1
|
Shen Y, Brown CE, Li X, Zhang P, McGee SR, Spina SC, Loret de Mola JR, Fiddler JL, Wu H, Liu Q. Selective serotonin reuptake inhibitors induce cardiac toxicity through dysfunction of mitochondria and sarcomeres. Commun Biol 2025; 8:736. [PMID: 40355528 PMCID: PMC12069716 DOI: 10.1038/s42003-025-08168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 05/02/2025] [Indexed: 05/14/2025] Open
Abstract
The administration of selective serotonin reuptake inhibitors (SSRIs) during pregnancy can increase the odds of congenital heart defects in babies. The present study aims to explore the toxic effects of SSRIs on the cardiac systems and the underlying mechanism. We apply human pluripotent stem cells to establish 2D-monolayer cardiomyocyte and 3D-cardiac organoid models to evaluate the effects of three SSRIs (fluoxetine, paroxetine, and sertraline) on cardiac development. We observe that SSRIs exposure inhibited ATP production and mitochondrial respiration and disrupted mitochondrial homeostasis and sarcomere structure in the differentiating cardiomyocytes, presenting high risks of dysfunction and abnormality of cardiomyocytes. Further analyses in the cardiac organoid model show that SSRIs not only reduce mitochondrial respiration and ATP production, but may also affect cardiac development and angiogenesis. Altogether, our study reveals that SSRIs induce mitochondrial dysfunction and sarcomeric disorganization in cardiomyocytes, implying their potential risk to the cardiac system.
Collapse
Affiliation(s)
- Yawei Shen
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, 29646, USA
- College of Fisheries, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Cameron E Brown
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, 29646, USA
| | - Xiao Li
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, 29646, USA
| | - Peng Zhang
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Stacey R McGee
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Søren C Spina
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - J Ricardo Loret de Mola
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Joanna L Fiddler
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Haodi Wu
- Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, Division of Cardiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qing Liu
- Department of Biological Sciences, Clemson University, Clemson, SC, USA.
- Center for Human Genetics, Clemson University, Greenwood, SC, 29646, USA.
| |
Collapse
|
2
|
Albendea-Gomez T, Mendoza-Tamajon S, Castro-Mecinas R, Escobar B, Ferreira Rocha S, Urra-Balduz S, Nicolas-Avila JA, Oliver E, Villalba-Orero M, Martin-Puig S. Vascular HIF2 Signaling Prevents Cardiomegaly, Alveolar Congestion, and Capillary Remodeling During Chronic Hypoxia. Arterioscler Thromb Vasc Biol 2025; 45:e78-e98. [PMID: 39846162 DOI: 10.1161/atvbaha.124.321780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Hypoxia is associated with the onset of cardiovascular diseases including cardiac hypertrophy and pulmonary hypertension. HIF2 (hypoxia inducible factor 2) signaling in the endothelium mediates pulmonary arterial remodeling and subsequent elevation of the right ventricular systolic pressure during chronic hypoxia. Thus, novel therapeutic opportunities for pulmonary hypertension based on specific HIF2 inhibitors have been proposed. Nevertheless, HIF2 relevance beyond the pulmonary endothelium or in the cardiac adaptation to hypoxia remains elusive. Wt1 (Wilms tumor 1) lineage contributes to the heart and lung vascular compartments, including pericytes, endothelial cells, and smooth muscle cells. METHODS Here, we describe the response to chronic hypoxia of a novel HIF2 mutant mouse model in the Wt1 lineage (Hif2/Wt1 cKO [conditional knockout]), characterizing structural and functional aspects of the heart and lungs by means of classical histology, immunohistochemistry, flow cytometry, echocardiography, and lung ultrasound analysis. RESULTS Hif2/Wt1 cKO is protected against pulmonary remodeling and increased right ventricular systolic pressure induced by hypoxia, but displays alveolar congestion, inflammation, and hemorrhages associated with microvascular instability. Furthermore, lack of HIF2 in the Wt1 lineage leads to cardiomegaly, capillary remodeling, right and left ventricular hypertrophy, systolic dysfunction, and left ventricular dilation, suggesting pulmonary-independent cardiac direct roles of HIF2 in hypoxia. These structural defects are partially restored upon reoxygenation, while cardiac functional parameters remain altered. CONCLUSIONS Our results indicate that cardiopulmonary HIF2 signaling prevents excessive vascular proliferation during chronic hypoxia and define novel protective roles of HIF2 to warrant stable microvasculature and organ function.
Collapse
MESH Headings
- Animals
- Signal Transduction
- Vascular Remodeling
- Hypoxia/metabolism
- Hypoxia/physiopathology
- Hypoxia/complications
- Hypoxia/genetics
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/deficiency
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Disease Models, Animal
- Mice, Knockout
- Ventricular Function, Right
- Hypertrophy, Right Ventricular/prevention & control
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/genetics
- Hypertrophy, Right Ventricular/pathology
- Chronic Disease
- Cardiomegaly/prevention & control
- Cardiomegaly/physiopathology
- Cardiomegaly/metabolism
- Cardiomegaly/genetics
- Cardiomegaly/pathology
- Cardiomegaly/etiology
- Pulmonary Alveoli/blood supply
- Pulmonary Alveoli/metabolism
- Pulmonary Alveoli/pathology
- Hypertension, Pulmonary/prevention & control
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Capillaries/physiopathology
- Capillaries/metabolism
- Capillaries/pathology
- Ventricular Remodeling
- Male
- Mice
- Mice, Inbred C57BL
- Transcription Factors
Collapse
Affiliation(s)
- Teresa Albendea-Gomez
- Metabolic and Immune Diseases Department, Instituto de Investigaciones Biomedicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain (T.A.-G., S.M.-T., R.C.-M., S.U.-B., S.M.-P.)
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Carlos III (CNIC), Madrid, Spain (T.A.-G., S.M.-T., B.E., S.F.R., J.A.N.-A., E.O., M.V.-O., S.M.-P.)
- School of Medicine, Universidad Francisco de Vitoria, Madrid, Spain (T.A.-G., S.M.-P.)
| | - Susana Mendoza-Tamajon
- Metabolic and Immune Diseases Department, Instituto de Investigaciones Biomedicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain (T.A.-G., S.M.-T., R.C.-M., S.U.-B., S.M.-P.)
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Carlos III (CNIC), Madrid, Spain (T.A.-G., S.M.-T., B.E., S.F.R., J.A.N.-A., E.O., M.V.-O., S.M.-P.)
| | - Rosana Castro-Mecinas
- Metabolic and Immune Diseases Department, Instituto de Investigaciones Biomedicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain (T.A.-G., S.M.-T., R.C.-M., S.U.-B., S.M.-P.)
| | - Beatriz Escobar
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Carlos III (CNIC), Madrid, Spain (T.A.-G., S.M.-T., B.E., S.F.R., J.A.N.-A., E.O., M.V.-O., S.M.-P.)
- Mouse Genome Editing Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain (B.E.)
| | - Susana Ferreira Rocha
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Carlos III (CNIC), Madrid, Spain (T.A.-G., S.M.-T., B.E., S.F.R., J.A.N.-A., E.O., M.V.-O., S.M.-P.)
| | - Sonia Urra-Balduz
- Metabolic and Immune Diseases Department, Instituto de Investigaciones Biomedicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain (T.A.-G., S.M.-T., R.C.-M., S.U.-B., S.M.-P.)
| | - Jose Angel Nicolas-Avila
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Carlos III (CNIC), Madrid, Spain (T.A.-G., S.M.-T., B.E., S.F.R., J.A.N.-A., E.O., M.V.-O., S.M.-P.)
- Cardiovascular Research Institute & Department of Microbiology and Immunology, University of California San Francisco (J.A.N.-A.)
| | - Eduardo Oliver
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Carlos III (CNIC), Madrid, Spain (T.A.-G., S.M.-T., B.E., S.F.R., J.A.N.-A., E.O., M.V.-O., S.M.-P.)
- Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB), Madrid, Spain (E.O.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Spain (E.O.)
| | - Maria Villalba-Orero
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Carlos III (CNIC), Madrid, Spain (T.A.-G., S.M.-T., B.E., S.F.R., J.A.N.-A., E.O., M.V.-O., S.M.-P.)
- Department of Animal Medicine and Surgery, Universidad Complutense de Madrid, Madrid, Spain (M.V.-O.)
| | - Silvia Martin-Puig
- Metabolic and Immune Diseases Department, Instituto de Investigaciones Biomedicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain (T.A.-G., S.M.-T., R.C.-M., S.U.-B., S.M.-P.)
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares, Carlos III (CNIC), Madrid, Spain (T.A.-G., S.M.-T., B.E., S.F.R., J.A.N.-A., E.O., M.V.-O., S.M.-P.)
- School of Medicine, Universidad Francisco de Vitoria, Madrid, Spain (T.A.-G., S.M.-P.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Spain (S.M.-P.)
| |
Collapse
|
3
|
Díaz del Moral S, Wagner N, Wagner KD. The Wilms' Tumor Suppressor WT1 in Cardiomyocytes: Implications for Cardiac Homeostasis and Repair. Cells 2024; 13:2078. [PMID: 39768169 PMCID: PMC11674098 DOI: 10.3390/cells13242078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
The Wilms' tumor suppressor WT1 is essential for the development of the heart, among other organs such as the kidneys and gonads. The Wt1 gene encodes a zinc finger transcription factor that regulates proliferation, cellular differentiation processes, and apoptosis. WT1 is also involved in cardiac homeostasis and repair. In adulthood, WT1-expression levels are lower compared to those observed through development, and WT1 expression is restricted to a few cell types. However, its systemic deletion in adult mice is lethal, demonstrating that its presence is also key for organ maintenance. In response to injury, the epicardium re-activates the expression of WT1, but little is known about the roles it plays in cardiomyocytes, which are the main cell type affected after myocardial infarction. The fact that cardiomyocytes exhibit a low proliferation rate in the adult heart in mammals highlights the need to explore new approaches for cardiac regeneration. The aim of this review is to emphasize the functions carried out by WT1 in cardiomyocytes in cardiac homeostasis and heart regeneration.
Collapse
Affiliation(s)
| | | | - Kay-Dietrich Wagner
- Université Côte d’Azur, CNRS, INSERM, iBV, 06107 Nice, France; (S.D.d.M.); (N.W.)
| |
Collapse
|
4
|
Takahashi M, Isagawa T, Sato T, Takeda N, Kawakami K. Lineage tracing using Wnt2b-2A-CreERT2 knock-in mice reveals the contributions of Wnt2b-expressing cells to novel subpopulations of mesothelial/epicardial cell lineages during mouse development. Genes Cells 2024; 29:854-875. [PMID: 39109760 DOI: 10.1111/gtc.13147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 10/04/2024]
Abstract
Mesothelial and epicardial cells give rise to various types of mesenchymal cells via epithelial (mesothelial)-to-mesenchymal transition during development. However, the genes controlling the differentiation and diversification of mesothelial/epicardial cells remain unclear. Here, we examined Wnt2b expression in the embryonic mesothelium and epicardium and performed lineage tracing of Wnt2b-expressing cells by using novel Wnt2b-2A-CreERT2 knock-in and LacZ-reporter mice. Wnt2b was expressed in mesothelial cells covering visceral organs, but the expression was restricted in their subpopulations. Wnt2b-expressing cells labeled at embryonic day (E) 10.5 were distributed to the mesothelium and mesenchyme in the lungs, abdominal wall, stomach, and spleen in Wnt2b2A-CreERT2/+;R26RLacZ/+ mice at E13.0. Wnt2b was initially expressed in the proepicardial organ (PEO) at E9.5 and then in the epicardium after E10.0. Wnt2b-expressing PEO cells labeled at E9.5 differentiated into a small fraction of cardiac fibroblasts and preferentially localized at the left side of the postnatal heart. LacZ+ epicardium-derived cells labeled at E10.5 differentiated into a small fraction of fibroblasts and smooth muscle cells in the postnatal heart. Taken together, our results reveal novel subpopulations of PEO and mesothelial/epicardial cells that are distinguishable by Wnt2b expression and elucidate the unique contribution of Wnt2b-expressing PEO and epicardial cells to the postnatal heart.
Collapse
Affiliation(s)
- Masanori Takahashi
- Department of Anatomy, Division of Bioimaging and Neuro-cell Science, Jichi Medical University, Shimotsuke, Japan
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Takayuki Isagawa
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
- Data Science Center, Jichi Medical University, Shimotsuke, Japan
| | - Tatsuyuki Sato
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Norihiko Takeda
- Division of Cardiology and Metabolism, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | | |
Collapse
|
5
|
Tung HC, Kim JW, Zhu J, Li S, Yan J, Liu Q, Koo I, Koshkin SA, Hao F, Zhong G, Xu M, Wang Z, Wang J, Huang Y, Xi Y, Cai X, Xu P, Ren S, Higashiyama T, Gonzalez FJ, Li S, Isoherranen N, Yang D, Ma X, Patterson AD, Xie W. Inhibition of heme-thiolate monooxygenase CYP1B1 prevents hepatic stellate cell activation and liver fibrosis by accumulating trehalose. Sci Transl Med 2024; 16:eadk8446. [PMID: 39321267 PMCID: PMC12084873 DOI: 10.1126/scitranslmed.adk8446] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/05/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024]
Abstract
Activation of extracellular matrix-producing hepatic stellate cells (HSCs) is a key event in liver fibrogenesis. We showed that the expression of the heme-thiolate monooxygenase cytochrome P450 1B1 (CYP1B1) was elevated in human and mouse fibrotic livers and activated HSCs. Systemic or HSC-specific ablation and pharmacological inhibition of CYP1B1 attenuated HSC activation and protected male but not female mice from thioacetamide (TAA)-, carbon tetrachloride (CCl4)-, or bile duct ligation (BDL)-induced liver fibrosis. Metabolomic analysis revealed an increase in the disaccharide trehalose in CYP1B1-deficient HSCs resulting from intestinal suppression of the trehalose-metabolizing enzyme trehalase, whose gene we found to be a target of RARα. Trehalose or its hydrolysis-resistant derivative lactotrehalose exhibited potent antifibrotic activity in vitro and in vivo by functioning as an HSC-specific autophagy inhibitor, which may account for the antifibrotic effect of CYP1B1 inhibition. Our study thus reveals an endobiotic function of CYP1B1 in liver fibrosis in males, mediated by liver-intestine cross-talk and trehalose. At the translational level, pharmacological inhibition of CYP1B1 or the use of trehalose/lactotrehalose may represent therapeutic strategies for liver fibrosis.
Collapse
Affiliation(s)
- Hung-Chun Tung
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jong-Won Kim
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Junjie Zhu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sihan Li
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jiong Yan
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Qing Liu
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Imhoi Koo
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sergei A. Koshkin
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Fuhua Hao
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Guo Zhong
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Zehua Wang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jingyuan Wang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yixian Huang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yue Xi
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xinran Cai
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Songrong Ren
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | - Frank J. Gonzalez
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Song Li
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | - Da Yang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiaochao Ma
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Andrew D. Patterson
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Lead contact
| |
Collapse
|
6
|
Stathopoulou A, Wang P, Thellier C, Kelly RG, Zheng D, Scambler PJ. CHARGE syndrome-associated CHD7 acts at ISL1-regulated enhancers to modulate second heart field gene expression. Cardiovasc Res 2023; 119:2089-2105. [PMID: 37052590 PMCID: PMC10478754 DOI: 10.1093/cvr/cvad059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/20/2022] [Accepted: 04/12/2023] [Indexed: 04/14/2023] Open
Abstract
AIMS Haploinsufficiency of the chromo-domain protein CHD7 underlies most cases of CHARGE syndrome, a multisystem birth defect including congenital heart malformation. Context specific roles for CHD7 in various stem, progenitor, and differentiated cell lineages have been reported. Previously, we showed severe defects when Chd7 is absent from cardiopharyngeal mesoderm (CPM). Here, we investigate altered gene expression in the CPM and identify specific CHD7-bound target genes with known roles in the morphogenesis of affected structures. METHODS AND RESULTS We generated conditional KO of Chd7 in CPM and analysed cardiac progenitor cells using transcriptomic and epigenomic analyses, in vivo expression analysis, and bioinformatic comparisons with existing datasets. We show CHD7 is required for correct expression of several genes established as major players in cardiac development, especially within the second heart field (SHF). We identified CHD7 binding sites in cardiac progenitor cells and found strong association with histone marks suggestive of dynamically regulated enhancers during the mesodermal to cardiac progenitor transition of mESC differentiation. Moreover, CHD7 shares a subset of its target sites with ISL1, a pioneer transcription factor in the cardiogenic gene regulatory network, including one enhancer modulating Fgf10 expression in SHF progenitor cells vs. differentiating cardiomyocytes. CONCLUSION We show that CHD7 interacts with ISL1, binds ISL1-regulated cardiac enhancers, and modulates gene expression across the mesodermal heart fields during cardiac morphogenesis.
Collapse
Affiliation(s)
- Athanasia Stathopoulou
- Developmental Biology of Birth Defects, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Ping Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | | | - Robert G Kelly
- Aix-Marseille University, CNRS UMR 7288, IBDM, Marseille, France
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Neurology and Neurosciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Peter J Scambler
- Developmental Biology of Birth Defects, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
7
|
Sanchez-Fernandez C, Rodriguez-Outeiriño L, Matias-Valiente L, Ramírez de Acuña F, Franco D, Aránega AE. Understanding Epicardial Cell Heterogeneity during Cardiogenesis and Heart Regeneration. J Cardiovasc Dev Dis 2023; 10:376. [PMID: 37754805 PMCID: PMC10531887 DOI: 10.3390/jcdd10090376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
The outermost layer of the heart, the epicardium, is an essential cell population that contributes, through epithelial-to-mesenchymal transition (EMT), to the formation of different cell types and provides paracrine signals to the developing heart. Despite its quiescent state during adulthood, the adult epicardium reactivates and recapitulates many aspects of embryonic cardiogenesis in response to cardiac injury, thereby supporting cardiac tissue remodeling. Thus, the epicardium has been considered a crucial source of cell progenitors that offers an important contribution to cardiac development and injured hearts. Although several studies have provided evidence regarding cell fate determination in the epicardium, to date, it is unclear whether epicardium-derived cells (EPDCs) come from specific, and predetermined, epicardial cell subpopulations or if they are derived from a common progenitor. In recent years, different approaches have been used to study cell heterogeneity within the epicardial layer using different experimental models. However, the data generated are still insufficient with respect to revealing the complexity of this epithelial layer. In this review, we summarize the previous works documenting the cellular composition, molecular signatures, and diversity within the developing and adult epicardium.
Collapse
Affiliation(s)
- Cristina Sanchez-Fernandez
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (C.S.-F.); (L.R.-O.); (L.M.-V.); (F.R.d.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| | - Lara Rodriguez-Outeiriño
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (C.S.-F.); (L.R.-O.); (L.M.-V.); (F.R.d.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| | - Lidia Matias-Valiente
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (C.S.-F.); (L.R.-O.); (L.M.-V.); (F.R.d.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| | - Felicitas Ramírez de Acuña
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (C.S.-F.); (L.R.-O.); (L.M.-V.); (F.R.d.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (C.S.-F.); (L.R.-O.); (L.M.-V.); (F.R.d.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| | - Amelia Eva Aránega
- Cardiovascular Development Group, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (C.S.-F.); (L.R.-O.); (L.M.-V.); (F.R.d.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| |
Collapse
|
8
|
Rawat H, Kornherr J, Zawada D, Bakhshiyeva S, Kupatt C, Laugwitz KL, Bähr A, Dorn T, Moretti A, Nowak-Imialek M. Recapitulating porcine cardiac development in vitro: from expanded potential stem cell to embryo culture models. Front Cell Dev Biol 2023; 11:1111684. [PMID: 37261075 PMCID: PMC10227949 DOI: 10.3389/fcell.2023.1111684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/21/2023] [Indexed: 06/02/2023] Open
Abstract
Domestic pigs (Sus scrofa) share many genetic, anatomical, and physiological traits with humans and therefore constitute an excellent preclinical animal model. Fundamental understanding of the cellular and molecular processes governing early porcine cardiogenesis is critical for developing advanced porcine models used for the study of heart diseases and new regenerative therapies. Here, we provide a detailed characterization of porcine cardiogenesis based on fetal porcine hearts at various developmental stages and cardiac cells derived from porcine expanded pluripotent stem cells (pEPSCs), i.e., stem cells having the potential to give rise to both embryonic and extraembryonic tissue. We notably demonstrate for the first time that pEPSCs can differentiate into cardiovascular progenitor cells (CPCs), functional cardiomyocytes (CMs), epicardial cells and epicardial-derived cells (EPDCs) in vitro. Furthermore, we present an enhanced system for whole-embryo culture which allows continuous ex utero development of porcine post-implantation embryos from the cardiac crescent stage (ED14) up to the cardiac looping (ED17) stage. These new techniques provide a versatile platform for studying porcine cardiac development and disease modeling.
Collapse
Affiliation(s)
- Hilansi Rawat
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Jessica Kornherr
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Dorota Zawada
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Sara Bakhshiyeva
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Christian Kupatt
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Karl-Ludwig Laugwitz
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Andrea Bähr
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Tatjana Dorn
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Alessandra Moretti
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Monika Nowak-Imialek
- First Department of Medicine, Cardiology, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum Rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
9
|
Díaz del Moral S, Benaouicha M, Villa del Campo C, Torres M, Wagner N, Wagner KD, Muñoz-Chápuli R, Carmona R. Cardiomyocyte-Specific Wt1 Is Involved in Cardiac Metabolism and Response to Damage. J Cardiovasc Dev Dis 2023; 10:211. [PMID: 37233178 PMCID: PMC10219250 DOI: 10.3390/jcdd10050211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
The Wilms tumor suppressor gene (Wt1) encodes a C2H2-type zinc-finger transcription factor that participates in transcriptional regulation, RNA metabolism, and protein-protein interactions. WT1 is involved in the development of several organs, including the kidneys and gonads, heart, spleen, adrenal glands, liver, diaphragm, and neuronal system. We previously provided evidence of transient WT1 expression in about 25% of cardiomyocytes of mouse embryos. Conditional deletion of Wt1 in the cardiac troponin T lineage caused abnormal cardiac development. A low expression of WT1 has also been reported in adult cardiomyocytes. Therefore, we aimed to explore its function in cardiac homeostasis and in the response to pharmacologically induced damage. Silencing of Wt1 in cultured neonatal murine cardiomyocytes provoked alterations in mitochondrial membrane potential and changes in the expression of genes related to calcium homeostasis. Ablation of WT1 in adult cardiomyocytes by crossing αMHCMerCreMer mice with homozygous WT1-floxed mice induced hypertrophy, interstitial fibrosis, altered metabolism, and mitochondrial dysfunction. In addition, conditional deletion of WT1 in adult cardiomyocytes increased doxorubicin-induced damage. These findings suggest a novel role of WT1 in myocardial physiology and protection against damage.
Collapse
Affiliation(s)
- Sandra Díaz del Moral
- Department of Animal Biology, Faculty of Science, University of Málaga, 29071 Málaga, Spain; (S.D.d.M.); (R.M.-C.)
| | - Maha Benaouicha
- Department of Cell Biology, Genetics and Physiology, Faculty of Science, University of Málaga, 29071 Málaga, Spain;
| | - Cristina Villa del Campo
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, 28029 Madrid, Spain; (C.V.d.C.); (M.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Miguel Torres
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, 28029 Madrid, Spain; (C.V.d.C.); (M.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Nicole Wagner
- Université Côte d’Azur, CNRS, INSERM, iBV, 06108 Nice, France; (N.W.); (K.-D.W.)
| | - Kay-Dietrich Wagner
- Université Côte d’Azur, CNRS, INSERM, iBV, 06108 Nice, France; (N.W.); (K.-D.W.)
| | - Ramón Muñoz-Chápuli
- Department of Animal Biology, Faculty of Science, University of Málaga, 29071 Málaga, Spain; (S.D.d.M.); (R.M.-C.)
| | - Rita Carmona
- Department of Human Anatomy, Legal Medicine and History of Science, Faculty of Medicine, University of Málaga, 29071 Málaga, Spain
| |
Collapse
|
10
|
Regulation of Epicardial Cell Fate during Cardiac Development and Disease: An Overview. Int J Mol Sci 2022; 23:ijms23063220. [PMID: 35328640 PMCID: PMC8950551 DOI: 10.3390/ijms23063220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023] Open
Abstract
The epicardium is the outermost cell layer in the vertebrate heart that originates during development from mesothelial precursors located in the proepicardium and septum transversum. The epicardial layer plays a key role during cardiogenesis since a subset of epicardial-derived cells (EPDCs) undergo an epithelial–mesenchymal transition (EMT); migrate into the myocardium; and differentiate into distinct cell types, such as coronary vascular smooth muscle cells, cardiac fibroblasts, endothelial cells, and presumably a subpopulation of cardiomyocytes, thus contributing to complete heart formation. Furthermore, the epicardium is a source of paracrine factors that support cardiac growth at the last stages of cardiogenesis. Although several lineage trace studies have provided some evidence about epicardial cell fate determination, the molecular mechanisms underlying epicardial cell heterogeneity remain not fully understood. Interestingly, seminal works during the last decade have pointed out that the adult epicardium is reactivated after heart damage, re-expressing some embryonic genes and contributing to cardiac remodeling. Therefore, the epicardium has been proposed as a potential target in the treatment of cardiovascular disease. In this review, we summarize the previous knowledge regarding the regulation of epicardial cell contribution during development and the control of epicardial reactivation in cardiac repair after damage.
Collapse
|
11
|
Marques IJ, Ernst A, Arora P, Vianin A, Hetke T, Sanz-Morejón A, Naumann U, Odriozola A, Langa X, Andrés-Delgado L, Zuber B, Torroja C, Osterwalder M, Simões FC, Englert C, Mercader N. Wt1 transcription factor impairs cardiomyocyte specification and drives a phenotypic switch from myocardium to epicardium. Development 2022; 149:274789. [DOI: 10.1242/dev.200375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
During development, the heart grows by addition of progenitor cells to the poles of the primordial heart tube. In the zebrafish, Wilms tumor 1 transcription factor a (wt1a) and b (wt1b) genes are expressed in the pericardium, at the venous pole of the heart. From this pericardial layer, the proepicardium emerges. Proepicardial cells are subsequently transferred to the myocardial surface and form the epicardium, covering the myocardium. We found that while wt1a and wt1b expression is maintained in proepicardial cells, it is downregulated in pericardial cells that contribute cardiomyocytes to the developing heart. Sustained wt1b expression in cardiomyocytes reduced chromatin accessibility of specific genomic loci. Strikingly, a subset of wt1a- and wt1b-expressing cardiomyocytes changed their cell-adhesion properties, delaminated from the myocardium and upregulated epicardial gene expression. Thus, wt1a and wt1b act as a break for cardiomyocyte differentiation, and ectopic wt1a and wt1b expression in cardiomyocytes can lead to their transdifferentiation into epicardial-like cells.
Collapse
Affiliation(s)
- Ines J. Marques
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Alexander Ernst
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Prateek Arora
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Andrej Vianin
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Tanja Hetke
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Andrés Sanz-Morejón
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Centro Nacional de Investigaciones Cardiovasculares CNIC, Madrid 28029, Spain
| | - Uta Naumann
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena 07745, Germany
| | - Adolfo Odriozola
- Department of Microscopic Anatomy and Structural Biology, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Xavier Langa
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | | | - Benoît Zuber
- Department of Microscopic Anatomy and Structural Biology, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
| | - Carlos Torroja
- Centro Nacional de Investigaciones Cardiovasculares CNIC, Madrid 28029, Spain
| | - Marco Osterwalder
- Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
- Department of Cardiology, Bern University Hospital, 3010 Bern, Switzerland
| | - Filipa C. Simões
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Christoph Englert
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena 07745, Germany
- Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Jena 07745, Germany
| | - Nadia Mercader
- Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, Bern 3012, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
- Centro Nacional de Investigaciones Cardiovasculares CNIC, Madrid 28029, Spain
| |
Collapse
|