1
|
Huang TL, Chang YC, Kuo WW, Kao SW, Kuo CH, Hsieh DJY, Lin KH, Ho TJ, Huang CY. Trans-anethole enhances mesenchymal stem cell derived exosomes function to inhibit H 2O 2-induced rheumatoid arthritis-like inflammation in HIG-82 synovial cells. Mol Biol Rep 2025; 52:431. [PMID: 40293555 DOI: 10.1007/s11033-025-10426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/10/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an auto-immune inflammatory disorder for which an effective cure is yet to be found. Trans-anethole (1-methoxy-4-(1E)-1-propen-1-yl-benzene), a key bioactive compound derived from the perennial plant Foeniculum vulgare, exerts multiple medicinal benefits. In this study, we investigated the therapeutic potential of exosomes derived from anethole-preconditioned human Wharton Jelly-derived mesenchymal stem cells (hWJMSCs) against RA-like inflammation in H2O2-treated synoviocyte HIG-82 cells. METHODS The fennel samples were prepared and trans-anethole was purified using LC-ESI-MS/MS analysis. The MTT cell viability assays, hWJMSC derived exosomes, and expression analysis of cellular markers related to proliferation, stemness, apoptosis, and extracellular matrix (ECM)-degrading proteases were performed using Western blotting in HIG-82 cells. RESULTS The results showed that anethole treatment significantly increased cell viability and expression of the MSC marker CD90 in a dose-dependent manner in HIG-82 cells. Cell stemness markers, including proliferation markers cyclin-D, proliferating cell nuclear antigen (PCNA), and minichromosome maintenance complex component 2 (MCM2) were enhanced, whereas p53 and p21 were decreased by anethole. Exosomes derived from anethole-preconditioned hWJMSCs significantly improved the cell viability of H2O2-treated HIG-82 cells. Anethole- preconditioned exosomes decreased ECM-degrading proteases MMP-13, ADAMTS-2, -8, and -17, and AQP-3 expression more significantly than exosomes without preconditioned hWJMSC. Bcl-2 was increased, whereas Bax, Cyto c, and c-caspase 3 were decreased by preconditioned exosomes more prominently than exosomes from without preconditioned hWJMSCs in H2O2-treated HIG-82 cells. CONCLUSION Together, the study showed that exosomes derived from anethole-preconditioned hWJMSC have a greater potential to inhibit RA-like inflammation and apoptosis in H2O2-treated HIG-82 cells.
Collapse
Affiliation(s)
- Tai-Lung Huang
- Department of Orthopedics, Chung-Kang Branch, Cheng Ching General Hospital, Taichung, Taiwan
| | - Yu-Chun Chang
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Shih-Wen Kao
- Graduate Institute of Aging Medicine, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, Chung-Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Kuan-Ho Lin
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Tsung-Jung Ho
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan.
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan.
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
2
|
Govindaraj K, Meteling M, van Rooij J, Becker M, van Wijnen AJ, van den Beucken JJJP, Ramos YFM, van Meurs J, Post JN, Leijten J. Osmolarity-Induced Altered Intracellular Molecular Crowding Drives Osteoarthritis Pathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306722. [PMID: 38213111 PMCID: PMC10953583 DOI: 10.1002/advs.202306722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/08/2023] [Indexed: 01/13/2024]
Abstract
Osteoarthritis (OA) is a multifactorial degenerative joint disease of which the underlying mechanisms are yet to be fully understood. At the molecular level, multiple factors including altered signaling pathways, epigenetics, metabolic imbalance, extracellular matrix degradation, production of matrix metalloproteinases, and inflammatory cytokines, are known to play a detrimental role in OA. However, these factors do not initiate OA, but are mediators or consequences of the disease, while many other factors causing the etiology of OA are still unknown. Here, it is revealed that microenvironmental osmolarity can induce and reverse osteoarthritis-related behavior of chondrocytes via altered intracellular molecular crowding, which represents a previously unknown mechanism underlying OA pathophysiology. Decreased intracellular crowding is associated with increased sensitivity to proinflammatory triggers and decreased responsiveness to anabolic stimuli. OA-induced lowered intracellular molecular crowding could be renormalized via exposure to higher extracellular osmolarity such as those found in healthy joints, which reverse OA chondrocyte's sensitivity to catabolic stimuli as well as its glycolytic metabolism.
Collapse
Affiliation(s)
- Kannan Govindaraj
- Department of Developmental BioengineeringFaculty of Science and Technology, Technical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Marieke Meteling
- Department of Developmental BioengineeringFaculty of Science and Technology, Technical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Jeroen van Rooij
- Department of Internal MedicineErasmus MCDr. Molewaterplein 40Rotterdam3015GDThe Netherlands
| | - Malin Becker
- Department of Developmental BioengineeringFaculty of Science and Technology, Technical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | | | | | - Yolande F. M. Ramos
- Department of Biomedical Data SciencesSection Molecular EpidemiologyLUMCEinthovenweg 20Leiden2333 ZCThe Netherlands
| | - Joyce van Meurs
- Department of Internal MedicineErasmus MCDr. Molewaterplein 40Rotterdam3015GDThe Netherlands
- Department of Orthopedics & Sports MedicineErasmus MCDr. Molewaterplein 40Rotterdam3015GDThe Netherlands
| | - Janine N. Post
- Department of Developmental BioengineeringFaculty of Science and Technology, Technical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Jeroen Leijten
- Department of Developmental BioengineeringFaculty of Science and Technology, Technical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| |
Collapse
|
3
|
Misra S, Ikbal AMA, Bhattacharjee D, Hore M, Mishra S, Karmakar S, Ghosh A, Srinivas R, Das A, Agarwal S, Saha KD, Bhardwaj P, Ubhadia IB, Ghosh P, De S, Tiwari ON, Chattopadhyay D, Palit P. Validation of antioxidant, antiproliferative, and in vitro anti-rheumatoid arthritis activities of epigallo-catechin-rich bioactive fraction from Camellia sinensis var. assamica, Assam variety white tea, and its comparative evaluation with green tea fraction. J Food Biochem 2022; 46:e14487. [PMID: 36309930 DOI: 10.1111/jfbc.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/02/2022] [Accepted: 10/08/2022] [Indexed: 01/14/2023]
Abstract
The epigallocatechin-rich polyphenolic fraction of Assam variety white tea, traditionally used for the management of diverse inflammatory ailments and health drink, was investigated through eco-friendly green aqueous extraction, TLC, and HPLC characterization, phytochemical screening, in vitro DPPH assay, anti-proteinase, MTT assay on synovial fibroblast and colon cancer cells, apoptotic FACS analysis, cytokine ELISA, p-STAT3 western blotting, and in silico docking analysis. HPLC-TLC standardized white tea fraction (WT-F) rendered higher extractive-yield (21%, w/w), than green tea fraction(GT-F) (12%, w/w). WT-F containing flavonoids and non-hydrolysable polyphenols showed better antioxidant activity, rather than equivalent GT-F. WT-F demonstrated remarkable anti-rheumatoid-arthritis activity via killing of synovial fibroblast cells (66.1%), downregulation of TNF-α (93.33%), IL-6 (87.97%), and p-STAT3 inhibition (77.75%). Furthermore, WT-F demonstrated better anti-proliferative activity against colon cancer cells (HCT-116). Collectively, our study revealed that the white tea fraction has boundless potential as anti-rheumatoid arthritis and anti-proliferative agent coupled with apoptotic, antioxidant anti-proteinase, and anti-inflammatory properties. PRACTICAL APPLICATIONS: Our eco-friendly extracted bioactive aqueous fraction of white tea, characterized by TLC-HPLC study and phytochemical screening have demonstrated remarkable anti-rheumatoid arthritis property and anti-proliferative action on colon cancer cells including potential anti-oxidant, anti-inflammatory, and anti-proteinase efficacy. The test WT-F sample has shown impressive safety on normal mammalian cells. WT-F has demonstrated better efficacy against rheumatoid arthritis and cancer model compared to equivalent green tea fraction. Traditionally, it is extensively used for boosting immunity, and energy, with cosmetic, and agricultural applications by the native inhabitants. So, the aqueous fraction of WT is suggested to be used as a prophylactic nutraceutical supplement and or therapeutic agent in commercial polyherbal formulation to attenuate and management of auto-inflammatory rheumatoid arthritis and carcinogenesis of colon. It is additionally suggested to establish in vivo rheumatoid arthritis animal and clinical study to validate their pharmacokinetic stability and dose optimization coupled with anti-inflammatory, cytotoxicity, and anti-oxidant property.
Collapse
Affiliation(s)
- Sanchaita Misra
- Department of Clinical immunology and Rheumatology, Institute of Post-Graduate Medical Education & Research, Kolkata, India
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar, India
| | - Dipanjan Bhattacharjee
- Department of Clinical immunology and Rheumatology, Institute of Post-Graduate Medical Education & Research, Kolkata, India
| | - Minakshi Hore
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar, India
| | | | - Sankha Karmakar
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, India
| | - Alakendu Ghosh
- Department of Clinical immunology and Rheumatology, Institute of Post-Graduate Medical Education & Research, Kolkata, India
| | | | - Abhik Das
- Department of Clinical immunology and Rheumatology, Institute of Post-Graduate Medical Education & Research, Kolkata, India
| | | | | | - Prashant Bhardwaj
- ICMR-Virus Unit (Presently ICMR-National Institute of Cholera & Enteric Diseases), Kolkata, India
| | - Ishvarlal Bhudarbhai Ubhadia
- Department of Clinical immunology and Rheumatology, Institute of Post-Graduate Medical Education & Research, Kolkata, India.,Rosekandi Tea Estate, Grant Pt I, Assam, India
| | - Parasar Ghosh
- Department of Clinical immunology and Rheumatology, Institute of Post-Graduate Medical Education & Research, Kolkata, India
| | - Sirshendu De
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, India
| | - Onkar Nath Tiwari
- Department of Computer Science and Engineering, National Institute of Technology, Agartala, India
| | - Debprasad Chattopadhyay
- ICMR-National Institute of Traditional Medicine, Belagavi, India.,Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India.,NSHM Knowledge Campus, Kolkata, India
| | - Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar, India
| |
Collapse
|