1
|
Wang Q, Yu Y, Zhuang J, Liu R, Sun C. Demystifying the cGAS-STING pathway: precision regulation in the tumor immune microenvironment. Mol Cancer 2025; 24:178. [PMID: 40506729 PMCID: PMC12160120 DOI: 10.1186/s12943-025-02380-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Accepted: 06/04/2025] [Indexed: 06/16/2025] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway serves as an immune sentinel for cytosolic DNA, recognizing double-stranded DNA (dsDNA) derived from abnormally localized nuclear DNA or mitochondrial DNA (mtDNA), and plays a pivotal role in innate immune responses and tumor immune surveillance. Conventional antitumor therapies induce genomic instability and mitochondrial stress, leading to the release of nuclear DNA and mtDNA into the cytosol, thereby activating the cGAS-STING pathway. This activation triggers the production of type I interferons (IFN-I) and pro-inflammatory cytokines, which reshape the tumor immune microenvironment (TIME). However, the complexity of TIME reveals a "double-edged sword" effect of cGAS-STING signaling: while it activates antitumor immune responses, it also promotes immune escape and metastasis through the regulation of immunosuppressive cells and stromal components. This review comprehensively delineates the differential regulatory mechanisms of the pathway within TIME constituents, highlighting its multifaceted roles in tumor immunity. Furthermore, it reviews recent advances and challenges in targeting the cGAS-STING pathway for cancer immunotherapy, with the aim of advancing cGAS-STING signaling modulation as a key therapeutic strategy to reprogram TIME and overcome immunosuppression in antitumor treatment.
Collapse
Affiliation(s)
- Qingyang Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Yu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China.
| | - Ruijuan Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China.
| |
Collapse
|
2
|
Shen M, Jiang X, Peng Q, Oyang L, Ren Z, Wang J, Peng M, Zhou Y, Deng X, Liao Q. The cGAS‒STING pathway in cancer immunity: mechanisms, challenges, and therapeutic implications. J Hematol Oncol 2025; 18:40. [PMID: 40188340 PMCID: PMC11972543 DOI: 10.1186/s13045-025-01691-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/17/2025] [Indexed: 04/07/2025] Open
Abstract
Innate immunity represents the body's first line of defense, effectively countering the invasion of external pathogens. Recent studies have highlighted the crucial role of innate immunity in antitumor defense, beyond its established function in protecting against external pathogen invasion. Enhancing innate immune signaling has emerged as a pivotal strategy in cancer therapy. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway is a key innate immune signal that activates the immune response and exerts antitumor effects; this is primarily attributed to the DNA receptor function of cGAS, which recognizes exogenous DNA to activate downstream STING signaling. This, in turn, promotes the activation of downstream targets such as IRF-3(Interferon Regulatory Factor 3) and NF-κB, leading to the secretion of type I interferons and proinflammatory cytokines, thereby increasing cellular immune activity. The activation of the cGAS-STING pathway may thus play a crucial role in enhancing anticancer immunity. In this paper, we reviewed the role of cGAS-STING signaling in anticancer immunity and its molecular mechanisms. Additionally, we briefly discuss the current applications of the cGAS-STING pathway in cancer immunity, summarize recent developments in STING agonists, and address the challenges facing the use of the cGAS-STING pathway in cancer therapy. Finally, we provide insights into the role of the cGAS‒STING pathway in cancer and propose new directions for cancer immunotherapy.
Collapse
Affiliation(s)
- Mengzhou Shen
- Department of Oncology, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Hunan Normal University Health Science Center, Changsha, Hunan, 410005, China
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Key Laboratory of Cancer Metabolism, Central South University, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Xianjie Jiang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Key Laboratory of Cancer Metabolism, Central South University, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Qiu Peng
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Key Laboratory of Cancer Metabolism, Central South University, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Linda Oyang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Key Laboratory of Cancer Metabolism, Central South University, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Zongyao Ren
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Key Laboratory of Cancer Metabolism, Central South University, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Jiewen Wang
- Department of Oncology, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Hunan Normal University Health Science Center, Changsha, Hunan, 410005, China
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Key Laboratory of Cancer Metabolism, Central South University, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Mingjing Peng
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Key Laboratory of Cancer Metabolism, Central South University, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
| | - Yujuan Zhou
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Key Laboratory of Cancer Metabolism, Central South University, Hunan Cancer Hospital, Changsha, Hunan, 410013, China
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, 410013, China
| | - Xiyun Deng
- School of Basic Medical Sciences, Hunan Normal University, Changsha, Hunan, 410013, China.
| | - Qianjin Liao
- Department of Oncology, Hunan Provincial People's Hospital and The First Affiliated Hospital of Hunan Normal University, Hunan Normal University Health Science Center, Changsha, Hunan, 410005, China.
- Hunan Engineering Research Center of Tumor Organoid Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, 410013, China.
| |
Collapse
|
3
|
Vasiyani H, Wadhwa B. STING activation and overcoming the challenges associated with STING agonists using ADC (antibody-drug conjugate) and other delivery systems. Cell Signal 2025; 128:111647. [PMID: 39922441 DOI: 10.1016/j.cellsig.2025.111647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
In current immunotherapy cGAS (cyclic GMP-AMP synthase)-STING (stimulator of interferon genes) pathway considered as most focused area after CAR-T cell. Exploitation of host immunity against cancer using STING agonists generates the most interest as a therapeutic target. Classically cGAS activation through cytoplasmic DNA generates 2'3'cGAMP that is naturally identified STING agonist. Activation of STING leads to activation of type-1 interferon response and pro-inflammatory cytokines through TBK/IRF-3, TBK/NF-κB pathways. Pro-inflammatory cytokines attract immune cells to the tumor microenvironment and type-1 interferon exposes tumor antigens to T cells and NK cells, which leads to the activation of cellular immunity against tumor cells and eliminates tumor cells. Initially bacterial-derived c-di-AMP and c-di-GMP were identified as CDNs (Cyclic-dinucleotide) STING agonists. Moreover, chemically modified CDNs and completely synthetic STING agonists have been developed. Even though the breakthrough preclinical development none of the STING agonists were approved the by FDA for cancer therapy. All identified natural CDNs have poor pharmacokinetic properties due to high hydrophilicity and negative charge. Moreover, phosphodiester bonds in CDNs are most vulnerable to enzymatic degradation. Synthetic STING agonists have an off-target effect that generates autoimmunity and cytokine storm. STING agonist needs to improve for pharmacokinetics, efficacy, and safety. In this scenario delivery systems can overcome the challenges associated with STING agonists. Here, we highlight the ways of STING agonisms as direct and indirect, and further, we also discuss the existing STING agonists associated challenges and ongoing efforts for delivery of STING agonists in the tumor microenvironment (TME) via different non-targeted carriers like Nanoparticle, Hydrogel, Micelle, Liposome. We also discussed the most advanced targeted deliveries of ADC (Antibody-drug conjugate) and aptamers-based delivery.
Collapse
Affiliation(s)
- Hitesh Vasiyani
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA-23284, USA.
| | - Bhumika Wadhwa
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| |
Collapse
|
4
|
Godsk SH, Jensen CMS, Larsen TV, Ahrenfeldt J, Gammelgaard KR, Jakobsen MR. IFNλ1 is a STING-dependent mediator of DNA damage and induces immune activation in lung cancer. Front Immunol 2025; 15:1525083. [PMID: 40012911 PMCID: PMC11862833 DOI: 10.3389/fimmu.2024.1525083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/30/2024] [Indexed: 02/28/2025] Open
Abstract
Introduction The importance of the cGAS-STING pathway and type I interferon (IFN) in anti-tumor immunity has been widely studied. However, there is limited knowledge about the role of type III IFNs in cancer settings. Type III IFNs, comprising IFNλ1-4, are opposite to type I IFN only expressed by a few cell types, including epithelial cells, and the receptor subunit IFNLR1, is equally only expressed on limited types of cells. Methods Gene and protein expression of the cGAS-STING signaling pathway was characterized in a series of non-small cell lung cancer (NSCLC) cell lines. Herring-testis DNA stimulation and chemotherapy drugs (doxorubicin and cisplatin) were used to activate the cGAS-STING pathway, and the level of activation was determined by measuring changes in the transcriptomic profile as well as type I and III IFNs by ELISA. Re-expression of IFNLR1 on cancer cell lines was achieved using CRISPR activation (CRISPRa) followed by evaluating chemotherapy-induced apoptosis using flow cytometry assays. Results STING was not broadly expressed across the NSCLC cell lines. Those cancer cell lines expressing all relevant factors supporting the cGAS-STING pathway secreted IFNλ following STING activation whereas only few of them expressed IFNβ. Treatment with chemotherapy drugs likewise preferentially induced IFNλ, which was abrogated in CRISPR-Cas9 STING knock-out cells. Expression of IFNLR1 was found downregulated in the cancer cell lines compared to the benign epithelial cell line Nuli-1. Rescuing IFNLR1 expression by CRISPRa in multiple cancer cell lines sensitization them to IFNλ-stimulation and resulted in significant reduction in cell viability. Conclusion Downregulation of IFNLR1 can be an immune evasion mechanism developed by cancer cells to avoid responding to endogenous type III IFNs. Thus, rescuing IFNLR1 expression in NSCLC in conjunction to chemotherapy may potentially be harnessed to elevate the anti-tumoral responses.
Collapse
Affiliation(s)
| | | | | | - Johanne Ahrenfeldt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
5
|
Drzyzga A, Czapla J, Matuszczak S, Łasut-Szyszka B, Cichoń T, Pilny E, Jarosz-Biej M, Smolarczyk R. Differential Response to Local Stimulator of Interferon Genes Agonist Administration in Tumors with Various Stimulator of Interferon Genes Statuses. Cancers (Basel) 2025; 17:175. [PMID: 39857957 PMCID: PMC11763682 DOI: 10.3390/cancers17020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/13/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The stimulator of interferon genes (STING) is currently accepted as a relevant target for anti-cancer therapies. Besides encouraging results showing STING agonist-induced tumor growth inhibition, in some types of tumors the effect is less prominent. We hypothesized that higher STING levels in cancer cells and the possibility of its activation determine a greater anti-cancer response. As the local administration of STING agonists induces a systemic reaction, we emphasized the importance of host tumor-induced hematological disruption in the efficiency of the therapeutic response. Methods: We investigated the response to STING stimulation in murine cancer cell lines-melanoma (B16-F10) and breast carcinoma (4T1)-and murine normal cell lines: fibroblast cells (NIH/3T3), endothelial cells (H5V), and macrophages (J774A.1). We assessed STING agonist-induced tumor growth inhibition and the therapy's impact on the hematological system parameters and systemic cytokine release. Results: Our results underlined the improved therapeutic effect of STING activation in melanoma (B16-F10) over breast carcinoma (4T1) tumors. The outcomes reflected a high dysregulation of the hematological system in mice with developed 4T1 tumors, which may support persistent inflammation and impede STING-induced therapeutic effects. Moreover, among typical cytokines produced following STING activation, CCL2 fold change was the one that increased the most in the serum of B16-F10-bearing mice and differentiated the observed response to the STING agonist between investigated tumor models. Conclusions: The current study provides new evidence of the different responses to STING activation among two poorly immunogenic tumor models. The high abundance of STING in B16-F10 cells and the possibility of its activation is linked with improved therapeutic response in vivo compared to 4T1. The effect also seems to be connected with a less dysregulated hematological system in mice with B16-F10 tumors over mice with 4T1 tumors. This highlighted the need for general insight into tumor-induced local and systemic responses to the efficiency of the proposed therapy.
Collapse
Affiliation(s)
- Alina Drzyzga
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland; (J.C.); (S.M.); (B.Ł.-S.); (T.C.); (E.P.); (M.J.-B.)
| | | | | | | | | | | | | | - Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland; (J.C.); (S.M.); (B.Ł.-S.); (T.C.); (E.P.); (M.J.-B.)
| |
Collapse
|
6
|
Wu Y, Sun X, Kang K, Yang Y, Li H, Zhao A, Niu T. Hemophagocytic lymphohistiocytosis: current treatment advances, emerging targeted therapy and underlying mechanisms. J Hematol Oncol 2024; 17:106. [PMID: 39511607 PMCID: PMC11542428 DOI: 10.1186/s13045-024-01621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a rapidly progressing, life-threatening syndrome characterized by excessive immune activation, often presenting as a complex cytokine storm. This hyperactive immune response can lead to multi-organ failure and systemic damage, resulting in an extremely short survival period if left untreated. Over the past decades, although HLH has garnered increasing attention from researchers, there have been few advancements in its treatment. The cytokine storm plays a crucial role in the treatment of HLH. Investigating the detailed mechanisms behind cytokine storms offers insights into targeted therapeutic approaches, potentially aiding in early intervention and improving the clinical outcome of HLH patients. To date, there is only one targeted therapy, emapalumab targeting interferon-γ, that has gained approval for primary HLH. This review aims to summarize the current treatment advances, emerging targeted therapeutics and underlying mechanisms of HLH, highlighting its newly discovered targets potentially involved in cytokine storms, which are expected to drive the development of novel treatments and offer fresh perspectives for future studies. Besides, multi-targeted combination therapy may be essential for disease control, but further trials are required to determine the optimal treatment mode for HLH.
Collapse
Affiliation(s)
- Yijun Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xu Sun
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kai Kang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuqi Yang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - He Li
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Lanng KRB, Lauridsen EL, Jakobsen MR. The balance of STING signaling orchestrates immunity in cancer. Nat Immunol 2024; 25:1144-1157. [PMID: 38918609 DOI: 10.1038/s41590-024-01872-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024]
Abstract
Over the past decade, it has become clear that the stimulator of interferon genes (STING) pathway is critical for a variety of immune responses. This endoplasmic reticulum-anchored adaptor protein has regulatory functions in host immunity across a spectrum of conditions, including infectious diseases, autoimmunity, neurobiology and cancer. In this Review, we outline the central importance of STING in immunological processes driven by expression of type I and III interferons, as well as inflammatory cytokines, and we look at therapeutic options for targeting STING. We also examine evidence that challenges the prevailing notion that STING activation is predominantly beneficial in combating cancer. Further exploration is imperative to discern whether STING activation in the tumor microenvironment confers true benefits or has detrimental effects. Research in this field is at a crossroads, as a clearer understanding of the nuanced functions of STING activation in cancer is required for the development of next-generation therapies.
Collapse
|
8
|
Nisar H, Sanchidrián González PM, Labonté FM, Schmitz C, Roggan MD, Kronenberg J, Konda B, Chevalier F, Hellweg CE. NF-κB in the Radiation Response of A549 Non-Small Cell Lung Cancer Cells to X-rays and Carbon Ions under Hypoxia. Int J Mol Sci 2024; 25:4495. [PMID: 38674080 PMCID: PMC11050661 DOI: 10.3390/ijms25084495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Cellular hypoxia, detectable in up to 80% of non-small cell lung carcinoma (NSCLC) tumors, is a known cause of radioresistance. High linear energy transfer (LET) particle radiation might be effective in the treatment of hypoxic solid tumors, including NSCLC. Cellular hypoxia can activate nuclear factor κB (NF-κB), which can modulate radioresistance by influencing cancer cell survival. The effect of high-LET radiation on NF-κB activation in hypoxic NSCLC cells is unclear. Therefore, we compared the effect of low (X-rays)- and high (12C)-LET radiation on NF-κB responsive genes' upregulation, as well as its target cytokines' synthesis in normoxic and hypoxic A549 NSCLC cells. The cells were incubated under normoxia (20% O2) or hypoxia (1% O2) for 48 h, followed by irradiation with 8 Gy X-rays or 12C ions, maintaining the oxygen conditions until fixation or lysis. Regulation of NF-κB responsive genes was evaluated by mRNA sequencing. Secretion of NF-κB target cytokines, IL-6 and IL-8, was quantified by ELISA. A greater fold change increase in expression of NF-κB target genes in A549 cells following exposure to 12C ions compared to X-rays was observed, regardless of oxygenation status. These genes regulate cell migration, cell cycle, and cell survival. A greater number of NF-κB target genes was activated under hypoxia, regardless of irradiation status. These genes regulate cell migration, survival, proliferation, and inflammation. X-ray exposure under hypoxia additionally upregulated NF-κB target genes modulating immunosurveillance and epithelial-mesenchymal transition (EMT). Increased IL-6 and IL-8 secretion under hypoxia confirmed NF-κB-mediated expression of pro-inflammatory genes. Therefore, radiotherapy, particularly with X-rays, may increase tumor invasiveness in surviving hypoxic A549 cells.
Collapse
Affiliation(s)
- Hasan Nisar
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
- Department of Medical Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
| | - Paulina Mercedes Sanchidrián González
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| | - Frederik M. Labonté
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| | - Claudia Schmitz
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| | - Marie Denise Roggan
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Jessica Kronenberg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
- Microgravity User Support Center (MUSC), German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Bikash Konda
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| | - François Chevalier
- UMR6252 CIMAP, CEA-CNRS-ENSICAEN-University of Caen Normandy, 14000 Caen, France;
| | - Christine E. Hellweg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (P.M.S.G.); (J.K.); (B.K.)
| |
Collapse
|
9
|
Korneenko TV, Pestov NB, Nevzorov IA, Daks AA, Trachuk KN, Solopova ON, Barlev NA. At the Crossroads of the cGAS-cGAMP-STING Pathway and the DNA Damage Response: Implications for Cancer Progression and Treatment. Pharmaceuticals (Basel) 2023; 16:1675. [PMID: 38139802 PMCID: PMC10747911 DOI: 10.3390/ph16121675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
The evolutionary conserved DNA-sensing cGAS-STING innate immunity pathway represents one of the most important cytosolic DNA-sensing systems that is activated in response to viral invasion and/or damage to the integrity of the nuclear envelope. The key outcome of this pathway is the production of interferon, which subsequently stimulates the transcription of hundreds of genes. In oncology, the situation is complex because this pathway may serve either anti- or pro-oncogenic roles, depending on context. The prevailing understanding is that when the innate immune response is activated by sensing cytosolic DNA, such as DNA released from ruptured micronuclei, it results in the production of interferon, which attracts cytotoxic cells to destroy tumors. However, in tumor cells that have adjusted to significant chromosomal instability, particularly in relapsed, treatment-resistant cancers, the cGAS-STING pathway often supports cancer progression, fostering the epithelial-to-mesenchymal transition (EMT). Here, we review this intricate pathway in terms of its association with cancer progression, giving special attention to pancreatic ductal adenocarcinoma and gliomas. As the development of new cGAS-STING-modulating small molecules and immunotherapies such as oncolytic viruses involves serious challenges, we highlight several recent fundamental discoveries, such as the proton-channeling function of STING. These discoveries may serve as guiding lights for potential pharmacological advancements.
Collapse
Affiliation(s)
- Tatyana V. Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Nikolay B. Pestov
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
| | - Ivan A. Nevzorov
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
| | - Alexandra A. Daks
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
| | - Kirill N. Trachuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
| | - Olga N. Solopova
- Research Institute of Experimental Diagnostics and Tumor Therapy, Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia
| | - Nickolai A. Barlev
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| |
Collapse
|
10
|
Terlizzi M, Colarusso C, Falanga A, Somma P, De Rosa I, Panico L, Pinto A, Maiolino P, Sorrentino R. Induction of Inflammation Disrupts the Negative Interplay between STING and S1P Axis That Is Observed during Physiological Conditions in the Lung. Int J Mol Sci 2023; 24:ijms24098303. [PMID: 37176007 PMCID: PMC10179278 DOI: 10.3390/ijms24098303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
The stimulator of interferon genes (STING) is a master regulator of innate immunity, involved in several inflammatory diseases. Our previous data showed that sphingosine-1-phosphate (S1P) is released during inflammatory conditions in the lung. The aim of this study was to understand the interplay between S1P and STING during both physiological and pathological conditions. The mRNA levels of ceramidase (ASAH1), S1P precursor enzyme, and STING were inversely correlated in healthy lung tissues, but positively correlated in tumor tissues. The activation of STING induced higher expression of ASAH1 and was accompanied by IFN-β and IL-6 release. ASAH1 and sphingosine kinases (SPHK I/II) blockade significantly reduced IL-6, but not IFNβ, after STING activation. In support of this, taking advantage of a mouse model, we found that inflamed lungs had higher levels of inactive ASAH1 when STING was inhibited. This confirmed the human data, where higher levels of STING promoted the activation of ASAH1. Lung cancer patients positive to STING and ASAH1 mRNA levels had a dismal prognosis in that the overall survival was reduced compared to STING/ASAH1 negative patients. These data highlight that during physiological conditions, STING and the S1P axis do not interfere, whereas in lung cancer patients their interplay is associated to poor prognosis.
Collapse
Affiliation(s)
- Michela Terlizzi
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Salerno, Italy
| | - Chiara Colarusso
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Salerno, Italy
| | - Anna Falanga
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Salerno, Italy
| | - Pasquale Somma
- Anatomy and Pathology Unit, Ospedale dei Colli, AORN, "Monaldi", 84131 Naples, Italy
| | - Ilaria De Rosa
- Anatomy and Pathology Unit, Ospedale dei Colli, AORN, "Monaldi", 84131 Naples, Italy
| | - Luigi Panico
- Anatomy and Pathology Unit, Ospedale dei Colli, AORN, "Monaldi", 84131 Naples, Italy
| | - Aldo Pinto
- Department of Pharmacy (DIFARMA), University of Salerno, 84084 Salerno, Italy
| | - Piera Maiolino
- "Fondazione Pascale", National Institute of Tumor, 80131 Naples, Italy
| | | |
Collapse
|
11
|
Vasiyani H, Wadhwa B, Singh R. Regulation of cGAS-STING signalling in cancer: Approach for combination therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188896. [PMID: 37088059 DOI: 10.1016/j.bbcan.2023.188896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Innate immunity plays an important role not only during infection but also homeostatic role during stress conditions. Activation of the immune system including innate immune response plays a critical role in the initiation and progression of tumorigenesis. The innate immune sensor recognizes pathogen-associated molecular patterns (PAMPs) and activates cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) (cGAS-STING) and induces type-1 immune response during viral and bacterial infection. cGAS-STING is regulated differently in conditions like cellular senescence and DNA damage in normal and tumor cells and is implicated in the progression of tumors from different origins. cGAS binds to cytoplasmic dsDNA and synthesize cyclic GMP-AMP (2'3'-cGAMP), which selectively activates STING and downstream IFN and NF-κB activation. We here reviewed the cGAS-STING signalling pathway and its cross-talk with other pathways to modulate tumorigenesis. Further, the review also focused on emerging studies that targeted the cGAS-STING pathway for developing targeted therapeutics and combinatorial regimens for cancer of different origins.
Collapse
Affiliation(s)
- Hitesh Vasiyani
- Department of Biochemistry, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Bhumika Wadhwa
- Department of Biochemistry, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Rajesh Singh
- Department of Biochemistry, The M.S. University of Baroda, Vadodara 390002, Gujarat, India.
| |
Collapse
|
12
|
Craig DJ, Ambrose S, Stanbery L, Walter A, Nemunaitis J. Systemic benefit of radiation therapy via abscopal effect. Front Oncol 2022; 12:987142. [PMID: 36387120 PMCID: PMC9641206 DOI: 10.3389/fonc.2022.987142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/05/2022] [Indexed: 08/30/2023] Open
Abstract
Evidence of a systemic response related to localized radiation therapy (RT) in cancer management is rare. However, enhancing the immune response via immunotherapy followed by localized RT has shown evidence of tumor shrinkage to non-irradiated metastatic disease thereby inducing an "abscopal effect." Combined induction of the cGAS-STING pathway and activation of IFN-gamma signaling cascade related to RT within an activated immune environment promotes neoantigen presentation and expansion of cytotoxic effector cells enabling enhancement of systemic immune response. A proposed mechanism, case examples, and clinical trial evidence of "abscopal effect" benefit are reviewed. Results support strategic therapeutic testing to enhance "abscopal effect."
Collapse
Affiliation(s)
- Daniel J. Craig
- University of Toledo, Department of Internal Medicine, Toledo, OH, United States
| | | | - Laura Stanbery
- Medical Affairs, Gradalis, Inc., Carrollton, TX, United States
| | - Adam Walter
- Medical Affairs, Gradalis, Inc., Carrollton, TX, United States
- Gynecologic Oncology, Promedica, Toledo, OH, United States
| | - John Nemunaitis
- Medical Affairs, Gradalis, Inc., Carrollton, TX, United States
| |
Collapse
|
13
|
Tian Z, Zeng Y, Peng Y, Liu J, Wu F. Cancer immunotherapy strategies that target the cGAS-STING pathway. Front Immunol 2022; 13:996663. [PMID: 36353640 PMCID: PMC9639746 DOI: 10.3389/fimmu.2022.996663] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/03/2022] [Indexed: 10/22/2023] Open
Abstract
Activation of the cGAS-STING pathway by cytoplasmic DNA induces the production of Type-1 interferons. Recent advances in research suggest that the cGAS-STING pathway is involved in different parts of the cancer-immunity cycle (CIC) to promote or suppress antitumor immune responses. Combination therapy of STING agonists has made certain progress in preclinical as well as clinical trials, but the selection of combination therapy regimens remains a challenge. In this review, we summarize the role of the cGAS-STING in all aspects of CIC, and focus on the combination immunotherapy strategies of STING agonists and current unsolved challenges.
Collapse
Affiliation(s)
- Zhuoying Tian
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yue Zeng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yurong Peng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Junqi Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Marinello J, Arleo A, Russo M, Delcuratolo M, Ciccarelli F, Pommier Y, Capranico G. Topoisomerase I poison-triggered immune gene activation is markedly reduced in human small-cell lung cancers by impairment of the cGAS/STING pathway. Br J Cancer 2022; 127:1214-1225. [PMID: 35794238 PMCID: PMC9519573 DOI: 10.1038/s41416-022-01894-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Current immunotherapy strategies have contrasting clinical results in human lung cancer patients as small-cell lung cancers (SCLC) often show features of immunological cold tumours. Topoisomerase 1 (TOP1) poisons are effective antitumor drugs with good efficacy against lung cancers. METHODS We used molecular, genetic and bioinformatic approaches to determine the mechanism of micronuclei formation induced by two TOP1 poisons in different human cancer cells, including SCLC cell lines. RESULTS TOP1 poisons stimulate similar levels of micronuclei in all tested cell lines but downstream effects can vary markedly. TOP1 poisons increase micronuclei levels with a mechanism involving R-loops as overexpression of RNaseH1 markedly reduces or abolishes both H2AX phosphorylation and micronuclei formation. TOP1 poison-induced micronuclei activate the cGAS/STING pathway leading to increased expression of immune genes in HeLa cells, but not in human SCLC cell lines, mainly due to lack of STING and/or cGAS expression. Moreover, the expression of STING and antigen-presenting machinery genes is generally downregulated in patient tumours of human lung cancer datasets. CONCLUSIONS Altogether, our data reveal an immune signalling mechanism activated by TOP1 poisons, which is often impaired in human SCLC tumours.
Collapse
Affiliation(s)
- Jessica Marinello
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy.
| | - Andrea Arleo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Marco Russo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Maria Delcuratolo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Francesca Ciccarelli
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London, UK
- School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Yves Pommier
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy.
| |
Collapse
|
15
|
Zhang M, Zou Y, Zhou X, Zhou J. Inhibitory targeting cGAS-STING-TBK1 axis: Emerging strategies for autoimmune diseases therapy. Front Immunol 2022; 13:954129. [PMID: 36172373 PMCID: PMC9511411 DOI: 10.3389/fimmu.2022.954129] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The cGAS-STING signaling plays an integral role in the host immune response, and the abnormal activation of cGAS-STING is highly related to various autoimmune diseases. Therefore, targeting the cGAS-STING-TBK1 axis has become a promising strategy in therapy of autoimmune diseases. Herein, we summarized the key pathways mediated by the cGAS-STING-TBK1 axis and various cGAS-STING-TBK1 related autoimmune diseases, as well as the recent development of cGAS, STING, or TBK1 selective inhibitors and their potential application in therapy of cGAS-STING-TBK1 related autoimmune diseases. Overall, the review highlights that inhibiting cGAS-STING-TBK1 signaling is an attractive strategy for autoimmune disease therapy.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
- Drug development and innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Yan Zou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
- Drug development and innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Xujun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
- Drug development and innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, China
- Drug development and innovation center, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
- *Correspondence: Jinming Zhou,
| |
Collapse
|
16
|
Ottone OK, Kim C, Collins JA, Risbud MV. The cGAS-STING Pathway Affects Vertebral Bone but Does Not Promote Intervertebral Disc Cell Senescence or Degeneration. Front Immunol 2022; 13:882407. [PMID: 35769461 PMCID: PMC9235924 DOI: 10.3389/fimmu.2022.882407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022] Open
Abstract
The DNA-sensing cGAS-STING pathway promotes the senescence-associated secretory phenotype (SASP) and mediates type-I interferon inflammatory responses to foreign viral and bacterial DNA as well as self-DNA. Studies of the intervertebral disc in humans and mice demonstrate associations between aging, increased cell senescence, and disc degeneration. Herein we assessed the role of STING in SASP promotion in STING gain- (N153S) and loss-of-function mouse models. N153S mice evidenced elevated circulating levels of proinflammatory markers including IL-1β, IL-6, and TNF-α, showed elevated monocyte and macrophage abundance in the vertebral marrow, and exhibited a mild trabecular and cortical bone phenotype in caudal vertebrae. Interestingly, despite systemic inflammation, the structural integrity of the disc and knee articular joint remained intact, and cells did not show a loss of their phenotype or elevated SASP. Transcriptomic analysis of N153S tissues demonstrated an upregulated immune response by disc cells, which did not closely resemble inflammatory changes in human tissues. Interestingly, STING-/- mice also showed a mild vertebral bone phenotype, but the absence of STING did not reduce the abundance of SASP markers or improve the age-associated disc phenotype. Overall, the analyses of N153S and STING-/- mice suggest that the cGAS-STING pathway is not a major contributor to SASP induction and consequent disc aging and degeneration but may play a minor role in the maintenance of trabecular bone in the vertebrae. This work contributes to a growing body of work demonstrating that systemic inflammation is not a key driver of disc degeneration.
Collapse
Affiliation(s)
- Olivia K. Ottone
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, United States
| | - Cheeho Kim
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - John A. Collins
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Makarand V. Risbud,
| |
Collapse
|