovation/variation. Moreover, vsDPGs may also be at the heart of carcinogenesis by allowing malignant cells to escape from physiological constraints and surveillance mechanisms.
Collapse
Affiliation(s)
- Bertrand Ducos
- LPENS, PSL, CNRS, 24 rue Lhomond, 75005 Paris, France
- IBENS, PSL, CNRS, 46 rue d’Ulm, 75005 Paris, France
- High Throughput qPCR Core Facility, ENS, PSL, 46 rue d’Ulm, 75005 Paris, France
- Correspondence: (B.D.); (D.B.); (P.S.)
| | - David Bensimon
- LPENS, PSL, CNRS, 24 rue Lhomond, 75005 Paris, France
- IBENS, PSL, CNRS, 46 rue d’Ulm, 75005 Paris, France
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90094, USA
- Correspondence: (B.D.); (D.B.); (P.S.)
| | - Pierluigi Scerbo
- LPENS, PSL, CNRS, 24 rue Lhomond, 75005 Paris, France
- IBENS, PSL, CNRS, 46 rue d’Ulm, 75005 Paris, France
- Correspondence: (B.D.); (D.B.); (P.S.)
| |
Collapse
|
21
|
Identification of Malignant Cell Populations Associated with Poor Prognosis in High-Grade Serous Ovarian Cancer Using Single-Cell RNA Sequencing. Cancers (Basel) 2022; 14:cancers14153580. [PMID: 35892844 PMCID: PMC9331511 DOI: 10.3390/cancers14153580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Ovarian cancer has a high recurrence rate (~75%), and tumor heterogeneity is associated with such tumor recurrence. However, it is still poorly understood in ovarian cancer. To reveal tumor heterogeneity, we performed single-cell RNA sequencing (RNA-seq) of serous ovarian cancer cells from four different patients: two with primary carcinoma, one with recurrent carcinoma, and one with carcinoma treated with interval debulking surgery. As a result, we found two malignant tumor cell subtypes associated with poor prognosis. One malignant population included the earliest cancer cells and cancer stem-like cells. SLC3A1 and PEG10 were identified as the marker genes of cancer-initiating cells. The other malignant population expressing CA125 (MUC16), the most common biomarker for ovarian cancer, is associated with a decrease in the number of tumor-infiltrating cytotoxic T lymphocytes (CTLs). Our findings will offer new markers for diagnosis and choosing treatments targeting the malignant populations in ovarian cancer. Abstract To reveal tumor heterogeneity in ovarian cancer, we performed single-cell RNA sequencing (RNA-seq). We obtained The Cancer Genome Atlas (TCGA) survival data and TCGA gene expression data for a Kaplan–Meier plot showing the association of each tumor population with poor prognosis. As a result, we found two malignant tumor cell subtypes associated with poor prognosis. Next, we performed trajectory analysis using scVelo and Monocle3 and cell–cell interaction analysis using CellphoneDB. We found that one malignant population included the earliest cancer cells and cancer stem-like cells. Furthermore, we identified SLC3A1 and PEG10 as the marker genes of cancer-initiating cells. The other malignant population expressing CA125 (MUC16) is associated with a decrease in the number of tumor-infiltrating cytotoxic T lymphocytes (CTLs). Moreover, cell–cell interaction analysis implied that interactions mediated by LGALS9 and GAS6, expressed by this malignant population, caused the CTL suppression. The results of this study suggest that two tumor cell populations, including a cancer-initiating cell population and a population expressing CA125, survive the initial treatment and suppress antitumor immunity, respectively, and are associated with poor prognosis. Our findings offer a new understanding of ovarian cancer heterogeneity and will aid in the development of diagnostic tools and treatments.
Collapse
|
22
|
FOXM1-CD44 Signaling Is Critical for the Acquisition of Regorafenib Resistance in Human Liver Cancer Cells. Int J Mol Sci 2022; 23:ijms23147782. [PMID: 35887129 PMCID: PMC9324640 DOI: 10.3390/ijms23147782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/21/2022] Open
Abstract
Regorafenib is a multikinase inhibitor that was approved by the US Food and Drug administration in 2017. Cancer stem cells (CSCs) are a small subset of cancer-initiating cells that are thought to contribute to therapeutic resistance. The forkhead box protein M1 (FOXM1) plays an important role in the regulation of the stemness of CSCs and mediates resistance to chemotherapy. However, the relationship between FOXM1 and regorafenib resistance in liver cancer cells remains unknown. We found that regorafenib-resistant HepG2 clones overexpressed FOXM1 and various markers of CSCs. Patients with hepatocellular carcinoma also exhibited an upregulation of FOXM1 and resistance to regorafenib, which were correlated with a poor survival rate. We identified a close relationship between FOXM1 expression and regorafenib resistance, which was correlated with the survival of patients with hepatocellular carcinoma. Thus, a strategy that antagonizes FOXM1–CD44 signaling would enhance the therapeutic efficacy of regorafenib in these patients.
Collapse
|
23
|
Braumüller H, Mauerer B, Berlin C, Plundrich D, Marbach P, Cauchy P, Laessle C, Biesel E, Holzner PA, Kesselring R. Senescent Tumor Cells in the Peritoneal Carcinomatosis Drive Immunosenescence in the Tumor Microenvironment. Front Immunol 2022; 13:908449. [PMID: 35844581 PMCID: PMC9279937 DOI: 10.3389/fimmu.2022.908449] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
More than half of all patients with colorectal cancer (CRC) develop distant metastasis and, depending on the local stage of the primary tumor, up to 48% of patients present peritoneal carcinomatosis (PC). PC is often considered as a widespread metastatic disease, which is almost resistant to current systemic therapies like chemotherapeutic and immunotherapeutic regimens. Here we could show that tumor cells of PC besides being senescent also exhibit stem cell features. To investigate these surprising findings in more detail, we established a murine model based on tumor organoids that resembles the clinical setting. In this murine orthotopic transplantation model for peritoneal carcinomatosis, we could show that the metastatic site in the peritoneum is responsible for senescence and stemness induction in tumor cells and that induction of senescence is not due to oncogene activation or therapy. In both mouse and human PC, senescence is associated with a senescence-associated secretory phenotype (SASP) influencing the tumor microenvironment (TME) of PC. SASP factors are able to induce a senescence phenotype in neighbouring cells. Here we could show that SASP leads to enhanced immunosenescence in the TME of PC. Our results provide a new immunoescape mechanism in PC explaining the resistance of PC to known chemo- and immunotherapeutic approaches. Therefore, senolytic approaches may represent a novel roadmap to target this terminal stage of CRC.
Collapse
Affiliation(s)
- Heidi Braumüller
- Department of General and Visceral Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- *Correspondence: Heidi Braumüller,
| | - Bernhard Mauerer
- Department of General and Visceral Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christopher Berlin
- Department of General and Visceral Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dorothea Plundrich
- Department of General and Visceral Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Patrick Marbach
- Department of General and Visceral Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pierre Cauchy
- Department of General and Visceral Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Laessle
- Department of General and Visceral Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Esther Biesel
- Department of General and Visceral Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Anton Holzner
- Department of General and Visceral Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rebecca Kesselring
- Department of General and Visceral Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
24
|
Huldani H, Jasim SA, Sergeenva KN, Bokov DO, Abdelbasset WK, Turakulov R, Al-Gazally ME, Ahmadzadeh B, Jawhar ZH, Siahmansouri H. Mechanisms of cancer stem cells drug resistance and the pivotal role of HMGA2. Pathol Res Pract 2022; 234:153906. [PMID: 35468338 DOI: 10.1016/j.prp.2022.153906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/02/2022] [Accepted: 04/15/2022] [Indexed: 11/24/2022]
Abstract
Nowadays, the focus of researchers is on perceiving the heterogeneity observed in a tumor. The researchers studied the role of a specific subset of cancer cells with high resistance to traditional treatments, recurrence, and unregulated metastasis. This small population of tumor cells that have stem-cell-like specifications was named Cancer Stem Cells (CSCs). The unique features that distinguish this type of cancer cell are self-renewing, generating clones of the tumor, plasticity, recurrence, and resistance to therapies. There are various mechanisms that contribute to the drug resistance of CSCs, such as CSCs markers, Epithelial mesenchymal transition, hypoxia, other cells, inflammation, and signaling pathways. Recent investigations have revealed the primary role of HMGA2 in the development and invasion of cancer cells. Importantly, HMGA2 also plays a key role in resistance to treatment through their function in the drug resistance mechanisms of CSCs and challenge it. Therefore, a deep understanding of this issue can provide a clearer perspective for researchers in the face of this problem.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Lambung Mangkurat University, Banjarmasin, South Borneo, Indonesia
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | - Klunko Nataliya Sergeenva
- Department of post-graduate and doctoral programs, Russian New University, Building 5, Radio Street, Moscow City, Russian Federation
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., Bldg. 2, Moscow 119991, Russian Federation
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Rustam Turakulov
- Department of Internal diseases, Tashkent Medical Academy, Tashkent, Uzbekistan
| | | | - Behnam Ahmadzadeh
- Doctoral School of the University of Szczecin, Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Science, Lebanese French University, Kurdistan Region, Iraq
| | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Olechnowicz A, Oleksiewicz U, Machnik M. KRAB-ZFPs and cancer stem cells identity. Genes Dis 2022. [PMID: 37492743 PMCID: PMC10363567 DOI: 10.1016/j.gendis.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Studies on carcinogenesis continue to provide new information about different disease-related processes. Among others, much research has focused on the involvement of cancer stem cells (CSCs) in tumor initiation and progression. Studying the similarities and differences between CSCs and physiological stem cells (SCs) allows for a better understanding of cancer biology. Recently, it was shown that stem cell identity is partially governed by the Krϋppel-associated box domain zinc finger proteins (KRAB-ZFPs), the biggest family of transcription regulators. Several KRAB-ZFP factors exert a known effect in tumor cells, acting as tumor suppressor genes (TSGs) or oncogenes, yet their role in CSCs is still poorly characterized. Here, we review recent studies regarding the influence of KRAB-ZFPs and their cofactor protein TRIM28 on CSCs phenotype, stemness features, migration and invasion potential, metastasis, and expression of parental markers.
Collapse
|
26
|
Acuña RA, Varas-Godoy M, Herrera-Sepulveda D, Retamal MA. Connexin46 Expression Enhances Cancer Stem Cell and Epithelial-to-Mesenchymal Transition Characteristics of Human Breast Cancer MCF-7 Cells. Int J Mol Sci 2021; 22:12604. [PMID: 34830485 PMCID: PMC8624448 DOI: 10.3390/ijms222212604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
Connexins (Cxs) are a family of proteins that form two different types of ion channels: hemichannels and gap junction channels. These channels participate in cellular communication, enabling them to share information and act as a synchronized syncytium. This cellular communication has been considered a strong tumor suppressor, but it is now recognized that some type of Cxs can be pro-tumorigenic. For example, Cx46 expression is increased in human breast cancer samples and correlates with cancer stem cell (CSC) characteristics in human glioma. Thus, we explored whether Cx46 and glioma cells, can set up CSC and epithelial-to-mesenchymal transition (EMT) properties in a breast cancer cell line. To this end, we transfected MCF-7 cells with Cx46 attached to a green fluorescent protein (Cx46GFP), and we determined how its expression orchestrates both the gene-expression and functional changes associated with CSC and EMT. We observed that Cx46GFP increased Sox2, Nanog, and OCT4 mRNA levels associated with a high capacity to form monoclonal colonies and tumorspheres. Similarly, Cx46GFP increased the mRNA levels of n-cadherin, Vimentin, Snail and Zeb1 to a higher migratory and invasive capacity. Furthermore, Cx46GFP transfected in MCF-7 cells induced the release of higher amounts of VEGF, which promoted angiogenesis in HUVEC cells. We demonstrated for the first time that Cx46 modulates CSC and EMT properties in breast cancer cells and thus could be relevant in the design of future cancer therapies.
Collapse
Affiliation(s)
- Rodrigo A. Acuña
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7780272, Chile
| | - Manuel Varas-Godoy
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago 7510157, Chile;
| | - Diego Herrera-Sepulveda
- Carrera de Medicina Universidad del Desarrollo, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7780272, Chile;
| | - Mauricio A. Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, Chile
- Programa de Comunicación Celular en Cáncer, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, Chile
| |
Collapse
|
27
|
Peláez R, Ochoa R, Pariente A, Villanueva-Martínez Á, Pérez-Sala Á, Larráyoz IM. Sterculic Acid Alters Adhesion Molecules Expression and Extracellular Matrix Compounds to Regulate Migration of Lung Cancer Cells. Cancers (Basel) 2021; 13:cancers13174370. [PMID: 34503180 PMCID: PMC8431022 DOI: 10.3390/cancers13174370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022] Open
Abstract
Sterculic acid (SA) is a cyclopropenoid fatty acid isolated from Sterculia foetida seeds. This molecule is a well-known inhibitor of SCD1 enzyme, also known as ∆9-desaturase, which main function is related to lipid metabolism. However, recent studies have demonstrated that it also modifies many other pathways and the underlying gene expression. SCD overexpression, or up-regulated activity, has been associated with tumor aggressiveness and poor prognosis in many cancer types. Scd1 down-regulation, with different inhibitors or molecular strategies, reduces tumor cell survival and cell proliferation, as well as the chemoresistance associated with cancer stem cell presence. However, SA effects over cancer cell migration and extracellular matrix or adhesion molecules have not been described in cancer cells up to now. We used different migration assays and qPCR gene expression analysis to evaluate the effects of SA treatment in cancer cells. The results reveal that SA induces tumoral cell death at high doses, but we also observed that lower SA-treatments induce cell adhesion-migration capacity reduction as a result of modifications in the expression of genes related to integrins and extracellular matrix compounds. Overall, the functional and transcriptomic findings suggest that SA could represent a new inhibitor activity of epithelial to mesenchymal transition.
Collapse
Affiliation(s)
- Rafael Peláez
- Correspondence: (R.P.); (I.M.L.); Tel.: +34-941-278-770 ((ext. 84866) (R.P.) & (ext. 89878) (I.M.L.))
| | | | | | | | | | - Ignacio M. Larráyoz
- Correspondence: (R.P.); (I.M.L.); Tel.: +34-941-278-770 ((ext. 84866) (R.P.) & (ext. 89878) (I.M.L.))
| |
Collapse
|