1
|
Wong-Guerra M, Montano-Peguero Y, Hernández-Enseñat D, Ramírez-Sánchez J, Mondelo-Rodríguez A, Padrón-Yaquis AS, García-Alfonso E, Fonseca-Fonseca LA, Nuñez-Figueredo Y. Mitochondrial protective properties exerted by JM-20 in a dementia model induced by intracerebroventricular administration of streptozotocin in mice. Behav Brain Res 2025; 480:115385. [PMID: 39667646 DOI: 10.1016/j.bbr.2024.115385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/13/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Mitochondrial dysfunction and brain insulin resistance have been related to Alzheimer's disease (AD) development. Streptozotocin (STZ) is commonly employed to disrupt glucose and insulin metabolism, even causing cognitive impairment in animal models. We aimed at studying the protective effect of JM-20 on STZ-induced memory impairment and brain mitochondrial dysfunction. METHODS Male C57Bl6 mice received 3 mg/kg STZ intracerebroventricularly and JM-20 (0.25 mg/kg or 4 mg/kg) was administered daily by gastric gavage. Episodic memory was evaluated through Y-maze, novel object recognition, and Morris water maze. Endogenous antioxidant systems (catalase and superoxide dismutase activities), total sulfhydryl groups, malondialdehyde levels were also studied and acetylcholinesterase (AChE) activity were assessed in the prefrontal cortex (PC) and hippocampus (HO). RESULTS demonstrated that STZ injection impaired recognition and spatial learning and memory and oxygen flow in all mitochondrial respiration states. Additionally, STZ increased AChE, superoxide dismutase, and catalase activity in the PC but not in HO tissue. A neuroprotective effect of JM-20 on STZ-induced memory decline, and mitochondrial dysfunction was observed, suggesting an important causal interaction. In addition, JM-20 was able to decreased AChE enzyme hyperactivity, rescued endogenous antioxidant systems, and prevented histologically observed neuronal damage CONCLUSION: Our results indicate that JM-20 protects against STZ-induced impairment in brain bioenergetic metabolism and memory, confirming its potential as a candidate for treating neurodegenerative disorders associated with mitochondrial dysfunction like AD.
Collapse
Affiliation(s)
- Maylin Wong-Guerra
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos, La Habana 10600, Cuba; Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Alameda, Santiago 3363, Chile
| | - Yanay Montano-Peguero
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos, La Habana 10600, Cuba; Facultad de Ciencias Químicas y Farmacéuticas, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santos Dumont 964, Casilla 233, Santiago, Chile
| | - Daniela Hernández-Enseñat
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos, La Habana 10600, Cuba
| | - Jeney Ramírez-Sánchez
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos, La Habana 10600, Cuba
| | - Abel Mondelo-Rodríguez
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos, La Habana 10600, Cuba
| | - Alejandro Saúl Padrón-Yaquis
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos, La Habana 10600, Cuba
| | - Enrique García-Alfonso
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos, La Habana 10600, Cuba
| | - Luis Arturo Fonseca-Fonseca
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos, La Habana 10600, Cuba.
| | - Yanier Nuñez-Figueredo
- Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos, La Habana 10600, Cuba.
| |
Collapse
|
2
|
de la Harpe A, Beukes N, Frost C. Mitochondrial calcium overload contributes to cannabinoid-induced paraptosis in hormone-responsive breast cancer cells. Cell Prolif 2024; 57:e13650. [PMID: 38721827 PMCID: PMC11471428 DOI: 10.1111/cpr.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 10/15/2024] Open
Abstract
Studies have shown that natural products can induce paraptosis in tumour cell lines. Paraptosis is characterized by cytoplasmic vacuolation arising from the endoplasmic reticulum (ER) and mitochondria. The mechanism of paraptosis is unclear; however, dysregulation of Ca2+ homeostasis is believed to affect paraptosis induction. This study investigated the mechanism of cell death induced by a phytocannabinoid ratio in the MCF7 breast cancer cell line. The crystal violet assay was used to detect changes in viability and morphology changes were investigated using light and transmission electron microscopy. Various inhibitors, fluorescent staining with high-content screening, and Western blot analysis were used to investigate different cell death mechanisms. The phytocannabinoid ratio induced significant cell death and cytoplasmic vacuolation in MCF7 cells; however, no apoptosis, necrosis, autophagy, or ferroptosis was detected. Vacuolation induced by phytocannabinoid treatment was inhibited by cycloheximide, suggesting paraptosis induction. The mechanism of paraptosis induction was investigated, and it was found that treatment (1) induced ER dilation and mitochondrial swelling, (2) induced significant ER stress and mitochondrial Ca2+ overload and dysfunction, which appeared to be mediated by the voltage-dependent anion channel, and (3) significantly impaired all mitochondrial metabolic pathways. The data demonstrated that paraptosis induced by the cannabinoid ratio was mediated by Ca2+ flux from the ER to the mitochondria. These findings highlight a novel mechanism of cannabinoid-induced cell death and emphasize the anti-cancer potential of cannabinoid ratios, which exhibited enhanced effects compared to individual cannabinoids.
Collapse
Affiliation(s)
- A. de la Harpe
- Department of Biochemistry and MicrobiologyNelson Mandela UniversityPort ElizabethSouth Africa
| | - N. Beukes
- Department of Biochemistry and MicrobiologyNelson Mandela UniversityPort ElizabethSouth Africa
| | - C. Frost
- Department of Biochemistry and MicrobiologyNelson Mandela UniversityPort ElizabethSouth Africa
| |
Collapse
|
3
|
Cohen BM, Sonntag KC. Identifying the earliest-occurring clinically targetable precursors of late-onset Alzheimer's disease. EBioMedicine 2024; 106:105238. [PMID: 39002387 PMCID: PMC11284560 DOI: 10.1016/j.ebiom.2024.105238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/15/2024] Open
Abstract
Most cases of Alzheimer's disease (AD) are late-onset dementias (LOAD). However, research on AD is predominantly of early-onset disease (EOAD). The determinants of EOAD, gene variants of APP and presenilin proteins, are not the basic precursors of LOAD. Rather, multiple other genes and associated cellular processes underlie risk for LOAD. These determinants could be modified in individuals at risk for LOAD well before signs and symptoms appear. Studying brain cells produced from patient-derived induced-pluripotent-stem-cells (iPSC), in culture, will be instrumental in developing such interventions. This paper summarises evidence accrued from iPSC culture models identifying the earliest occurring clinically targetable determinants of LOAD. Results obtained and replicated, thus far, suggest that abnormalities of bioenergetics, lipid metabolism, digestive organelle function and inflammatory activity are primary processes underlying LOAD. The application of cell culture platforms will become increasingly important in research and also on LOAD detection, assessment, and treatment in the years ahead.
Collapse
Affiliation(s)
- Bruce M Cohen
- Harvard Medical School, Boston, MA, USA; Program for Neuropsychiatric Research, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA.
| | - Kai-Christian Sonntag
- Harvard Medical School, Boston, MA, USA; Laboratory for Translational Research on Neurodegeneration, Program for Neuropsychiatric Research, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA.
| |
Collapse
|
4
|
Cohen BM, Sonntag KC. The complex determinants of Alzheimer's-type dementias. Aging (Albany NY) 2023; 15:1-3. [PMID: 36602534 PMCID: PMC9876637 DOI: 10.18632/aging.204478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023]
Affiliation(s)
- Bruce M Cohen
- Robertson Steele Professor of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Kai-Christian Sonntag
- Robertson Steele Professor of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Mohamad Hazir NS, Yahaya NHM, Zawawi MSF, Damanhuri HA, Mohamed N, Alias E. Changes in Metabolism and Mitochondrial Bioenergetics during Polyethylene-Induced Osteoclastogenesis. Int J Mol Sci 2022; 23:ijms23158331. [PMID: 35955464 PMCID: PMC9368566 DOI: 10.3390/ijms23158331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/24/2022] [Accepted: 07/24/2022] [Indexed: 12/10/2022] Open
Abstract
Changes in mitochondrial bioenergetics are believed to take place during osteoclastogenesis. This study aims to assess changes in mitochondrial bioenergetics and reactive oxygen species (ROS) levels during polyethylene (PE)-induced osteoclastogenesis in vitro. For this purpose, RAW264.7 cells were cultured for nine days and allowed to differentiate into osteoclasts in the presence of PE and RANKL. The total TRAP-positive cells, resorption activity, expression of osteoclast marker genes, ROS level, mitochondrial bioenergetics, glycolysis, and substrate utilization were measured. The effect of tocotrienols-rich fraction (TRF) treatment (50 ng/mL) on those parameters during PE-induced osteoclastogenesis was also studied. During PE-induced osteoclastogenesis, as depicted by an increase in TRAP-positive cells and gene expression of osteoclast-related markers, higher proton leak, higher extracellular acidification rate (ECAR), as well as higher levels of ROS and NADPH oxidases (NOXs) were observed in the differentiated cells. The oxidation level of some substrates in the differentiated group was higher than in other groups. TRF treatment significantly reduced the number of TRAP-positive osteoclasts, bone resorption activity, and ROS levels, as well as modulating the gene expression of antioxidant-related genes and mitochondrial function. In conclusion, changes in mitochondrial bioenergetics and substrate utilization were observed during PE-induced osteoclastogenesis, while TRF treatment modulated these changes.
Collapse
Affiliation(s)
- Nur Shukriyah Mohamad Hazir
- Department of Biochemistry, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (N.S.M.H.); (H.A.D.)
- Clinical Laboratory Section, Institute of Medical Science Technology, Universiti Kuala Lumpur, A1-1, Jalan TKS 1, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia
| | - Nor Hamdan Mohamad Yahaya
- Department of Orthopaedics, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Muhamad Syahrul Fitri Zawawi
- Department of Orthopaedics, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia;
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (N.S.M.H.); (H.A.D.)
| | - Norazlina Mohamed
- Department of Pharmacology, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Ekram Alias
- Department of Biochemistry, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (N.S.M.H.); (H.A.D.)
- Correspondence: ; Tel.: +60-3-91459559
| |
Collapse
|
6
|
Ryu W, Shen M, Lee Y, Healy RA, Bormann MK, Cohen BM, Sonntag K. Nicotinamide riboside and caffeine partially restore diminished NAD availability but not altered energy metabolism in Alzheimer's disease. Aging Cell 2022; 21:e13658. [PMID: 35730144 PMCID: PMC9282847 DOI: 10.1111/acel.13658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/20/2022] [Accepted: 06/02/2022] [Indexed: 12/03/2022] Open
Abstract
The redox co-factor nicotinamide adenine dinucleotide (NAD) declines with age, and NAD deficits are specifically associated with dysfunctional energy metabolism in late-onset Alzheimer's disease (LOAD). Nicotinamide riboside (NR), a dietary NAD precursor, has been suggested to ameliorate the aging process or neurodegeneration. We assessed whether NR with or without caffeine, which increases nicotinamide mononucleotide transferase subtype 2 (NMNAT2), an essential enzyme in NAD production, modulates bioenergetic functions in LOAD. In LOAD patients-and young or old control individuals-derived dermal fibroblasts as well as in induced pluripotent stem cell-differentiated neural progenitors and astrocytes, NR and caffeine cell type-specifically increased the NAD pool, transiently enhanced mitochondrial respiration or glycolysis and altered the expression of genes in the NAD synthesis or consumption pathways. However, continued treatment led to reversed bioenergetic effects. Importantly, NR and caffeine did not alter the characteristics of a previously documented inherent LOAD-associated bioenergetic phenotype. Thus, although NR and caffeine can partially restore diminished NAD availability, increasing NAD alone may not be sufficient to boost or restore energy metabolism in brain aging or alter aberrant energy management in LOAD. Nicotinamide riboside might still be of value in combination with other agents in preventive or therapeutic intervention strategies to address the aging process or age-associated dementia.
Collapse
Affiliation(s)
- Woo‐In Ryu
- Department of Psychiatry, McLean HospitalHarvard Medical SchoolBelmontMassachusettsUSA
- Basic Neuroscience Division, McLean HospitalHarvard Medical SchoolBelmontMassachusettsUSA
- Program for Neuropsychiatric Research, McLean HospitalHarvard Medical SchoolBelmontMassachusettsUSA
| | - Minqi Shen
- Department of Psychiatry, McLean HospitalHarvard Medical SchoolBelmontMassachusettsUSA
- Basic Neuroscience Division, McLean HospitalHarvard Medical SchoolBelmontMassachusettsUSA
- Program for Neuropsychiatric Research, McLean HospitalHarvard Medical SchoolBelmontMassachusettsUSA
| | - Yoon Lee
- Department of Psychiatry, McLean HospitalHarvard Medical SchoolBelmontMassachusettsUSA
- Basic Neuroscience Division, McLean HospitalHarvard Medical SchoolBelmontMassachusettsUSA
- Program for Neuropsychiatric Research, McLean HospitalHarvard Medical SchoolBelmontMassachusettsUSA
| | - Ryan A. Healy
- Department of Psychiatry, McLean HospitalHarvard Medical SchoolBelmontMassachusettsUSA
- Basic Neuroscience Division, McLean HospitalHarvard Medical SchoolBelmontMassachusettsUSA
- Program for Neuropsychiatric Research, McLean HospitalHarvard Medical SchoolBelmontMassachusettsUSA
| | - Mariana K. Bormann
- Department of Psychiatry, McLean HospitalHarvard Medical SchoolBelmontMassachusettsUSA
- Basic Neuroscience Division, McLean HospitalHarvard Medical SchoolBelmontMassachusettsUSA
- Program for Neuropsychiatric Research, McLean HospitalHarvard Medical SchoolBelmontMassachusettsUSA
| | - Bruce M. Cohen
- Department of Psychiatry, McLean HospitalHarvard Medical SchoolBelmontMassachusettsUSA
- Program for Neuropsychiatric Research, McLean HospitalHarvard Medical SchoolBelmontMassachusettsUSA
| | - Kai‐Christian Sonntag
- Department of Psychiatry, McLean HospitalHarvard Medical SchoolBelmontMassachusettsUSA
- Basic Neuroscience Division, McLean HospitalHarvard Medical SchoolBelmontMassachusettsUSA
- Program for Neuropsychiatric Research, McLean HospitalHarvard Medical SchoolBelmontMassachusettsUSA
| |
Collapse
|
7
|
Zhang Y, Wang X, Yang X, Yang X, Xue J, Yang Y. Ganoderic Acid A To Alleviate Neuroinflammation of Alzheimer's Disease in Mice by Regulating the Imbalance of the Th17/Tregs Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14204-14214. [PMID: 34798773 DOI: 10.1021/acs.jafc.1c06304] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ganoderic acid A (GAA) is a kind of lanostane-type triterpenoid isolated from Ganoderma lucidum. Imbalance of the Th17/Tregs axis exists in the progress of neuroinflammation of Alzheimer's disease (AD). In this study, the alleviating neuroinflammatory effect of GAA on d-galactose mice was studied from the aspect of regulating the imbalance of the Th17/Tregs axis. The Morris water maze test was used to evaluate the cognitive ability of AD mice. Flow cytometry was used to detect the percentages of IL-17A, IL-17F, IL-21, IL-22, and CD4+CD25+Foxp3+ in peripheral blood. Transmission electron microscopy was used to assess the cerebral mitochondrial ultrastructure. Metabolomic analysis based on gas chromatography-mass spectrometry was used to evaluate the mitochondrial dysfunction metabolism. Western blot analysis was used to detect the protein expressions of cytokines secreted by Th17 cells and Treg cells in the brain. As the results show, GAA has an alleviating neuroinflammatory effect on AD mice via regulating the imbalance of the Th17/Tregs axis. The potential mechanism was related to inhibition of the JAK/STAT signaling pathway induced by Th17 cells and enhancement of the mitochondrial oxidative phosphorylation by regulating Treg cells, thereby improving mitochondrial dysfunction of AD mice.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| | - Xinyan Wang
- Graduate School, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| | - Xiaomei Yang
- Nutritional Department, Jilin Medical University Affiliated Hospital, Jilin 132013, P. R. China
| | - Xiudong Yang
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| | - Jianfei Xue
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| | - Yanjun Yang
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| |
Collapse
|