1
|
Li S, Mehal WZ, Ouyang X. RNA modifications in the progression of liver diseases: from fatty liver to cancer. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2105-2119. [PMID: 38809498 PMCID: PMC11545962 DOI: 10.1007/s11427-023-2494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/24/2023] [Indexed: 05/30/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as a prominent global health concern associated with high risk of metabolic syndrome, and has impacted a substantial segment of the population. The disease spectrum ranges from simple fatty liver to non-alcoholic steatohepatitis (NASH), which can progress to cirrhosis and hepatocellular carcinoma (HCC) and is increasingly becoming a prevalent indication for liver transplantation. The existing therapeutic options for NAFLD, NASH, and HCC are limited, underscoring the urgent need for innovative treatment strategies. Insights into gene expression, particularly RNA modifications such as N6 methyladenosine (m6A), hold promising avenues for interventions. These modifications play integral roles in RNA metabolism and cellular functions, encompassing the entire NAFLD-NASH-HCC progression. This review will encompass recent insights on diverse RNA modifications, including m6A, pseudouridine (ψ), N1-methyladenosine (m1A), and 5-methylcytidine (m5C) across various RNA species. It will uncover their significance in crucial aspects such as steatosis, inflammation, fibrosis, and tumorigenesis. Furthermore, prospective research directions and therapeutic implications will be explored, advancing our comprehensive understanding of the intricate interconnected nature of these pathological conditions.
Collapse
Affiliation(s)
- Simiao Li
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Wajahat Z Mehal
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Xinshou Ouyang
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
2
|
Qin X, Liu H, Zhang Q, Che Y, Lei T, Tang F, Hu Q. RNA modifications in cancer immune therapy: regulators of immune cells and immune checkpoints. Front Immunol 2024; 15:1463847. [PMID: 39372415 PMCID: PMC11449722 DOI: 10.3389/fimmu.2024.1463847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
RNA modifications are epigenetic changes that alter the structure and function of RNA molecules, playing a crucial role in the onset, progression, and treatment of cancer. Immune checkpoint inhibitor (ICI) therapies, particularly PD-1 blockade and anti-CTLA-4 treatments, have changed the treatment landscape of virous cancers, showing great potential in the treatment of different cancer patients, but sensitivity to these therapies is limited to certain individuals. This review offers a comprehensive survey of the functions and therapeutic implications of the four principal RNA modifications, particularly highlighting the significance of m6A in the realms of immune cells in tumor and immunotherapy. This review starts by providing a foundational summary of the roles RNA modifications assume within the immune cell community, focusing on T cells, NK cells, macrophages, and dendritic cells. We then discuss how RNA modifications influence the intricate regulatory mechanisms governing immune checkpoint expression, modulation of ICI efficacy, and prediction of ICI treatment outcomes, and review drug therapies targeting genes regulated by RNA modifications. Finally, we explore the role of RNA modifications in gene editing, cancer vaccines, and adoptive T cell therapies, offering valuable insights into the use of RNA modifications in cancer immunotherapy.
Collapse
Affiliation(s)
- Xiangyu Qin
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
- Renmin Hospital of Wuhan Economic and Technological Development Zone (Hannan), Wuhan, China
- Wuhan University Heavy Ion Medicine Center, Wuhan, China
| | - Huali Liu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qixuan Zhang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuhang Che
- Renmin Hospital of Wuhan Economic and Technological Development Zone (Hannan), Wuhan, China
- Wuhan University Heavy Ion Medicine Center, Wuhan, China
| | - Tianyu Lei
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
- Renmin Hospital of Wuhan Economic and Technological Development Zone (Hannan), Wuhan, China
- Wuhan University Heavy Ion Medicine Center, Wuhan, China
| | - Fang Tang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qinyong Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
- Renmin Hospital of Wuhan Economic and Technological Development Zone (Hannan), Wuhan, China
- Wuhan University Heavy Ion Medicine Center, Wuhan, China
| |
Collapse
|
3
|
Han X, Sun Q, Xu M, Zhu G, Gao R, Ni B, Li J. Unraveling the Complexities of Immune Checkpoint Inhibitors in Hepatocellular Carcinoma. Semin Liver Dis 2023; 43:383-401. [PMID: 37931901 DOI: 10.1055/s-0043-1776127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have emerged as effective therapeutics for multiple cancers. Nevertheless, as immunotherapeutic approaches are being extensively utilized, substantial hurdles have arisen for clinicians. These include countering ICIs resistance and ensuring precise efficacy assessments of these drugs, especially in the context of hepatocellular carcinoma (HCC). This review attempts to offer a holistic overview of the latest insights into the ICIs resistance mechanisms in HCC, the molecular underpinnings, and immune response. The intent is to inspire the development of efficacious combination strategies. This review also examines the unconventional response patterns, namely pseudoprogression (PsP) and hyperprogression (HPD). The prompt and rigorous evaluation of these treatment efficacies has emerged as a crucial imperative. Multiple clinical, radiological, and biomarker tests have been advanced to meticulously assess tumor response. Despite progress, precise mechanisms of action and predictive biomarkers remain elusive. This necessitates further investigation through prospective cohort studies in the impending future.
Collapse
Affiliation(s)
- Xinpu Han
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qianhui Sun
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Manman Xu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Guanghui Zhu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Ruike Gao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Baoyi Ni
- Department of Oncology, First Hospital of Heilongjiang University of Chinese Medicine, Harbin, People's Republic of China
| | - Jie Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
4
|
Abstract
BACKGROUND Programmed death ligand 1 (PD-L1) is expressed in hepatocellular carcinoma (HCC) cells. PD-L1 function and structure are regulated through glycosylation and various signaling pathways. However, the relationship between Pseudomonas aeruginosa mannose sensitive hemagglutinin (PA-MSHA), glycosylation and PD-L1 warrants further study. In this study, we investigated the effects of PA-MSHA on the regulation of mannosyl and N-glycosylation to identify the mechanisms underlying its function. METHODS PD-L1, β-catenin, c-Myc, mannosyl, MGAT1 and mannosidase II in HCC were identified by postoperative specimens from the HCC cohort with immunohistochemistry and immunofluorescence. PA-MSHA was used to suppress tumor progression. Alterations to the expression of PD-L1, β-catenin, c-Myc, MGAT1, and mannosidase II at the gene and protein levels were detected by qRT-PCR and Western blot analysis. Soluble PD-L1 (sPD-L1) were detected using enzyme-linked immunosorbent assay. RESULTS Mannosyl and mannosidase II expression levels increased, whereas those of MGAT1 decreased in the HCC cells. The glycosylation-related pathway proteins, namely, β-catenin, c-Myc and PD-L1, had increased expression levels. Moreover, proliferation in the HCC cells was inhibited after PA-MSHA treatment, PD-L1 function was significantly inhibited. Transmission electron microscopy showed that PA-MSHA penetrated into the HCC cytoplasm through the cytomembrane, resulting in apoptosis. Here, PA-MSHA significantly reduced sPD-L1 expression levels in the tumor cells. CONCLUSIONS PA-MSHA plays the role of a lectin, affecting receptors on the cytomembrane. This strain inhibits mannosyl by suppressing β-catenin signaling. We hypothesized that PA-MSHA suppresses PD-L1 by: 1. Inhibiting the glycosylation process; and 2. Suppressing β-catenin and c-Myc, thereby reducing the transcription of this protein.
Collapse
Affiliation(s)
- Hangzhi Wei
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yudong Mao
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Huihan Zhang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Fahong Wu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Youcheng Zhang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
5
|
Tao S, Liang S, Zeng T, Yin D. Epigenetic modification-related mechanisms of hepatocellular carcinoma resistance to immune checkpoint inhibition. Front Immunol 2023; 13:1043667. [PMID: 36685594 PMCID: PMC9845774 DOI: 10.3389/fimmu.2022.1043667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) constitutes most primary liver cancers and is one of the most lethal and life-threatening malignancies globally. Unfortunately, a substantial proportion of HCC patients are identified at an advanced stage that is unavailable for curative surgery. Thus, palliative therapies represented by multi-tyrosine kinase inhibitors (TKIs) sorafenib remained the front-line treatment over the past decades. Recently, the application of immune checkpoint inhibitors (ICIs), especially targeting the PD-1/PD-L1/CTLA-4 axis, has achieved an inspiring clinical breakthrough for treating unresectable solid tumors. However, many HCC patients with poor responses lead to limited benefits in clinical applications, which has quickly drawn researchers' attention to the regulatory mechanisms of immune checkpoints in HCC immune evasion. Evasion of immune surveillance by cancer is attributed to intricate reprogramming modulation in the tumor microenvironment. Currently, more and more studies have found that epigenetic modifications, such as chromatin structure remodeling, DNA methylation, histone post-translational modifications, and non-coding RNA levels, may contribute significantly to remodeling the tumor microenvironment to avoid immune clearance, affecting the efficacy of immunotherapy for HCC. This review summarizes the rapidly emerging progress of epigenetic-related changes during HCC resistance to ICIs and discusses the mechanisms of underlying epigenetic therapies available for surmounting immune resistance. Finally, we summarize the clinical advances in combining epigenetic therapies with immunotherapy, aiming to promote the formation of immune combination therapy strategies.
Collapse
Affiliation(s)
- Shengwei Tao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shuhang Liang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Taofei Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
6
|
N6-Methyladenosine RNA-Binding Protein YTHDF1 in Gastrointestinal Cancers: Function, Molecular Mechanism and Clinical Implication. Cancers (Basel) 2022; 14:cancers14143489. [PMID: 35884552 PMCID: PMC9320224 DOI: 10.3390/cancers14143489] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary N6-methyladenosine (m6A) is the most abundant internal modification in eukaryotic mRNA and plays a crucial role in the occurrence and development of diseases. YTHDF1 is the most powerful and abundant m6A-encoded RNA reader. In this review, we summarize the evidence of the involvement of YTHDF1 in gastrointestinal cancers, its molecular mechanisms of action, and therapeutic implications. Abstract N6-methyladenosine (m6A) is the most abundant internal modification in eukaryotic cell mRNA, and this modification plays a key role in regulating mRNA translation, splicing, and stability. Emerging evidence implicates aberrant m6A as a crucial player in the occurrence and development of diseases, especially GI cancers. Among m6A regulators, YTHDF1 is the most abundant m6A reader that functionally connects m6A-modified mRNA to its eventual fate, mostly notably protein translation. Here, we summarized the function, molecular mechanisms, and clinical implications of YTHDF1 in GI cancers. YTHDF1 is largely upregulated in multiple GI cancer and its high expression predicts poor patient survival. In vitro and in vivo experimental evidence largely supports the role of YTDHF1 in promoting cancer initiation, progression, and metastasis, which suggests the oncogenic function of YTHDF1 in GI cancers. Besides, YTHDF1 overexpression is associated with changes in the tumor microenvironment that are favorable to tumorigenesis. Mechanistically, YTHDF1 regulates the expression of target genes by promoting translation, thereby participating in cancer-related signaling pathways. Targeting YTHDF1 holds therapeutic potential, as the overexpression of YTHDF1 is associated with tumor resistance to chemotherapy and immunotherapy. In summary, YTHDF1-mediated regulation of m6A modified mRNA is an actionable target and a prognostic factor for GI cancers.
Collapse
|
7
|
Regmi P, He ZQ, Lia T, Paudyal A, Li FY. N7-Methylguanosine Genes Related Prognostic Biomarker in Hepatocellular Carcinoma. Front Genet 2022; 13:918983. [PMID: 35734429 PMCID: PMC9207530 DOI: 10.3389/fgene.2022.918983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022] Open
Abstract
Background: About 90% of liver cancer-related deaths are caused by hepatocellular carcinoma (HCC). N7-methylguanosine (m7G) modification is associated with the biological process and regulation of various diseases. To the best of our knowledge, its role in the pathogenesis and prognosis of HCC has not been thoroughly investigated. Aim: To identify N7-methylguanosine (m7G) related prognostic biomarkers in HCC. Furthermore, we also studied the association of m7G-related prognostic gene signature with immune infiltration in HCC. Methods: The TCGA datasets were used as a training and GEO dataset "GSE76427" for validation of the results. Statistical analyses were performed using the R statistical software version 4.1.2. Results: Functional enrichment analysis identified some pathogenesis related to HCC. We identified 3 m7G-related genes (CDK1, ANO1, and PDGFRA) as prognostic biomarkers for HCC. A risk score was calculated from these 3 prognostic m7G-related genes which showed the high-risk group had a significantly poorer prognosis than the low-risk group in both training and validation datasets. The 3- and 5-years overall survival was predicted better with the risk score than the ideal model in the entire cohort in the predictive nomogram. Furthermore, immune checkpoint genes like CTLA4, HAVCR2, LAG3, and TIGT were expressed significantly higher in the high-risk group and the chemotherapy sensitivity analysis showed that the high-risk groups were responsive to sorafenib treatment. Conclusion: These 3 m7G genes related signature model can be used as prognostic biomarkers in HCC and a guide for immunotherapy and chemotherapy response. Future clinical study on this biomarker model is required to verify its clinical implications.
Collapse
Affiliation(s)
- Parbatraj Regmi
- Department of Biliary Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhi-Qiang He
- Department of Biliary Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Thongher Lia
- Department of Uro Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Aliza Paudyal
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Fu-Yu Li
- Department of Biliary Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Gu Z, Du Y, Zhao X, Wang C. Diagnostic, Therapeutic, and Prognostic Value of the m 6A Writer Complex in Hepatocellular Carcinoma. Front Cell Dev Biol 2022; 10:822011. [PMID: 35223847 PMCID: PMC8864226 DOI: 10.3389/fcell.2022.822011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/25/2022] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has poor prognosis and is usually diagnosed only at an advanced stage. Identification of novel biomarkers is critical to early diagnosis and better prognosis for HCC patients. N6-methyladenosine (m6A) RNA methylation regulators play important roles in the development of many tumors. However, the m6A writer complex, a key executor of m6A methylation modification, has not been independently investigated, and its specific bioinformatics analysis has not yet been performed in HCC. In this study, we used multiple public databases to evaluate the diagnostic, therapeutic, and prognostic value of the m6A writers in HCC. The results showed that expression levels of METTL3, VIRMA and CBLL1 were significantly increased, while expression levels of METTL14 and ZC3H13 were significantly decreased in HCC, which was closely related to clinicopathological factors, such as tumor stage and prognosis. Bioinformatics further explored the possible underlying mechanisms by which the m6A writer complex are involved in activation of tumor-promoting pathways and/or inhibition of tumor-suppressing pathways, including apoptosis, cell cycle, DNA damage response and EMT. Furthermore, we showed that the m6A writer complex is correlated with immune cell infiltration and immunoregulator expression in HCC. In conclusion, the m6A writer complex may represent a promising biomarker and target that can guide targeted therapy or immunotherapy for HCC patients.
Collapse
Affiliation(s)
- Zongting Gu
- Department of Abdominal Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongxing Du
- Department of Abdominal Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xueping Zhao
- School of Life Science and Biopharmaceutical, Shenyang Pharmaceutical University, Shenyang, China
| | - Chengfeng Wang
- Department of Abdominal Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Guo L, Yang H, Zhou C, Shi Y, Huang L, Zhang J. N6-Methyladenosine RNA Modification in the Tumor Immune Microenvironment: Novel Implications for Immunotherapy. Front Immunol 2021; 12:773570. [PMID: 34956201 PMCID: PMC8696183 DOI: 10.3389/fimmu.2021.773570] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/25/2021] [Indexed: 01/24/2023] Open
Abstract
N6-methyladenosine (m6A) methylation is one of the most common modifications of RNA in eukaryotic cells, and is mainly regulated by m6A methyltransferases (writers), m6A demethylases (erasers), and m6A binding proteins (readers). Recently, accumulating evidence has shown that m6A methylation plays crucial roles in the regulation of the tumor immune microenvironment, greatly impacting the initiation, progression, and metastasis processes of various cancers. In this review we first briefly summarizes the m6A-related concepts and detection methods, and then describes in detail the associations of m6A methylation modification with various tumor immune components especially immune cells (e.g., regulatory T cells, dendritic cells, macrophages, and myeloid-derived suppressor cells) in a variety of cancers. We discuss the relationship between m6A methylation and cancer occurrence and development with the involvement of tumor immunity highlighted, suggesting novel markers and potential targets for molecular pathological diagnosis and immunotherapy of various cancers.
Collapse
Affiliation(s)
- Liting Guo
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Yang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenfei Zhou
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Shi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Huang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Liu M, Zhao Z, Cai Y, Bi P, Liang Q, Yan Y, Xu Z. YTH domain family: potential prognostic targets and immune-associated biomarkers in hepatocellular carcinoma. Aging (Albany NY) 2021; 13:24205-24218. [PMID: 34747720 PMCID: PMC8610120 DOI: 10.18632/aging.203674] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common high malignancy with insidious onset, invasive fast-growing, high recurrence rate and fatality. YTH domain family plays essential roles in development of HCC. However, the biological function of YTH domain family in HCC have not been clarified. Here, through evaluating the expression profiles of YTH domain family, we found that upregulated YTHDF1 might be more significant and valuable in development and progression of HCC. There was a strong correlation between YTHDC1, YTHDF1 and YTHDF2 and pathological stage of HCC patients. Kaplan-Meier plotter revealed that HCC patients with high level of YTHDF1 and YTHDF2 were highly related to a shorter overall survival time, and low level of YTHDF1 (p = 0.0017) has an important association with a longer progression-free survival time. Genetic alterations using cBioPortal revealed that the alteration rates of YTHDF3 were the highest. We also found that the functions of YTH domain family were linked to several cancer-associated pathways, including peptidyl-serine modification, peptidyl-tyrosine modification and negative regulation of cellular component movement. TIMER database indicated that the YTH domain family had a strong relationship with the infiltration of six types of immune cells (macrophages, neutrophils, CD8+ T-cells, B-cells, CD4+ T-cells and dendritic cells). Next, Ualcan databases revealed that the global methylation levels of YTHDC1 was higher in HCC patients, while YTHDF2 was lower in HCC patients. In conclusion, our findings will enhance the understanding of YTH domain family in HCC pathology, and provide novel insights into YTH-targeted therapy for HCC patients.
Collapse
Affiliation(s)
- Miaomiao Liu
- Department of Nuclear Medicine (PET-CT Central), Xiangya Hospital, Central South University, Changsha, China
| | - Zijin Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Bi
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|