1
|
Tu K, Luo Z, Yi L, Li Z, Jie Y, Li L, Qin Y, Zhang Z. FoxM1 promotes the proliferation of cervical adenocarcinoma cells through transcriptional activation of FAM83D. Life Sci 2025; 374:123691. [PMID: 40345484 DOI: 10.1016/j.lfs.2025.123691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/27/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
Cervical adenocarcinoma exhibits a steadily increasing global incidence with notable demographic shifts toward younger populations. Despite the absence of distinct clinical guidelines differentiating its management from squamous cell carcinoma, treatment strategies remain non-specific, contributing to suboptimal patient outcomes. To address this therapeutic gap, we systematically investigated molecular disparities between adenocarcinoma and squamous cell carcinoma through integrated ChIP-seq and RNA-seq analyses. Our multi-omics approach identified FAM83D as a novel transcriptional target directly regulated by the FoxM1 oncoprotein, demonstrating adenocarcinoma-specific expression in HeLa cells. This regulatory relationship was experimentally validated using quantitative PCR and luciferase reporter assays. Mechanistically, we delineated that FoxM1 governs cell cycle progression and proliferation via FAM83D-dependent pathways. Intriguingly, co-immunoprecipitation studies revealed a physical interaction between FoxM1 and karyopherin α2 (KPNA2), another adenocarcinoma-enriched protein, with their expression levels showing significant positive correlation in clinical specimens. This study not only elucidates the oncogenic axis of FoxM1-FAM83D but also reveals the dual regulatory role of FoxM1 as both a transcriptional activator and protein interaction hub in cervical adenocarcinoma pathogenesis. These findings expand the molecular landscape of this malignancy and identify potential therapeutic entry points for targeted adenocarcinoma interventions.
Collapse
Affiliation(s)
- Kaijia Tu
- Department of Oncology, Jiangxi Maternal & Child Health Hospital, 330006 Nanchang, Jiangxi, PR China; Subcenter of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, PR China
| | - Zhimei Luo
- Department of Pediatric Gynecology, Jiangxi Provincial Children's Hospital, 330006 Nanchang, Jiangxi, PR China
| | - Lan Yi
- Subcenter of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, PR China; Clinical Research Center for Obstetrics and Gynecology of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, PR China
| | - Zengming Li
- Subcenter of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, PR China; Clinical Research Center for Obstetrics and Gynecology of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Reproductive Health, Nanchang, Jiangxi 330006, PR China
| | - Youkun Jie
- Subcenter of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, PR China; Department of Pathology, Jiangxi Maternal & Child Health Hospital, 330006 Nanchang, Jiangxi, PR China
| | - Longyu Li
- Department of Oncology, Jiangxi Maternal & Child Health Hospital, 330006 Nanchang, Jiangxi, PR China.
| | - Yunna Qin
- Subcenter of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, PR China; Department of Pathology, Jiangxi Maternal & Child Health Hospital, 330006 Nanchang, Jiangxi, PR China.
| | - Ziyu Zhang
- Subcenter of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, PR China; Clinical Research Center for Obstetrics and Gynecology of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Reproductive Health, Nanchang, Jiangxi 330006, PR China; Department of Pathology, Jiangxi Maternal & Child Health Hospital, 330006 Nanchang, Jiangxi, PR China.
| |
Collapse
|
2
|
Sheng X, Li J, Ma H, He H, Liu Q, Jia S, Zhang F, Huang F. Piezo1 Regulates Odontogenesis via a FAM83G-Mediated Mechanism in Dental Papilla Cells In Vitro and In Vivo. Biomolecules 2025; 15:316. [PMID: 40149852 PMCID: PMC11940480 DOI: 10.3390/biom15030316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 03/29/2025] Open
Abstract
This study explored the role of Piezo1 in the odontogenic differentiation of dental papilla cells (DPCs) and tissue, focusing on a mechanism involving family with sequence similarity 83, member G (FAM83G). Here, we found Piezo1, a mechanosensitive cation channel, was upregulated during odontogenesis in DPCs and dental papilla tissues. Knockdown of Piezo1 impaired odontogenic differentiation, while its activation by Yoda1 enhanced the process. Using a 3D culture model and an ectopic transplantation model, we confirmed Piezo1's role in vivo. RNA sequencing (RNA-seq) analysis revealed that FAM83G was upregulated in Piezo1-knockdown cells, and FAM83G silencing enhanced odontogenesis in DPCs. These findings indicate that Piezo1 positively regulates odontogenesis by inhibiting FAM83G in DPCs both in vitro and in vivo, with Piezo1 representing a potential target for dental tissue regeneration.
Collapse
Affiliation(s)
- Xinyue Sheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (X.S.); (J.L.); (H.M.); (H.H.); (Q.L.); (S.J.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Jingzhou Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (X.S.); (J.L.); (H.M.); (H.H.); (Q.L.); (S.J.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Haozhen Ma
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (X.S.); (J.L.); (H.M.); (H.H.); (Q.L.); (S.J.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Hongwen He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (X.S.); (J.L.); (H.M.); (H.H.); (Q.L.); (S.J.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Qin Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (X.S.); (J.L.); (H.M.); (H.H.); (Q.L.); (S.J.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Shilin Jia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (X.S.); (J.L.); (H.M.); (H.H.); (Q.L.); (S.J.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Fuping Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (X.S.); (J.L.); (H.M.); (H.H.); (Q.L.); (S.J.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| | - Fang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; (X.S.); (J.L.); (H.M.); (H.H.); (Q.L.); (S.J.)
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China
| |
Collapse
|
3
|
Liu ZM, Yuan Y, Jin L. FAM83D acts as an oncogene by regulating cell cycle progression via multiple pathways in synovial sarcoma: a potential novel downstream target oncogene of anlotinib. Discov Oncol 2024; 15:82. [PMID: 38512482 PMCID: PMC10957831 DOI: 10.1007/s12672-024-00943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/19/2024] [Indexed: 03/23/2024] Open
Abstract
OBJECTIVE Synovial Sarcoma (SS), a highly malignant mesenchymal neoplasm, typically carries a grim prognosis for patients presenting with high-grade or metastatic disease. Although Anlotinib, a new agent for treating soft tissue sarcomas, holds promise, its underlying mechanism remains incompletely understood. This investigation aims to delineate Anlotinib's anticancer effectiveness and potential mechanistic underpinnings in patients suffering from advanced, refractory SS. MATERIALS AND METHODS Employing microarray assay, we examined the potential downstream targets of Anlotinib in SS therapy. A shRNA-based high-content screening was performed to identify candidate genes with the greatest influence on SW982 cell proliferation. The knockdown efficacy of selected genes within SW982 cells was confirmed using RT-qPCR as well as western blot analysis. To assess the effect of putative downstream elimination of genes with synovial sarcoma cells, cell proliferation, and apoptotic assays were carried out. Gene chip microarray as well as bioinformatics techniques were utilized to scrutinize potential signaling networks associated with the candidate downstream gene. RESULTS QPCR verified high expression of FAM83D in SW982 cells, shRNA was designed to silence FAM83D by lentivirus transfection, apoptosis assay, and cell cycle arrest showing that FAM83D downregulation augments apoptosis in SW982 cells and arrests cell cycle progression in the S stage. Inhibition of FAM83D expression upregulated STAT1 while downregulated BIRC5, MCM2, and CDK1 genes in vitro. CONCLUSIONS This experimental study identified FAM83D as a critical regulator that contributes to the proliferation and progression of SS, suggesting that FAM83D-regulated signaling pathway may serve as a prospective target in SS management.
Collapse
Affiliation(s)
- Zi-Mei Liu
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Ying Yuan
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Lei Jin
- Department of Rheumatology and Immunology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
- Department of Rheumatology, Immunology & Allergy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
4
|
Jiang X, Wang Y, Guo L, Wang Y, Miao T, Ma L, Wei Q, Lin X, Mao JH, Zhang P. The FBXW7-binding sites on FAM83D are potential targets for cancer therapy. Breast Cancer Res 2024; 26:37. [PMID: 38454442 PMCID: PMC10918900 DOI: 10.1186/s13058-024-01795-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Increasing evidence shows the oncogenic function of FAM83D in human cancer, but how FAM83D exerts its oncogenic function remains largely unclear. Here, we investigated the importance of FAM83D/FBXW7 interaction in breast cancer (BC). We systematically mapped the FBXW7-binding sites on FAM83D through a comprehensive mutational analysis together with co-immunoprecipitation assay. Mutations at the FBXW7-binding sites on FAM83D led to that FAM83D lost its capability to promote the ubiquitination and proteasomal degradation of FBXW7; cell proliferation, migration, and invasion in vitro; and tumor growth and metastasis in vivo, indicating that the FBXW7-binding sites on FAM83D are essential for its oncogenic functions. A meta-evaluation of FAM83D revealed that the prognostic impact of FAM83D was independent on molecular subtypes. The higher expression of FAM83D has poorer prognosis. Moreover, high expression of FAM83D confers resistance to chemotherapy in BCs, which is experimentally validated in vitro. We conclude that identification of FBXW7-binding sites on FAM83D not only reveals the importance for FAM83D oncogenic function, but also provides valuable insights for drug target.
Collapse
Affiliation(s)
- Xiaoyu Jiang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yuli Wang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Department of Clinical Laboratory, The Second Hospital of Shandong University, No. 247 Beiyuan Street, Jinan, Shandong, 250033, China
| | - Lulu Guo
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yige Wang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Tianshu Miao
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lijuan Ma
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Department of Clinical Pharmacy, College of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, 453000, China
| | - Qin Wei
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaoyan Lin
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Pengju Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
5
|
Zhang C, Liu L, Li W, Li M, Zhang X, Zhang C, Yang H, Xie J, Pan W, Guo X, She P, Zhong L, Li T. Upregulation of FAM83F by c-Myc promotes cervical cancer growth and aerobic glycolysis via Wnt/β-catenin signaling activation. Cell Death Dis 2023; 14:837. [PMID: 38104106 PMCID: PMC10725447 DOI: 10.1038/s41419-023-06377-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Cervical cancer (CC) seriously affects women's health. Therefore, elucidation of the exact mechanisms and identification of novel therapeutic targets are urgently needed. In this study, we identified FAM83F, which was highly expressed in CC cells and tissues, as a potential target. Our clinical data revealed that FAM83F protein expression was markedly elevated in CC tissues and was positively correlated with poor prognosis. Moreover, we observed that FAM83F knockdown significantly inhibited cell proliferation, induced apoptosis, and suppressed glycolysis in CC cells, while its overexpression displayed opposite effects. Mechanistically, FAM83F regulated CC cell growth and glycolysis by the modulation of Wnt/β-catenin pathway. The enhancing effects of FAM83F overexpression on CC cell proliferation and glycolysis could be impaired by the Wnt/β-catenin inhibitor XAV939. Moreover, we found that c-Myc bound to the FAM83F promoter and activated the transcription of FAM83F. Notably, knockdown of FAM83F impaired the enhancement of cell proliferation and glycolysis induced by ectopic c-Myc. Consistent with in vitro findings, results from a xenograft mouse model confirmed the promoting role of FAM83F. In summary, our study demonstrated that FAM83F promoted CC growth and glycolysis through regulating the Wnt/β-catenin pathway, suggesting that FAM83F may be a potential molecular target for CC treatment. Schematic summary of c-Myc-activated FAM83F transcription to promote cervical cancer growth and glycolysis by targeting the Wnt/β-catenin signal pathway.
Collapse
Affiliation(s)
- Changlin Zhang
- Department of Gynecology, Pelvic Floor Disorders Center, Department of Orthopedics, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, China
| | - Lixiang Liu
- Department of Gynecology, Pelvic Floor Disorders Center, Department of Orthopedics, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Weizhao Li
- Department of Gynecology, Pelvic Floor Disorders Center, Department of Orthopedics, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Mengxiong Li
- Department of Gynecology, Pelvic Floor Disorders Center, Department of Orthopedics, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xunzhi Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Chi Zhang
- Department of Gynecology, Pelvic Floor Disorders Center, Department of Orthopedics, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Huan Yang
- Department of Gynecology, Pelvic Floor Disorders Center, Department of Orthopedics, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jiayuan Xie
- Department of Gynecology, Pelvic Floor Disorders Center, Department of Orthopedics, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wei Pan
- Department of Gynecology, Pelvic Floor Disorders Center, Department of Orthopedics, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xue Guo
- Department of Gynecology, Pelvic Floor Disorders Center, Department of Orthopedics, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Peng She
- Department of Gynecology, Pelvic Floor Disorders Center, Department of Orthopedics, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| | - Li Zhong
- Department of Gynecology, Pelvic Floor Disorders Center, Department of Orthopedics, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| | - Tian Li
- Department of Gynecology, Pelvic Floor Disorders Center, Department of Orthopedics, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, China.
| |
Collapse
|
6
|
Choi JE, Ahn AR, Zhang J, Kim KM, Park HS, Lee H, Chung MJ, Moon WS, Jang KY. FAM83H Expression Is Associated with Tumor-Infiltrating PD1-Positive Lymphocytes and Predicts the Survival of Breast Carcinoma Patients. Diagnostics (Basel) 2023; 13:2959. [PMID: 37761326 PMCID: PMC10529262 DOI: 10.3390/diagnostics13182959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND FAM83H has been implicated in cancer progression, and PD1 is an important target for anti-cancer immune checkpoint therapy. Recent studies suggest an association between FAM83H expression and immune infiltration. However, studies on the roles of FAM83H and its relationship with PD1 in breast carcinomas have been limited. METHODS Immunohistochemical expression of FAM83H and PD1 and their prognostic significance were evaluated in 198 breast carcinomas. RESULTS The expression of FAM83H in cancer cells was significantly associated with the presence of PD1-positive lymphoid cells within breast carcinoma tissue. Individual and co-expression patterns of nuclear FAM83H and PD1 were significantly associated with shorter survival of breast carcinomas in univariate analysis. In multivariate analysis, the expression of nuclear FAM83H (overall survival, p < 0.001; relapse-free survival, p = 0.003), PD1 (overall survival, p < 0.001; relapse-free survival, p = 0.003), and co-expression patterns of nuclear FAM83H and PD1 (overall survival, p < 0.001; relapse-free survival, p < 0.001) were the independent indicators of overall survival and relapse-free survival of breast carcinoma patients. CONCLUSIONS This study suggests a close association between FAM83H expression and the infiltration of PD1-positive lymphoid cells in breast carcinomas and their expression as the prognostic indicators for breast carcinoma patients, and further studies are needed to clarify this relationship.
Collapse
Affiliation(s)
- Ji Eun Choi
- Department of Pathology, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
| | - Ae Ri Ahn
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (A.R.A.); (J.Z.); (K.M.K.); (H.S.P.); (M.J.C.); (W.S.M.)
| | - Junyue Zhang
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (A.R.A.); (J.Z.); (K.M.K.); (H.S.P.); (M.J.C.); (W.S.M.)
| | - Kyoung Min Kim
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (A.R.A.); (J.Z.); (K.M.K.); (H.S.P.); (M.J.C.); (W.S.M.)
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Research Institute, Jeonbuk National University Hospital, Jeonju 54896, Republic of Korea
| | - Ho Sung Park
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (A.R.A.); (J.Z.); (K.M.K.); (H.S.P.); (M.J.C.); (W.S.M.)
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Research Institute, Jeonbuk National University Hospital, Jeonju 54896, Republic of Korea
| | - Ho Lee
- Department of Forensic Medicine, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea;
| | - Myoung Ja Chung
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (A.R.A.); (J.Z.); (K.M.K.); (H.S.P.); (M.J.C.); (W.S.M.)
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Research Institute, Jeonbuk National University Hospital, Jeonju 54896, Republic of Korea
| | - Woo Sung Moon
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (A.R.A.); (J.Z.); (K.M.K.); (H.S.P.); (M.J.C.); (W.S.M.)
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Research Institute, Jeonbuk National University Hospital, Jeonju 54896, Republic of Korea
| | - Kyu Yun Jang
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (A.R.A.); (J.Z.); (K.M.K.); (H.S.P.); (M.J.C.); (W.S.M.)
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Research Institute, Jeonbuk National University Hospital, Jeonju 54896, Republic of Korea
| |
Collapse
|
7
|
Velásquez Sotomayor MB, Campos Segura AV, Asurza Montalva RJ, Marín-Sánchez O, Murillo Carrasco AG, Ortiz Rojas CA. Establishment of a 7-gene expression panel to improve the prognosis classification of gastric cancer patients. Front Genet 2023; 14:1206609. [PMID: 37772256 PMCID: PMC10522918 DOI: 10.3389/fgene.2023.1206609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/14/2023] [Indexed: 09/30/2023] Open
Abstract
Gastric cancer (GC) ranks fifth in incidence and fourth in mortality worldwide. The high death rate in patients with GC requires new biomarkers for improving survival estimation. In this study, we performed a transcriptome-based analysis of five publicly available cohorts to identify genes consistently associated with prognosis in GC. Based on the ROC curve, patients were categorized into high and low-expression groups for each gene using the best cutoff point. Genes associated with survival (AUC > 0.5; univariate and multivariate Cox regressions, p < 0.05) were used to model gene expression-based scores by weighted sum using the pooled Cox β regression coefficients. Cox regression (p < 0.05), AUC > 0.5, sensitivity > 0.5, and specificity > 0.5 were considered to identify the best scores. Gene set enrichment analysis (KEGG, REACTOME, and Gene Ontology databases), as well as microenvironment composition and stromal cell signatures prediction (CIBERSORT, EPIC, xCell, MCP-counter, and quanTIseq web tools) were performed. We found 11 genes related to GC survival in the five independent cohorts. Then, we modeled scores by calculating all possible combinations between these genes. Among the 2,047 scores, we identified a panel based on the expression of seven genes. It was named GES7 and is composed of CCDC91, DYNC1I1, FAM83D, LBH, SLITRK5, WTIP, and NAP1L3 genes. GES7 features were validated in two independent external cohorts. Next, GES7 was found to recategorize patients from AJCC TNM stages into a best-fitted prognostic group. The GES7 was associated with activation of the TGF-β pathway and repression of anticancer immune cells. Finally, we compared the GES7 with 30 previous proposed scores, finding that GES7 is one of the most robust scores. As a result, the GES7 is a reliable gene-expression-based signature to improve the prognosis estimation in GC.
Collapse
Affiliation(s)
- Mariana Belén Velásquez Sotomayor
- Immunology and Cancer Research Group (IMMUCA), Lima, Peru
- Escuela de Medicina Humana, Facultad de Ciencias de la Salud, Universidad Científica del Sur, Lima, Perú
| | - Anthony Vladimir Campos Segura
- Immunology and Cancer Research Group (IMMUCA), Lima, Peru
- Biochemistry and Molecular Biology Research Laboratory, Faculty of Natural Sciences and Mathematics, Universidad Nacional Federico Villarreal, Lima, Peru
- Laboratory of Genomics and Molecular Biology, International Center of Research CIPE, A.C. Camargo Cancer Center, Sao Paulo, Brazil
| | - Ricardo José Asurza Montalva
- Immunology and Cancer Research Group (IMMUCA), Lima, Peru
- Escuela de Medicina Humana, Facultad de Ciencias de la Salud, Universidad Científica del Sur, Lima, Perú
| | - Obert Marín-Sánchez
- Immunology and Cancer Research Group (IMMUCA), Lima, Peru
- Departamento Académico de Microbiología Médica, Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Alexis Germán Murillo Carrasco
- Immunology and Cancer Research Group (IMMUCA), Lima, Peru
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - César Alexander Ortiz Rojas
- Immunology and Cancer Research Group (IMMUCA), Lima, Peru
- Laboratório de Investigação Médica (LIM) 31, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Jiang Y, Yu J, Zhu T, Bu J, Hu Y, Liu Y, Zhu X, Gu X. Involvement of FAM83 Family Proteins in the Development of Solid Tumors: An Update Review. J Cancer 2023; 14:1888-1903. [PMID: 37476189 PMCID: PMC10355199 DOI: 10.7150/jca.83420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/16/2023] [Indexed: 07/22/2023] Open
Abstract
FAM83 family members are a group of proteins that have been implicated in various solid tumors. In this updated review, we mainly focus on the cellular localization, molecular composition, and biological function of FAM83 family proteins in solid tumors. We discussed the factors that regulate abnormal protein expression and alterations in the functional activities of solid tumor cells (including non-coding microRNAs and protein modifiers) and potential mechanisms of tumorigenesis (including the MAPK, WNT, and TGF-β signaling pathways). Further, we highlighted the application of FAM83 family proteins in the diagnoses and treatment of different cancers, such as breast, lung, liver, and ovarian cancers from two aspects: molecular marker diagnosis and tumor drug resistance. We described the overexpression of FAM83 genes in various human malignant tumor cells and its relationship with tumor proliferation, migration, invasion, transformation, and drug resistance. Moreover, we explored the prospects and challenges of using tumor treatments based on the FAM83 proteins. Overall, we provide a theoretical basis for harnessing FAM83 family proteins as novel targets in cancer treatment. We believe that this review opens up open new directions for solid tumor treatment in clinical practice.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning province, P.R. China
| | - Jiahui Yu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Tong Zhu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning province, P.R. China
| | - Jiawen Bu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning province, P.R. China
| | - Yueting Hu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning province, P.R. China
| | - Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning province, P.R. China
| | - Xudong Zhu
- Department of General Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning province, P.R. China
| |
Collapse
|
9
|
Yuan S, Huang Z, Qian X, Wang Y, Fang C, Chen R, Zhang X, Xiao Z, Wang Q, Yu B, Li Y. Pan-cancer analysis of the FAM83 family and its association with prognosis and tumor microenvironment. Front Genet 2022; 13:919559. [PMID: 35938024 PMCID: PMC9353330 DOI: 10.3389/fgene.2022.919559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Family with sequence similarity 83 (FAM83) is a newly identified family of oncogenes whose members play important roles in signaling and cancer progression. However, a thorough understanding of the FAM83 family in tumors is still lacking. Here, we performed a comprehensive analysis of the expression levels of the FAM83 family across cancers and patient prognoses using bioinformatics methods. We found that the expression levels of FAM83 family genes were upregulated in most tumors, and importantly, high expression levels of FAM83 family genes were related to poor prognosis in most tumors. In addition, we analyzed the relationship of FAM83 family genes with immune subtypes and the tumor microenvironment (TME). The results showed that FAM83 family genes were significantly associated with immune infiltrative subtypes and to varying degrees with the level of stromal cell infiltration and tumor stem cells. Finally, our study also showed the relationship between FAM83 family genes and drug sensitivity. Therefore, this pan-cancer analysis demonstrates the critical role of FAM83 family genes in tumor development and provides new clues for therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Shangkun Yuan
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhisheng Huang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaoying Qian
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Wang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chen Fang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Renfang Chen
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xinwei Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhehao Xiao
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qian Wang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Biao Yu
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Li
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Yong Li,
| |
Collapse
|
10
|
Individual and Co-Expression Patterns of FAM83H and SCRIB at Diagnosis Are Associated with the Survival of Colorectal Carcinoma Patients. Diagnostics (Basel) 2022; 12:diagnostics12071579. [PMID: 35885485 PMCID: PMC9318331 DOI: 10.3390/diagnostics12071579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background: FAM83H is important in teeth development; however, an increasing number of reports have indicated a role for it in human cancers. FAM83H is involved in cancer progression in association with various oncogenic molecules, including SCRIB. In the analysis of the public database, there was a significant association between FAM83H and SCRIB in colorectal carcinomas. However, studies evaluating the association of FAM83H and SCRIB in colorectal carcinoma have been limited. Methods: The clinicopathological significance of the immunohistochemical expression of FAM83H and SCRIB was evaluated in 222 colorectal carcinomas. Results: The expressions of FAM83H and SCRIB were significantly associated in colorectal carcinoma tissue. In univariate analysis, the nuclear expressions of FAM83H and SCRIB and the cytoplasmic expression of SCRIB were significantly associated with shorter survival of colorectal carcinomas. The nuclear expressions of FAM83H and SCRIB and the cytoplasmic expression of SCRIB were independent indicators of shorter cancer-specific survival in multivariate analysis. A co-expression pattern of nuclear FAM83H and cytoplasmic SCRIB predicted shorter cancer-specific survival (p < 0.001) and relapse-free survival (p = 0.032) in multivariate analysis. Conclusions: This study suggests that FAM83H and SCRIB might be used as prognostic markers of colorectal carcinomas and as potential therapeutic targets for colorectal carcinomas.
Collapse
|