1
|
Choi YK, Maki T, Liang AC, Hayakawa K, Koh SH, Kim YM, Whalen MJ, Seo JH, Lok J, Gelman IH, Kim KW, Lo EH, Arai K. A-kinase anchor protein 12 promotes oligodendrogenesis and cognitive recovery in carbon monoxide therapy for traumatic brain injury. J Cereb Blood Flow Metab 2025:271678X251314371. [PMID: 39862180 PMCID: PMC11765309 DOI: 10.1177/0271678x251314371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/04/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025]
Abstract
Therapeutic drug development for central nervous system injuries, such as traumatic brain injury (TBI), presents significant challenges. TBI results in primary mechanical damage followed by secondary injury, leading to cognitive dysfunction and memory loss. Our recent study demonstrated the potential of carbon monoxide-releasing molecules (CORMs) to improve TBI recovery by enhancing neurogenesis. However, a comprehensive TBI recovery strategy requires not only neurogenesis but also oligodendrogenesis. In this study, we elucidate the critical role of A-kinase anchor protein 12 (AKAP12), a scaffolding protein predominantly expressed by intact pericytes, in oligodendrocyte regeneration during CO therapy for TBI. CORM treatment increased AKAP12 expression, which enhanced myelin intensity and mitigated TBI-induced oligodendrocyte loss. In addition, CO promotes the generation of new oligodendrocytes, a process that is impaired by AKAP12 deficiency. Notably, even after TBI, cognitive function was restored in wild-type mice following CORM treatment, but this effect was absent in Akap12 knockout mice. These findings highlight the importance of CO-induced AKAP12 upregulation, particularly in pericytes, in supporting oligodendrogenesis and cognitive recovery after TBI. Understanding these mechanisms holds promise for the development of targeted therapies to address TBI-associated impairments.
Collapse
Affiliation(s)
- Yoon Kyung Choi
- Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Takakuni Maki
- Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
- Department of Neurology, Graduate School of Medicine, Kyoto University, Japan
| | - Anna C Liang
- Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Kazuhide Hayakawa
- Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Seong-Ho Koh
- Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
- Department of Neurology, Hanyang University College of Medicine, Guri, Republic of Korea
| | - Young-Myeong Kim
- Departments of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Michael J Whalen
- Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, USA
| | - Ji Hae Seo
- Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
- Department of Biochemistry, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Josephine Lok
- Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Irwin H Gelman
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, USA
| | - Kyu-Won Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Eng H Lo
- Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Ken Arai
- Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| |
Collapse
|
2
|
Le S, Xu F, Luo Z, Shi W, Lu S, Zhang Z, Guo Z, Xu W, Yang M, Li T, Li X, Liang K, Zhu L. Integrated analysis of chromatin and transcriptomic profiling of the striatum after cerebral hypoperfusion in mice. BMC Genomics 2025; 26:71. [PMID: 39856551 PMCID: PMC11762485 DOI: 10.1186/s12864-025-11256-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Vascular cognitive impairment (VCI) is a significant contributor to dementia, yet the precise mechanisms underlying the cognitive decline associated with chronic cerebral hypoperfusion (CCH) remain unclear. This study investigated the molecular and epigenetic changes in the striatum, a brain region critical for motor function and cognition, following chronic hypoperfusion using a bilateral common carotid artery stenosis (BCAS) model in mice. METHODS RNA-seq was utilized to identify differentially expressed genes (DEGs) associated with hypoperfusion. In parallel, ATAC-seq was used to assess changes in chromatin accessibility within the striatum, providing insight into the epigenome and potential regulatory mechanisms. The integration of these datasets allowed us to correlate chromatin accessibility with transcriptional activity and to identify key transcription factors driving the observed gene expression changes. RESULTS Analysis of striatum-specific transcriptome revealed significant upregulation of immune response genes, particularly type II interferon signaling, and downregulation of neural activation pathways. Analysis of striatum-specific epigenome showed increased chromatin accessibility at promoters of immune-related genes. Integrated analysis highlighted PU.1 as a key transcription factor in upregulated pathways, while neural pathways lacked epigenetic regulation, revealing distinct molecular responses in the striatum following chronic hypoperfusion. CONCLUSIONS Our findings indicate that upregulated pathways in the striatum following BCAS-induced CCH are driven by epigenetic changes, while downregulated pathways occur independently of these modifications. Additionally, PU.1 plays a critical role in mediating immune responses, offering a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Shijia Le
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fengyiyang Xu
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi Luo
- Department of Surgery, Shanghai Deji Hospital, Qingdao University, Shanghai, 200331, China
| | - Weihao Shi
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shuangshuang Lu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zengyu Zhang
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Zimin Guo
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Wenshi Xu
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Mingqi Yang
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tianyi Li
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xu Li
- Department of Vascular Surgery, Zhongshan Hospital, Institute of Vascular Surgery, National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China.
| | - Kun Liang
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Lei Zhu
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
3
|
Ishikawa H, Kimura S, Takase H, Borlongan M, Fukuda N, Hoshino T, Hamanaka G, Park JH, Shindo A, Kim KW, Gelman IH, Lok J, Lo EH, Arai K. Sex differences in the role of AKAP12 in behavioral function of middle-aged mice. Biol Sex Differ 2024; 15:93. [PMID: 39574214 PMCID: PMC11580627 DOI: 10.1186/s13293-024-00670-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/04/2024] [Indexed: 11/25/2024] Open
Abstract
A-kinase anchoring protein 12 (AKAP12) is a key scaffolding protein that regulates cellular signaling by anchoring protein kinase A (PKA) and other signaling molecules. While recent studies suggest an important role for AKAP12 in the brain, including cognitive functions, its role in middle-aged mice and potential sex differences are not fully understood. Therefore, this study investigated the effects of AKAP12 on cognitive and exploratory behavior in middle-aged mice, focusing on sex differences. Cognitive function was assessed using the spontaneous Y-maze test and the novel object recognition test (NORT). No significant sex differences in cognitive function were found in middle-aged C57BL/6J mice; however, female mice showed greater exploratory behavior during the NORT. In addition, both middle-aged male and female Akap12 knockout (KO) mice performed similarly to wild-type (WT) mice in the Y-maze test, but had lower discrimination indices in the NORT, suggesting a potential role for AKAP12 in short-term memory. Notably, exploratory behavior was suppressed in female Akap12 KO mice compared to WT mice, whereas male Akap12 KO mice did not show this effect. There were no significant differences in movement distance and velocity during the Y-maze test and NORT between WT and KO mice of either sex. These results indicate that AKAP12 affects cognitive function and exploratory behavior in middle-aged mice and that these effects differ between sexes.
Collapse
Affiliation(s)
- Hidehiro Ishikawa
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Room 2401, Charlestown, MA, 02129-2000, USA
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, Japan
| | - Shintaro Kimura
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Room 2401, Charlestown, MA, 02129-2000, USA
- Life Science Research Center, Gifu University, Gifu, Japan
| | - Hajime Takase
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Room 2401, Charlestown, MA, 02129-2000, USA
- YCU Center for Novel and Exploratory Clinical Trials (Y-NEXT), Yokohama City University Hospital, Yokohama, Japan
| | - Maximillian Borlongan
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Room 2401, Charlestown, MA, 02129-2000, USA
| | - Norito Fukuda
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Room 2401, Charlestown, MA, 02129-2000, USA
| | - Tomonori Hoshino
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Room 2401, Charlestown, MA, 02129-2000, USA
| | - Gen Hamanaka
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Room 2401, Charlestown, MA, 02129-2000, USA
| | - Ji Hyun Park
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Room 2401, Charlestown, MA, 02129-2000, USA
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, Japan
| | - Kyu-Won Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Irwin H Gelman
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Josephine Lok
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Room 2401, Charlestown, MA, 02129-2000, USA
- Pediatric Critical Care Medicine, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eng H Lo
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Room 2401, Charlestown, MA, 02129-2000, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Room 2401, Charlestown, MA, 02129-2000, USA.
| |
Collapse
|
4
|
Yeung SHS, Lee RHS, Cheng GWY, Ma IWT, Kofler J, Kent C, Ma F, Herrup K, Fornage M, Arai K, Tse KH. White matter hyperintensity genetic risk factor TRIM47 regulates autophagy in brain endothelial cells. FASEB J 2024; 38:e70059. [PMID: 39331575 DOI: 10.1096/fj.202400689rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 09/29/2024]
Abstract
White matter hyperintensity (WMH) is strongly correlated with age-related dementia and hypertension, but its pathogenesis remains obscure. Genome-wide association studies identified TRIM47 at the 17q25 locus as a top genetic risk factor for WMH formation. TRIM family is a class of E3 ubiquitin ligase with pivotal functions in autophagy, which is critical for brain endothelial cell (ECs) remodeling during hypertension. We hypothesize that TRIM47 regulates autophagy and its loss-of-function disturbs cerebrovasculature. Based on transcriptomics and immunohistochemistry, TRIM47 is found highly expressed by brain ECs in human and mouse, and its transcription is upregulated by artificially induced autophagy while downregulated in hypertension-like conditions. Using in silico simulation, immunocytochemistry and super-resolution microscopy, we predicted a highly conserved binding site between TRIM47 and the LIR (LC3-interacting region) motif of LC3B. Importantly, pharmacological autophagy induction increased Trim47 expression on mouse ECs (b.End3) culture, while silencing Trim47 significantly increased autophagy with ULK1 phosphorylation induction, transcription, and vacuole formation. Together, we demonstrate that TRIM47 is an endogenous inhibitor of autophagy in brain ECs, and such TRIM47-mediated regulation connects genetic and physiological risk factors for WMH formation but warrants further investigation.
Collapse
Affiliation(s)
- Sunny Hoi-Sang Yeung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Ralph Hon-Sun Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Gerald Wai-Yeung Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Iris Wai-Ting Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Julia Kofler
- Division of Neuropathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Candice Kent
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Fulin Ma
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Karl Herrup
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Myriam Fornage
- Human Genetics Center, Division of Epidemiology, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Kai-Hei Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
- Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| |
Collapse
|
5
|
Hoshino T, Takase H, Hamanaka G, Kimura S, Fukuda N, Mandeville ET, Lok J, Lo EH, Arai K. Transcriptomic changes in oligodendrocyte lineage cells during the juvenile to adult transition in the mouse corpus callosum. Sci Rep 2024; 14:22334. [PMID: 39333617 PMCID: PMC11436962 DOI: 10.1038/s41598-024-72311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/05/2024] [Indexed: 09/29/2024] Open
Abstract
The corpus callosum, a major white matter tract in the brain, undergoes age-related functional changes. To extend our investigation of age-related gene expression dynamics in the mouse corpus callosum, we compared RNA-seq data from 2 week-old and 12 week-old wild-type C57BL/6 J mice and identified the differentially expressed genes (e.g., Marcksl1, Chst3, C4b, Neat1, Ndrg1, Emid1, etc.) between these ages. Interestingly, we found that genes highly expressed in myelinating oligodendrocytes were upregulated in 12 week-old mice compared to 2 week-old mice, while genes highly expressed in oligodendrocyte precursor cells (OPCs) and newly formed oligodendrocytes were downregulated. Furthermore, by comparing these genes with the datasets from 20 week-old and 96 week-old mice, we identified novel sets of genes with age-dependent variations in the corpus callosum. These gene expression changes potentially affect key biological pathways and may be closely linked to age-related neurological disorders, including dementia and stroke. Therefore, our results provide an additional dataset to explore age-dependent gene expression dynamics of oligodendrocyte lineage cells in the corpus callosum.
Collapse
Affiliation(s)
- Tomonori Hoshino
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Room 2401, Charlestown, MA, 02129-2000, USA.
| | - Hajime Takase
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Room 2401, Charlestown, MA, 02129-2000, USA
| | - Gen Hamanaka
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Room 2401, Charlestown, MA, 02129-2000, USA
| | - Shintaro Kimura
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Room 2401, Charlestown, MA, 02129-2000, USA
| | - Norito Fukuda
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Room 2401, Charlestown, MA, 02129-2000, USA
| | - Emiri T Mandeville
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Room 2401, Charlestown, MA, 02129-2000, USA
| | - Josephine Lok
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Room 2401, Charlestown, MA, 02129-2000, USA
| | - Eng H Lo
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Room 2401, Charlestown, MA, 02129-2000, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Room 2401, Charlestown, MA, 02129-2000, USA.
| |
Collapse
|
6
|
Yeung SHS, Lee RHS, Cheng GWY, Ma IWT, Kofler J, Kent C, Ma F, Herrup K, Fornage M, Arai K, Tse KH. White matter hyperintensity genetic risk factor TRIM47 regulates autophagy in brain endothelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.18.566359. [PMID: 38187529 PMCID: PMC10769267 DOI: 10.1101/2023.12.18.566359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
White matter hyperintensity (WMH) is strongly correlated with age-related dementia and hypertension, but its pathogenesis remains obscure. GWAS identified TRIM47 at 17q25 locus as a top genetic risk factor for WMH formation. TRIM family is a class of E3 ubiquitin ligase with pivotal functions in autophagy, which is critical for brain endothelial cell (ECs) remodeling during hypertension. We hypothesize that TRIM47 regulates autophagy and its loss-of-function disturbs cerebrovasculature. Based on transcriptomics and immunohistochemistry, TRIM47 is found selectively expressed by brain ECs in human and mouse, and its transcription is upregulated by artificially-induced autophagy while downregulated in hypertension-like conditions. Using in silico simulation, immunocytochemistry and super-resolution microscopy, we identified the highly conserved binding site between TRIM47 and the LIR (LC3-interacting region) motif of LC3B. Importantly, pharmacological autophagy induction increased Trim47 expression on mouse ECs (b.End3) culture, while silencing Trim47 significantly increased autophagy with ULK1 phosphorylation induction, transcription and vacuole formation. Together, we confirm that TRIM47 is an endogenous inhibitor of autophagy in brain ECs, and such TRIM47-mediated regulation connects genetic and physiological risk factors for WMH formation but warrants further investigation. SUMMARY STATEMENT TRIM47, top genetic risk factor for white matter hyperintensity formation, is a negative regulator of autophagy in brain endothelial cells and implicates a novel cellular mechanism for age-related cerebrovascular changes.
Collapse
|
7
|
Takase H, Hamanaka G, Hoshino T, Ohtomo R, Guo S, Mandeville ET, Lo EH, Arai K. Transcriptomic Profiling Reveals Neuroinflammation in the Corpus Callosum of a Transgenic Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2024; 97:1421-1433. [PMID: 38277298 DOI: 10.3233/jad-231049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a widespread neurodegenerative disorder characterized by progressive cognitive decline, affecting a significant portion of the aging population. While the cerebral cortex and hippocampus have been the primary focus of AD research, accumulating evidence suggests that white matter lesions in the brain, particularly in the corpus callosum, play an important role in the pathogenesis of the disease. OBJECTIVE This study aims to investigate the gene expression changes in the corpus callosum of 5xFAD transgenic mice, a widely used AD mouse model. METHODS We conducted behavioral tests for spatial learning and memory in 5xFAD transgenic mice and performed RNA sequencing analyses on the corpus callosum to examine transcriptomic changes. RESULTS Our results show cognitive decline and demyelination in the corpus callosum of 5xFAD transgenic mice. Transcriptomic analysis reveals a predominance of upregulated genes in AD mice, particularly those associated with immune cells, including microglia. Conversely, downregulation of genes related to chaperone function and clock genes such as Per1, Per2, and Cry1 is also observed. CONCLUSIONS This study suggests that activation of neuroinflammation, disruption of chaperone function, and circadian dysfunction are involved in the pathogenesis of white matter lesions in AD. The findings provide insights into potential therapeutic targets and highlight the importance of addressing white matter pathology and circadian dysfunction in AD treatment strategies.
Collapse
Affiliation(s)
- Hajime Takase
- Departments of Radiology and Neurology, Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- YCU Center for Novel and Exploratory Clinical Trials (Y-NEXT), Yokohama City University Hospital, Yokohama, Japan
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Gen Hamanaka
- Departments of Radiology and Neurology, Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Tomonori Hoshino
- Departments of Radiology and Neurology, Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ryo Ohtomo
- Departments of Radiology and Neurology, Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Shuzhen Guo
- Departments of Radiology and Neurology, Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Emiri T Mandeville
- Departments of Radiology and Neurology, Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Eng H Lo
- Departments of Radiology and Neurology, Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ken Arai
- Departments of Radiology and Neurology, Neuroprotection Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
8
|
Ishikawa H, Shindo A, Mizutani A, Tomimoto H, Lo EH, Arai K. A brief overview of a mouse model of cerebral hypoperfusion by bilateral carotid artery stenosis. J Cereb Blood Flow Metab 2023; 43:18-36. [PMID: 36883344 PMCID: PMC10638994 DOI: 10.1177/0271678x231154597] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 03/09/2023]
Abstract
Vascular cognitive impairment (VCI) refers to all forms of cognitive disorder related to cerebrovascular diseases, including vascular mild cognitive impairment, post-stroke dementia, multi-infarct dementia, subcortical ischemic vascular dementia (SIVD), and mixed dementia. Among the causes of VCI, more attention has been paid to SIVD because the causative cerebral small vessel pathologies are frequently observed in elderly people and because the gradual progression of cognitive decline often mimics Alzheimer's disease. In most cases, small vessel diseases are accompanied by cerebral hypoperfusion. In mice, prolonged cerebral hypoperfusion is induced by bilateral carotid artery stenosis (BCAS) with surgically implanted metal micro-coils. This cerebral hypoperfusion BCAS model was proposed as a SIVD mouse model in 2004, and the spreading use of this mouse SIVD model has provided novel data regarding cognitive dysfunction and histological/genetic changes by cerebral hypoperfusion. Oxidative stress, microvascular injury, excitotoxicity, blood-brain barrier dysfunction, and secondary inflammation may be the main mechanisms of brain damage due to prolonged cerebral hypoperfusion, and some potential therapeutic targets for SIVD have been proposed by using transgenic mice or clinically used drugs in BCAS studies. This review article overviews findings from the studies that used this hypoperfused-SIVD mouse model, which were published between 2004 and 2021.
Collapse
Affiliation(s)
- Hidehiro Ishikawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akane Mizutani
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
9
|
Zhang Z, Shu X, Cao Q, Xu L, Wang Z, Li C, Xia S, Shao P, Bao X, Sun L, Xu Y, Xu Y. Compound from Magnolia officinalis Ameliorates White Matter Injury by Promoting Oligodendrocyte Maturation in Chronic Cerebral Ischemia Models. Neurosci Bull 2023; 39:1497-1511. [PMID: 37291477 PMCID: PMC10533772 DOI: 10.1007/s12264-023-01068-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/20/2023] [Indexed: 06/10/2023] Open
Abstract
Chronic cerebral hypoperfusion leads to white matter injury (WMI), which subsequently causes neurodegeneration and even cognitive impairment. However, due to the lack of treatment specifically for WMI, novel recognized and effective therapeutic strategies are urgently needed. In this study, we found that honokiol and magnolol, two compounds derived from Magnolia officinalis, significantly facilitated the differentiation of primary oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes, with a more prominent effect of the former compound. Moreover, our results demonstrated that honokiol treatment improved myelin injury, induced mature oligodendrocyte protein expression, attenuated cognitive decline, promoted oligodendrocyte regeneration, and inhibited astrocytic activation in the bilateral carotid artery stenosis model. Mechanistically, honokiol increased the phosphorylation of serine/threonine kinase (Akt) and mammalian target of rapamycin (mTOR) by activating cannabinoid receptor 1 during OPC differentiation. Collectively, our study indicates that honokiol might serve as a potential treatment for WMI in chronic cerebral ischemia.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Xin Shu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Qian Cao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Lushan Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Zibu Wang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Chenggang Li
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
| | - Pengfei Shao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
| | - Liang Sun
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Yuhao Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China.
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China.
- Nanjing Neurology Medical Center, Nanjing, 210008, China.
| |
Collapse
|
10
|
Ohtomo R, Ishikawa H, Kinoshita K, Chung KK, Hamanaka G, Ohtomo G, Takase H, Wrann CD, Katsuki H, Iwata A, Lok J, Lo EH, Arai K. Treadmill Exercise During Cerebral Hypoperfusion Has Only Limited Effects on Cognitive Function in Middle-Aged Subcortical Ischemic Vascular Dementia Mice. Front Aging Neurosci 2022; 13:756537. [PMID: 34992525 PMCID: PMC8724785 DOI: 10.3389/fnagi.2021.756537] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Clinical and basic research suggests that exercise is a safe behavioral intervention and is effective for improving cognitive function in cerebrovascular diseases, including subcortical ischemic vascular dementia (SIVD). However, most of the basic research uses young animals to assess the effects of exercise, although SIVD is an age-related disease. In this study, therefore, we used middle-aged mice to examine how treadmill exercise changes the cognitive function of SIVD mice. As a mouse model of SIVD, prolonged cerebral hypoperfusion was induced in 8-month-old male C57BL/6J mice by bilateral common carotid artery stenosis. A week later, the mice were randomly divided into two groups: a group that received 6-week treadmill exercise and a sedentary group for observation. After subjecting the mice to multiple behavioral tests (Y-maze, novel object recognition, and Morris water maze tests), the treadmill exercise training was shown to only be effective in ameliorating cognitive decline in the Y-maze test. We previously demonstrated that the same regimen of treadmill exercise was effective in young hypoperfused-SIVD mice for all three cognitive tests. Therefore, our study may indicate that treadmill exercise during cerebral hypoperfusion has only limited effects on cognitive function in aging populations.
Collapse
Affiliation(s)
- Ryo Ohtomo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.,Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidehiro Ishikawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Keita Kinoshita
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.,Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kelly K Chung
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Gen Hamanaka
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Gaku Ohtomo
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hajime Takase
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Christiane D Wrann
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.,McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, United States
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Atsushi Iwata
- Department of Neurology, Tokyo Metropolitan Geriatric Medical Center Hospital, Tokyo, Japan
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.,Pediatric Critical Care Medicine, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|