1
|
Xu S, Cai J, Cheng H, Wang W. Sustained release of therapeutic gene by injectable hydrogel for hepatocellular carcinoma. Int J Pharm X 2023; 6:100195. [PMID: 37448985 PMCID: PMC10336675 DOI: 10.1016/j.ijpx.2023.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/06/2023] [Accepted: 06/24/2023] [Indexed: 07/18/2023] Open
Abstract
Gene therapy has shown remarkable effectiveness in the management of disease like cancer and inflammation as a revolutionary therapeutic. Nonetheless, therapeutic drug target discovery, efficient gene delivery, and gene delivery vehicles continue to be significant obstacles. Due to their effective gene transport capabilities and low immunogenicity, supramolecular polymers have garnered significant interest. Herein, ABHD5 is identified as a potential therapeutic target since it is dysregulated in hepatocellular carcinoma (HCC). Interestingly, the downregulation of ABHD5 could induce programmed death-ligand 1 (PD-L1) expression in liver cancer, which may contribute to the immunosuppression. To overcome the immunosuppression caused by PD-L1, an injectable hydrogel is designed to achieve efficient abhydrolase domain containing 5 (ABHD5) gene delivery via the host-guest interaction with branched polyethyleneimine-g-poly (ethylene glycol), poly (ethylene oxide) and poly (propylene oxide) block copolymers and α-CD (PPA/CD), demonstrating the capability for sustained gene release. The co-assembly hydrogel demonstrates good biocompatibility and enhanced gene transfection efficiency, efficiently triggering tumor cell apoptosis. Overall, the results of this study suggest that ABHD5 is a potential therapeutic target, and that a host-guest-based supramolecular hydrogel could serve as a promising platform for the inhibition of HCC.
Collapse
Affiliation(s)
- Shuangta Xu
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Jianya Cai
- Department of Surgery, Quanzhou Medical College, Quanzhou 362000, China
| | - Hongwei Cheng
- Center of molecular imaging and translational medicine, School of Public Health, Xiamen University, Xiamen 361002, China
| | - Wei Wang
- Department of Hepatic-biliary-pancreatic-Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| |
Collapse
|
2
|
Liang X, Gao H, Xiao J, Han S, He J, Yuan R, Yang S, Yao C. Abrine, an IDO1 inhibitor, suppresses the immune escape and enhances the immunotherapy of anti-PD-1 antibody in hepatocellular carcinoma. Front Immunol 2023; 14:1185985. [PMID: 37334368 PMCID: PMC10272936 DOI: 10.3389/fimmu.2023.1185985] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Background Indoleamine-2,3-dioxygenase 1 (IDO1) is responsible for tumor immune escape by regulating T cell-associated immune responses and promoting the activation of immunosuppressive. Given the vital role of IDO1 in immune response, further investigation on the regulation of IDO1 in tumors is needed. Methods Herein, we used ELISA kit to detect the interferon-gamma (IFN-γ), Tryptophan (Trp), and kynurenic acid (Kyn) levels; western blot, Flow cytometry, and immunofluorescence assays detected the expression of the proteins; Molecular docking assay, SPR assay and Cellular Thermal Shift Assay (CETSA) were used to detect the interaction between IDO1 and Abrine; nano live label-free system was used to detect the phagocytosis activity; tumor xenografts animal experiments were used to explore the anti-tumor effect of Abrine; flow cytometry detected the immune cells changes. Results The important immune and inflammatory response cytokine interferon-gamma (IFN-γ) up-regulated the IDO1 expression in cancer cells through the methylation of 6-methyladenosine (m6A) m6A modification of RNA, metabolism of Trp into Kyn, and JAK1/STAT1 signaling pathway, which could be inhibited by IDO1 inhibitor Abrine. CD47 is IFN-γ-stimulated genes (ISGs) and prevents the phagocytosis of macrophages, leading to the cancer immune escape, and this effect could be inhibited by Abrine both in vivo and in vitro. The PD-1/PD-L1 axis is an important immune checkpoint in regulating immune response, overexpression of PD-1 or PD-L1 promotes immune suppression, while in this study Abrine could inhibit the expression of PD-L1 in cancer cells or tumor tissue. The combination treatment of Abrine and anti-PD-1 antibody has a synergistic effect on suppressing the tumor growth through up-regulating CD4+ or CD8+ T cells, down-regulating the Foxp3+ Treg cells, and inhibiting the expression of IDO1, CD47, and PD-L1. Conclusion Overall, this study reveals that Abrine as an IDO1 inhibitor has an inhibition effect on immune escape and has a synergistic effect with the anti-PD-1 antibody on the treatment of HCC.
Collapse
Affiliation(s)
- Xiaowei Liang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Engineering Research Center in Ministry of Education for Innovative Drugs of Traditional Chinese Medicine and Zhuang Yao Medicine, Nanning, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Engineering Research Center in Ministry of Education for Innovative Drugs of Traditional Chinese Medicine and Zhuang Yao Medicine, Nanning, China
| | - Jian Xiao
- Engineering Research Center in Ministry of Education for Innovative Drugs of Traditional Chinese Medicine and Zhuang Yao Medicine, Nanning, China
| | - Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Engineering Research Center in Ministry of Education for Innovative Drugs of Traditional Chinese Medicine and Zhuang Yao Medicine, Nanning, China
| | - Jia He
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Engineering Research Center in Ministry of Education for Innovative Drugs of Traditional Chinese Medicine and Zhuang Yao Medicine, Nanning, China
| | - Renyikun Yuan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Engineering Research Center in Ministry of Education for Innovative Drugs of Traditional Chinese Medicine and Zhuang Yao Medicine, Nanning, China
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Engineering Research Center in Ministry of Education for Innovative Drugs of Traditional Chinese Medicine and Zhuang Yao Medicine, Nanning, China
| | - Chun Yao
- Engineering Research Center in Ministry of Education for Innovative Drugs of Traditional Chinese Medicine and Zhuang Yao Medicine, Nanning, China
| |
Collapse
|
3
|
Opo FDM, Moulay M, Alrefaei GI, Alsubhi NH, Alkarim S, Rahman MM. Effect of Co-culturing both placenta-derived mesenchymal stem cells and their condition medium in the cancer cell (HepG2) migration, damage through apoptosis and cell cycle arrest. Saudi J Biol Sci 2023; 30:103519. [PMID: 36561333 PMCID: PMC9763848 DOI: 10.1016/j.sjbs.2022.103519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Human placental-derived mesenchymal stem cells (hPMSCs) are a promising candidate to inhibit the proliferation of hepatocellular carcinoma (HCC) cell lines such as HepG2. The effects of hPMSCs and their conditioned media on HepG2 are, however, still a mystery. As a result, the goal of this study was to look into the effects of hPMSCs and their conditioned media on HepG2 and figure out what was going on. Fluorescence-activated cell sorting and the MTT test were used to determine the percentage of cells that died (early apoptosis, late apoptosis). The DIO and DID colors were used to detect cell fusion and cell death in both cells. HepG2 cells were co-treated with hPMSCs or hPMSCs-conditioned medium (hPMSCs-CM) to reduce growth and promote apoptosis. Morphological changes were also seen in the 30 percent, 50 percent, and 60 percent cases. The secretion of cytokine was determined by the ELISA. Flow cytometry, caspase 9 immunofluorescence, qPCR (detection of Bax, Bcl-2, and β-catenin genes), western blot, and immunophenotyping revealed that treatment with hPMSCs or hPMSCs-CM caused HepG2 cell death through apoptosis (detection of caspase 9, caspase 3 protein). HepG2 cell cycle arrest could be induced by hPMSCs and hPMSCs-CM. Following treatment with hPMSCs or hPMSCs-CM, HepG2 cell development was stopped in the G0/G1 phase. These treatments also inhibited HepG2 cells from migrating, with the greatest effect when the highest ratio/concentration of hPMSCs (70%) and hPMSCs-CM were used (90%). Our findings indicated that hPMSCs and hPMSCs-CM could be promising treatment options for liver cancer. To elucidate the proper effect, more research on liver cancer-induced rat/mice is needed.
Collapse
Key Words
- 30H, 30% HepG2
- 30P, 30% placenta
- 50H, 50% HepG2
- 50P, 50% placenta
- 70H, 70% HepG2
- 70P, 70% placenta
- AFP, Alfa Feto Protein
- Apoptosis
- Conditioned medium
- Differentiation
- HCC, Hepatocellular Carcinoma
- HepG2
- IL, Interleukin
- Morphology
- PVDF, Polyvinylidene Fluoride
- TBST, Tris-Buffered Saline with 0.1% Tween 20 detergent.
- hP-MSCs, human Placenta derived Mesenchymal Stem Cells
- hPMSCs
Collapse
Affiliation(s)
- F.A. Dain Md Opo
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia,Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Moulay
- Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia,Embryonic and Cancer Stem Cell Research Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia,Corresponding authors at: Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia (M. Moulay).
| | - Ghadeer I. Alrefaei
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia,Embryonic and Cancer Stem Cell Research Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nouf H. Alsubhi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia,Embryonic and Cancer Stem Cell Research Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Saleh Alkarim
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia,Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia,Embryonic and Cancer Stem Cell Research Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed M. Rahman
- Department of Chemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia,Corresponding authors at: Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia (M. Moulay).
| |
Collapse
|
4
|
Deynichenko KA, Ptitsyn KG, Radko SP, Kurbatov LK, Vakhrushev IV, Buromski IV, Markin SS, Archakov AI, Lisitsa AV, Ponomarenko EA. Splice Variants of mRNA of Cytochrome P450 Genes: Analysis by the Nanopore Sequencing Method in Human Liver Tissue and HepG2 Cell Line. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2022. [DOI: 10.1134/s1990750822040047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Deynichenko KA, Ptitsyn KG, Radko SP, Kurbatov LK, Vakhrushev IV, Buromski IV, Markin SS, Archakov AI, Lisitsa AV, Ponomarenko EA. [Splice variants of mRNA of cytochrome P450 genes: analysis by the nanopore sequencing method in human liver tissue and HepG2 cell line]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:117-125. [PMID: 35485485 DOI: 10.18097/pbmc20226802117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The analysis of cytochrome P450 transcripts was carried out by the nanopore sequencing in liver tissue samples of three donors and HepG2 line cells. It has been demonstrated that direct mRNA sequencing with a MinION nanopore sequencer (Oxford Nanopore Technologies) allows one to obtained quantitative profiles for transcripts (and their splice variants) of cytochrome P450 superfamily genes encoding isoforms involved in metabolism of the large (~80%) part of drugs. The splice variant profiles substantially differ for donors. The cytochrome P450 gene expression at the transcript level is significantly weaker in cells of the HepG2 line compared with that in the normal liver tissue. This limits the capability of the direct mRNA nanopore sequencing for studying alternative splicing of cytochrome P450 transcripts in HepG2 cells. Both quantitative and qualitative profiles of the cytochrome P450 gene expression at the transcript level are notably differ in human liver tissue and HepG2 cells.
Collapse
Affiliation(s)
| | - K G Ptitsyn
- Institute of Biomedical Chemistry, Moscow, Russia
| | - S P Radko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - L K Kurbatov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - I V Buromski
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - S S Markin
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A V Lisitsa
- Institute of Biomedical Chemistry, Moscow, Russia
| | | |
Collapse
|