1
|
Ullah K, Ai L, Li Y, Liu L, Zhang Q, Pan K, Humayun Z, Piao L, Sitikov A, Zhao Q, Su Q, Sharp W, Fang Y, Wu D, Liao JK, Wu R. ARNT-dependent HIF-2α signaling protects cardiac microvascular barrier integrity and heart function post-myocardial infarction. Commun Biol 2025; 8:440. [PMID: 40089572 PMCID: PMC11910586 DOI: 10.1038/s42003-025-07753-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 02/15/2025] [Indexed: 03/17/2025] Open
Abstract
Myocardial infarction (MI) compromises the cardiac microvascular endothelial barrier, increasing leakage and inflammation. HIF2α, predominantly expressed in cardiac endothelial cells during ischemia, has an unclear role in barrier function during MI. Here, we show that inducible, adult endothelial-specific deletion of Hif2α in mice leads to increased mortality, cardiac leakage, inflammation, reduced heart function, and adverse remodeling after MI. In parallel, human cardiac microvascular endothelial cells (HCMVECs) lacking HIF2α display impaired barrier integrity, reduced tight-junction proteins, increased cell death, and elevated IL-6 levels, effects that are alleviated by overexpressing ARNT, a key partner of HIF2α under hypoxic conditions. Interestingly, ARNT, but not HIF2α, directly binds the IL-6 promoter to suppress its expression. These findings suggest the HIF2α/ARNT axis as a protective mechanism in heart failure post-MI and identify potential therapeutic targets to support cardiac function.
Collapse
Affiliation(s)
- Karim Ullah
- Section of Cardiology,, Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Lizhuo Ai
- Section of Cardiology,, Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, USA
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Yan Li
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Lifeng Liu
- Section of Cardiology,, Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Qin Zhang
- Section of Cardiology,, Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Kaichao Pan
- Section of Cardiology,, Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Zainab Humayun
- Section of Cardiology,, Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Lin Piao
- Emergency Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Albert Sitikov
- Section of Cardiology,, Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Qiong Zhao
- Division of Cardiology, Department of Medicine, Inova Heart and Vascular Institute, Falls Church, VA, USA
| | - Qiaozhu Su
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Willard Sharp
- Emergency Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Yun Fang
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - David Wu
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - James K Liao
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Rongxue Wu
- Section of Cardiology,, Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Ullah K, Ai L, Li Y, Liu L, Zhang Q, Pan K, Humayun Z, Piao L, Sitikov A, Su Q, Zhao Q, Sharp W, Fang Y, Wu D, Liao JK, Wu R. A Novel ARNT-Dependent HIF-2α Signaling as a Protective Mechanism for Cardiac Microvascular Barrier Integrity and Heart Function Post-Myocardial Infarction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.12.532316. [PMID: 36993497 PMCID: PMC10054928 DOI: 10.1101/2023.03.12.532316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Myocardial infarction (MI) significantly compromises the integrity of the cardiac microvascular endothelial barrier, leading to enhanced leakage and inflammation that contribute to the progression of heart failure. While HIF2α is highly expressed in cardiac endothelial cells (ECs) under hypoxic conditions, its role in regulating microvascular endothelial barrier function during MI is not well understood. In this study, we utilized mice with a cardiac-specific deletion of HIF2α, generated through an inducible Cre (Cdh5Cre-ERT2) recombinase system. These mice exhibited no apparent phenotype under normal conditions. However, following left anterior descending (LAD) artery ligation-induced MI, they showed increased mortality associated with enhanced cardiac vascular leakage, inflammation, worsened cardiac function, and exacerbated heart remodeling. These outcomes suggest a protective role for endothelial HIF2α in response to cardiac ischemia. Parallel investigations in human cardiac microvascular endothelial cells (CMVECs) revealed that loss of ecHif2α led to diminished endothelial barrier function, characterized by reduced tight-junction protein levels and increased cell death, along with elevated expression of IL6 and other inflammatory markers. These effects were substantially reversed by overexpressing ARNT, a critical dimerization partner for HIF2α during hypoxia. Additionally, ARNT deletion also led to increased CMVEC permeability. Interestingly, ARNT, rather than HIF2α itself, directly binds to the IL6 promoter to suppress IL6 expression. Our findings demonstrate the critical role of endothelial HIF2α in response to MI and identify the HIF2α/ARNT axis as a transcriptional repressor, offering novel insights for developing therapeutic strategies against heart failure following MI.
Collapse
|
3
|
Chang L, Zheng Y, Li S, Niu X, Huang S, Long Q, Ran X, Wang J. Identification of genomic characteristics and selective signals in Guizhou black goat. BMC Genomics 2024; 25:164. [PMID: 38336605 PMCID: PMC10854126 DOI: 10.1186/s12864-023-09954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/29/2023] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Guizhou black goat is one of the indigenous black goat breeds in the southwest region of Guizhou, China, which is an ordinary goat for mutton production. They are characterized by moderate body size, black coat, favorite meat quality with tender meat and lower odor, and tolerance for cold and crude feed. However, little is known about the genetic characteristics or variations underlying their important economic traits. RESULTS Here, we resequenced the whole genome of Guizhou black goat from 30 unrelated individuals breeding in the five core farms. A total of 9,835,610 SNPs were detected, and 2,178,818 SNPs were identified specifically in this breed. The population structure analysis revealed that Guizhou black goat shared a common ancestry with Shaanbei white cashmere goat (0.146), Yunshang black goat (0.103), Iran indigenous goat (0.054), and Moroccan goat (0.002). However, Guizhou black goat showed relatively higher genetic diversity and a lower level of linkage disequilibrium than the other seven goat breeds by the analysis of the nucleotide diversity, linkage disequilibrium decay, and runs of homozygosity. Based on FST and θπ values, we identified 645, 813, and 804 selected regions between Guizhou black goat and Yunshang black goat, Iran indigenous goat, and cashmere goats. Combined with the results of XP-EHH, there were 286, 322, and 359 candidate genes, respectively. Functional annotation analysis revealed that these genes are potentially responsible for the immune response (e.g., CD28, CD274, IL1A, TLR2, and SLC25A31), humility-cold resistance (e.g., HBEGF, SOSTDC1, ARNT, COL4A1/2, and EP300), meat quality traits (e.g., CHUK, GAB2, PLAAT3, and EP300), growth (e.g., GAB2, DPYD, and CSF1), fertility (e.g., METTL15 and MEI1), and visual function (e.g., PANK2 and NMNAT2) in Guizhou black goat. CONCLUSION Our results indicated that Guizhou black goat had a high level of genomic diversity and a low level of linkage disequilibrium in the whole genome. Selection signatures were detected in the genomic regions that were mainly related to growth and development, meat quality, reproduction, disease resistance, and humidity-cold resistance in Guizhou black goat. These results would provide a basis for further resource protection and breeding improvement of this very local breed.
Collapse
Affiliation(s)
- Lingle Chang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Sciences and College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yundi Zheng
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Sciences and College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Sheng Li
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Sciences and College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xi Niu
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Sciences and College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Shihui Huang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Sciences and College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Qingmeng Long
- Guizhou Testing Center for Livestock and Poultry Germplasm, Guiyang, 550018, Guizhou, China
| | - Xueqin Ran
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Sciences and College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China.
| | - Jiafu Wang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Sciences and College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
4
|
Ullah K, Ai L, Humayun Z, Wu R. Targeting Endothelial HIF2α/ARNT Expression for Ischemic Heart Disease Therapy. BIOLOGY 2023; 12:995. [PMID: 37508425 PMCID: PMC10376750 DOI: 10.3390/biology12070995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Ischemic heart disease (IHD) is a major cause of mortality and morbidity worldwide, with novel therapeutic strategies urgently needed. Endothelial dysfunction is a hallmark of IHD, contributing to its development and progression. Hypoxia-inducible factors (HIFs) are transcription factors activated in response to low oxygen levels, playing crucial roles in various pathophysiological processes related to cardiovascular diseases. Among the HIF isoforms, HIF2α is predominantly expressed in cardiac vascular endothelial cells and has a key role in cardiovascular diseases. HIFβ, also known as ARNT, is the obligate binding partner of HIFα subunits and is necessary for HIFα's transcriptional activity. ARNT itself plays an essential role in the development of the cardiovascular system, regulating angiogenesis, limiting inflammatory cytokine production, and protecting against cardiomyopathy. This review provides an overview of the current understanding of HIF2α and ARNT signaling in endothelial cell function and dysfunction and their involvement in IHD pathogenesis. We highlight their roles in inflammation and maintaining the integrity of the endothelial barrier, as well as their potential as therapeutic targets for IHD.
Collapse
Affiliation(s)
- Karim Ullah
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Lizhuo Ai
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zainab Humayun
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Rongxue Wu
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Haghshenas R, Aftabi Y, Doaei S, Gholamalizadeh M. Synergistic effect of endurance training and nettle leaf extract on the IDO1-KYN-AHR pathway homeostasis and inhibiting of liver toxicity in rats with STZ-induced diabetes. Front Endocrinol (Lausanne) 2023; 14:1071424. [PMID: 37305057 PMCID: PMC10251405 DOI: 10.3389/fendo.2023.1071424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 05/05/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Diabetes adversely affects a number of hepatic molecular pathways, including the kynurenine (KYN) pathway. KYN is produced by indoleamine 2,3-dioxygenase (IDO) and activates the aryl hydrocarbon receptor (AHR). This study evaluated the effect of endurance training (EndTr) and nettle leaf extract (NLE) on the IDO1-KYN-AHR pathway in the livers of rats with streptozotocin-induced diabetes. Methods We divided 48 rats into six groups: controls (Ct), treated with EndTr (EndTr), diabetes-induced (D), D treated with NLE (D + NLE), D treated with EndTr (D + EnTr), and D treated with EndTr and NLE (D + EndTr + NLE). EndTr, D + EnTr, and D + EndTr + NLE groups were subjected to training with running on treadmill for 8 weeks, 5 days per week, 25 min in first session to 59 min at last session with intensity of 55% to 65% VO2max. Using real-time PCR gene (Ahr, Cyp1a1, and Ido1) expressions and ELISA, malondialdehyde (MDA) and protein (IDO1, AHR, and CYP1A1) levels were determined in the liver samples. Results A significant three-way interaction of exercise, nettle, and diabetes was observed on the all variables (P< 0.001). In particular, significant increases in blood glucose level (BGL), in gene and protein expression, and in MDA and KYN levels were observed in the liver samples of the D group versus the Ct group (P< 0.05). BGL and liver MDA levels were significantly lower in the D + EndTr and D + NLE groups than that in the D group. However, the D + EndTr + NLE group showed a more significant decrease in these factors (P< 0.05). In addition, liver KYN levels were significantly lower in the EndTr group compared with that in the Ct group as well as in the D + EndTr + NLE and D + EndTr groups compared with that in the D groups (P< 0.05). Whereas both the EndTr and D + NLE groups showed lower Ahr expression and AHR level compared with the Ct and D groups, respectively (P< 0.05), the D + EndTr + NLE group showed a higher significant reduction in the AHR level than the D group (P< 0.05). The Cyp1a1 expression and IDO1 level significantly decreased only in the D + EndTr + NLE group compared to that in the D group (P< 0.05). Conclusion Overall, this study showed that the combination of EndTr and NLE may synergistically restore the imbalanced IDO1-KYN-AHR pathway in diabetic liver.
Collapse
Affiliation(s)
- Rouhollah Haghshenas
- Department of Sport Sciences, Faculty of Humanities, Semnan University, Semnan, Iran
| | - Younes Aftabi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saied Doaei
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Gholamalizadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Luo XY, Fu X, Liu F, Luo JY, Chen AF. Sema3G activates YAP and promotes VSMCs proliferation and migration via Nrp2/PlexinA1. Cell Signal 2023; 105:110613. [PMID: 36720439 DOI: 10.1016/j.cellsig.2023.110613] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/05/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND Diabetes exacerbates neointima formation after vascular procedures, manifested by accelerated proliferation and migration of vascular smooth muscle cells (VSMCs). Semaphorin 3G (Sema3G), secreted mainly from endothelial cells (ECs), regulates various cellular functions and vascular pathologies. However, the function and potential mechanism of ECs-derived Sema3G in VSMCs under diabetic condition remain unclear. OBJECTIVE To investigate the role and the mechanism of ECs-derived Sema3G in the regulation of VSMCs proliferation and migration. RESULTS ECs-derived Sema3G promoted human aortic SMCs (HASMCs) cell cycle progression and proliferation. Sema3G upregulated the expression of MMP2 and MMP9, which might explain the increased HASMCs migration by Sema3G. Inhibition of Nrp2/PlexinA1 mitigated the effect of Sema3G on promoting HASMCs proliferation and migration. Mechanistically, Sema3G inhibited LATS1 and activated YAP via Nrp2/PlexinA1. Verteporfin, an FDA-approved YAP pathway inhibitor, counteracted Sema3G-induced cyclin E and cyclin D1 expression. Besides, Sema3G expression was upregulated in ECs of diabetic mouse aortas. Serum Sema3G level was increased in type 2 diabetic patients and mice. Moreover, compared to chow diet-fed mice, high-fat diet (HFD)-fed obese mice showed thicker neointima and higher Sema3G expression in vasculature after femoral injury. CONCLUSIONS Our results indicated that ECs-derived Sema3G under diabetic condition activated YAP and promoted HASMCs proliferation and migration via Nrp2/PlexinA1. Thus, inhibition of Sema3G may hold therapeutic potential against diabetes-associated intimal hyperplasia.
Collapse
Affiliation(s)
- Xue-Yang Luo
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Fu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Liu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Endocrinology & Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Key Laboratory of Diabetes, Shanghai Clinical Medical Center of Diabetes, Shanghai Key Clinical Center of Metabolic Diseases, Shanghai Institute for Diabetes, Shanghai, China
| | - Jiang-Yun Luo
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|