1
|
Wang Z, Wang J, Zhao Y, Jin J, Si W, Chen L, Zhang M, Zhou Y, Mao S, Zheng C, Zhang Y, Chen L, Fei P. 3D live imaging and phenotyping of CAR-T cell mediated-cytotoxicity using high-throughput Bessel oblique plane microscopy. Nat Commun 2024; 15:6677. [PMID: 39107283 PMCID: PMC11303822 DOI: 10.1038/s41467-024-51039-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Clarification of the cytotoxic function of T cells is crucial for understanding human immune responses and immunotherapy procedures. Here, we report a high-throughput Bessel oblique plane microscopy (HBOPM) platform capable of 3D live imaging and phenotyping of chimeric antigen receptor (CAR)-modified T-cell cytotoxicity against cancer cells. The HBOPM platform has the following characteristics: an isotropic subcellular resolution of 320 nm, large-scale scouting over 400 interacting cell pairs, long-term observation across 5 hours, and quantitative analysis of the Terabyte-scale 3D, multichannel, time-lapse image datasets. Using this advanced microscopy platform, several key subcellular events in CAR-T cells are captured and comprehensively analyzed; these events include the instantaneous formation of immune synapses and the sustained changes in the microtubing morphology. Furthermore, we identify the actin retrograde flow speed, the actin depletion coefficient, the microtubule polarization and the contact area of the CAR-T/target cell conjugates as essential parameters strongly correlated with CAR-T-cell cytotoxic function. Our approach will be useful for establishing criteria for quantifying T-cell function in individual patients for all T-cell-based immunotherapies.
Collapse
Affiliation(s)
- Zhaofei Wang
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jie Wang
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuxuan Zhao
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jin Jin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wentian Si
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Longbiao Chen
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Man Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Zhou
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shiqi Mao
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chunhong Zheng
- International Cancer Institute, Peking University Cancer Hospital and Institute, Peking University, Beijing, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liting Chen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Peng Fei
- School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
2
|
Ortiz-Perez A, Zhang M, Fitzpatrick LW, Izquierdo-Lozano C, Albertazzi L. Advanced optical imaging for the rational design of nanomedicines. Adv Drug Deliv Rev 2024; 204:115138. [PMID: 37980951 DOI: 10.1016/j.addr.2023.115138] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
Despite the enormous potential of nanomedicines to shape the future of medicine, their clinical translation remains suboptimal. Translational challenges are present in every step of the development pipeline, from a lack of understanding of patient heterogeneity to insufficient insights on nanoparticle properties and their impact on material-cell interactions. Here, we discuss how the adoption of advanced optical microscopy techniques, such as super-resolution optical microscopies, correlative techniques, and high-content modalities, could aid the rational design of nanocarriers, by characterizing the cell, the nanomaterial, and their interaction with unprecedented spatial and/or temporal detail. In this nanomedicine arena, we will discuss how the implementation of these techniques, with their versatility and specificity, can yield high volumes of multi-parametric data; and how machine learning can aid the rapid advances in microscopy: from image acquisition to data interpretation.
Collapse
Affiliation(s)
- Ana Ortiz-Perez
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Miao Zhang
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Laurence W Fitzpatrick
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Cristina Izquierdo-Lozano
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Lorenzo Albertazzi
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
3
|
Mennona NJ, Sedelnikova A, Echchgadda I, Losert W. Filament displacement image analytics tool for use in investigating dynamics of dense microtubule networks. Phys Rev E 2023; 108:034411. [PMID: 37849213 DOI: 10.1103/physreve.108.034411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/24/2023] [Indexed: 10/19/2023]
Abstract
The fate and motion of cells is influenced by a variety of physical characteristics of their microenvironments. Traditionally, mechanobiology focuses on external mechanical phenomena such as cell movement and environmental sensing. However, cells are inherently dynamic, where internal waves and internal oscillations are a hallmark of living cells observed under a microscope. We propose that these internal mechanical rhythms provide valuable information about cell health. Therefore, it is valuable to capture the rhythms inside cells and quantify how drugs or physical interventions affect a cell's internal dynamics. One of the key dynamical entities inside cells is the microtubule network. Typically, microtubule dynamics are measured by end-protein tracking. In contrast, this paper introduces an easy-to-implement approach to measure the lateral motion of the microtubule filaments embedded within dense networks with (at least) confocal resolution image sequences. Our tool couples the computer vision algorithm Optical Flow with an anisotropic, rotating Laplacian of Gaussian filtering to characterize the lateral motion of dense microtubule networks. We then showcase additional image analytics used to understand the effect of microtubule orientation and regional location on lateral motion. We argue that our tool and these additional metrics provide a fuller picture of the active forcing environment within cells.
Collapse
Affiliation(s)
- Nicholas J Mennona
- Air Force Research Laboratory, Radio Frequency Bioeffects Branch, JBSA Fort Sam Houston, Texas 78234, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
- Deptartment of Physics, University of Maryland, College Park, Maryland 20742, USA
| | - Anna Sedelnikova
- Science Applications International Corporation, JBSA Fort Sam Houston, Texas 78234, USA
| | - Ibtissam Echchgadda
- Air Force Research Laboratory, Radio Frequency Bioeffects Branch, JBSA Fort Sam Houston, Texas 78234, USA
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
- Deptartment of Physics, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
4
|
Li M, Peng L, Wang Z, Liu L, Cao M, Cui J, Wu F, Yang J. Roles of the cytoskeleton in human diseases. Mol Biol Rep 2023; 50:2847-2856. [PMID: 36609753 DOI: 10.1007/s11033-022-08025-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 10/12/2022] [Indexed: 01/08/2023]
Abstract
Recently, researches have revealed the key roles of the cytoskeleton in the occurrence and development of multiple diseases, suggesting that targeting the cytoskeleton is a viable approach for treating numerous refractory diseases. The cytoskeleton is a highly structured and complex network composed of actin filaments, microtubules, and intermediate filaments. In normal cells, these three cytoskeleton components are highly integrated and coordinated. However, the cytoskeleton undergoes drastic remodeling in cytoskeleton-related diseases, causing changes in cell polarity, affecting the cell cycle, leading to senescent diseases, and influencing cell migration to accelerate cancer metastasis. Additionally, mutations or abnormalities in cytoskeletal proteins and their related proteins are closely associated with several congenital diseases. Therefore, this review summarizes the roles of the cytoskeleton in cytoskeleton-related diseases as well as its potential roles in disease treatment to provide insights regarding the physiological functions and pathological roles of the cytoskeleton.
Collapse
Affiliation(s)
- Mengxin Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China
| | - Li Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Zhenming Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China
| | - Lijia Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China
| | - Mengjiao Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China
| | - Jingyao Cui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China
| | - Fanzi Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610021, Chengdu, China.
| |
Collapse
|
5
|
Mehner-Breitfeld D, Ringel MT, Tichy DA, Endter LJ, Stroh KS, Lünsdorf H, Risselada HJ, Brüser T. TatA and TatB generate a hydrophobic mismatch important for the function and assembly of the Tat translocon in Escherichia coli. J Biol Chem 2022; 298:102236. [PMID: 35809643 PMCID: PMC9424591 DOI: 10.1016/j.jbc.2022.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
The twin-arginine translocation (Tat) system serves to translocate folded proteins across energy-transducing membranes in bacteria, archaea, plastids, and some mitochondria. In Escherichia coli, TatA, TatB, and TatC constitute functional translocons. TatA and TatB both possess an N-terminal transmembrane helix (TMH) followed by an amphipathic helix. The TMHs of TatA and TatB generate a hydrophobic mismatch with the membrane, as the helices comprise only 12 consecutive hydrophobic residues; however, the purpose of this mismatch is unclear. Here, we shortened or extended this stretch of hydrophobic residues in either TatA, TatB, or both and analyzed effects on translocon function and assembly. We found the WT length helices functioned best, but some variation was clearly tolerated. Defects in function were exacerbated by simultaneous mutations in TatA and TatB, indicating partial compensation of mutations in each by the other. Furthermore, length variation in TatB destabilized TatBC-containing complexes, revealing that the 12-residue-length is important but not essential for this interaction and translocon assembly. To also address potential effects of helix length on TatA interactions, we characterized these interactions by molecular dynamics simulations, after having characterized the TatA assemblies by metal-tagging transmission electron microscopy. In these simulations, we found that interacting short TMHs of larger TatA assemblies were thinning the membrane and—together with laterally-aligned tilted amphipathic helices—generated a deep V-shaped membrane groove. We propose the 12 consecutive hydrophobic residues may thus serve to destabilize the membrane during Tat transport, and their conservation could represent a delicate compromise between functionality and minimization of proton leakage.
Collapse
Affiliation(s)
| | - Michael T Ringel
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | - Daniel Alexander Tichy
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany; Institute for Theoretical Physics, Georg August University Göttingen, Göttingen, Germany
| | - Laura J Endter
- Institute for Theoretical Physics, Georg August University Göttingen, Göttingen, Germany
| | - Kai Steffen Stroh
- Institute for Theoretical Physics, Georg August University Göttingen, Göttingen, Germany
| | | | - Herre Jelger Risselada
- Institute for Theoretical Physics, Georg August University Göttingen, Göttingen, Germany
| | - Thomas Brüser
- Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany.
| |
Collapse
|
6
|
Prunier G, Chaves B, Lacouture C, Dupré L. Metrics of 2D immunological synapses in human T cells via high-content confocal cell imaging. Methods Cell Biol 2022. [PMID: 37516520 DOI: 10.1016/bs.mcb.2022.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Immunological synapses (IS) are the privileged site of complex information transfer between T cells and antigen presenting cells. IS are highly structured in terms of actin and tubulin cytoskeleton organization, receptor and proximal signal patterning, and intracellular organelle polarization. The magnitude and quality of T cell responses upon antigen recognition is dependent on IS molecular organization. For that reason, methods to precisely assess IS parameters are crucial to monitor T cell activation and function in health and disease, but also for T cell centered therapeutic intervention. Confocal and super-resolution microscopy approaches have allowed to characterize the complex structure of the T cell IS. However, those approaches suffer from a low-throughput and low-content format precluding multi-parametric classification of IS across large numbers of samples or stimulatory conditions. Here, we present a protocol of high-content confocal cell imaging in a 384-well plate format adapted to the unbiased analysis of primary T cells forming IS over pre-coated stimulatory molecules. The protocol focuses on the staining of F-actin, pericentrin and granzyme B in CD8+ T cells, but is transposable to other IS molecular markers and lymphocyte subsets. We discuss potential applications offered by the multi-parametric characterization of T cell IS in a high-throughput format.
Collapse
|