1
|
Li S, Zou Q, Jiang Y, Wang Y, Ding X. A pig model exploring the postnatal hair follicle cycle. Front Cell Dev Biol 2024; 12:1361485. [PMID: 39391350 PMCID: PMC11464431 DOI: 10.3389/fcell.2024.1361485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction The hair follicle (HF) is a micro-organ capable of regeneration. A HF cycle consists of an anagen, catagen and telogen. Abnormalities in the HF cycle can lead to many hair disorders such as hair loss. The pig is a good biomedical model, but there are few data on their HF cycle. The aim of this study was to classify the pig HF cycle and determine the feasibility of the pig as an animal model for human HF cycle. Methods Skin samples from 10 different postnatal (P) days Yorkshire pigs was collected to determine the key time points of the first HF cycle in pig by H&E staining, immunofluorescence staining, q-PCR and western-blot. Results By morphological observation and detection of markers at different stages, pig HF cycle was classified into three main periods - the first anagen until P45, catagen (P45-P85), telogen (P85-P100), and next anagen (>P100). In addition, we examined the expression of important genes AE15, CD34, Versican, Ki67 et al. related to the HF cycle at different stages of pig HF, indicating that pig and human share similarities in morphology and marker gene expression patterns of HF cycle. Discussion Our findings will facilitate the study of HF cycle and offer researchers a suitable model for human hair research.
Collapse
Affiliation(s)
| | | | | | | | - Xiangdong Ding
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Jiang W, Yang X, Zhu L, Yang Y, Liu C, Du Y, Wang Y, Niu L, Zhao Y, Liu Y, Gan M, Shen L, Zhu L. Genome-Wide Association Studies of Hair Whorl in Pigs. Genes (Basel) 2024; 15:1249. [PMID: 39457372 PMCID: PMC11506845 DOI: 10.3390/genes15101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND In pigs, a hair whorl refers to hairs that form a ring of growth around the direction of the hair follicle at the dorsal hip. In China, a hair whorl is considered a negative trait that affects marketing, and no studies have been conducted to demonstrate whether hair whorl affects pig performance and provide an explanation for its genetic basis. METHODS Performance-measured traits and slaughter-measured traits of hair whorl and non-hair whorl pigs were differentially analyzed, followed by genome-wide association analysis (GWAS) and copy number variation (CNV) methods to investigate the genetic basis of hair whorl in pigs. RESULTS Differential analysis of 2625 pigs (171 hair whorl and 2454 non-hair whorl) for performance measures showed that hair whorl and non-hair whorl pigs differed significantly (p < 0.05) in traits such as live births, total litter size, and healthy litter size (p < 0.05), while differential analysis of carcass and meat quality traits showed a significant difference only in the 45 min pH (p = 0.0265). GWAS identified 4 SNP loci significantly associated with the hair whorl trait, 2 of which reached genome-significant levels, and 23 candidate genes were obtained by annotation with the Ensembl database. KEGG and GO enrichment analyses showed that these genes were mainly enriched in the ErbB signaling, endothelial apoptosis regulation, and cell proliferation pathways. In addition, CNV analysis identified 652 differential genes between hair whorl and non-hair whorl pigs, which were mainly involved in the signal transduction, transcription factor activity, and nuclear and cytoplasmic-related pathways. CONCLUSIONS The candidate genes and copy number variation differences identified in this study provide a new theoretical basis for pig breeding efforts.
Collapse
Affiliation(s)
- Wenyu Jiang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.J.); (X.Y.); (L.Z.); (Y.Y.); (C.L.); (Y.D.); (Y.W.); (L.N.); (Y.Z.); (M.G.); (L.S.)
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xidi Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.J.); (X.Y.); (L.Z.); (Y.Y.); (C.L.); (Y.D.); (Y.W.); (L.N.); (Y.Z.); (M.G.); (L.S.)
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Liangyu Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.J.); (X.Y.); (L.Z.); (Y.Y.); (C.L.); (Y.D.); (Y.W.); (L.N.); (Y.Z.); (M.G.); (L.S.)
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiting Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.J.); (X.Y.); (L.Z.); (Y.Y.); (C.L.); (Y.D.); (Y.W.); (L.N.); (Y.Z.); (M.G.); (L.S.)
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengming Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.J.); (X.Y.); (L.Z.); (Y.Y.); (C.L.); (Y.D.); (Y.W.); (L.N.); (Y.Z.); (M.G.); (L.S.)
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.J.); (X.Y.); (L.Z.); (Y.Y.); (C.L.); (Y.D.); (Y.W.); (L.N.); (Y.Z.); (M.G.); (L.S.)
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.J.); (X.Y.); (L.Z.); (Y.Y.); (C.L.); (Y.D.); (Y.W.); (L.N.); (Y.Z.); (M.G.); (L.S.)
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.J.); (X.Y.); (L.Z.); (Y.Y.); (C.L.); (Y.D.); (Y.W.); (L.N.); (Y.Z.); (M.G.); (L.S.)
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.J.); (X.Y.); (L.Z.); (Y.Y.); (C.L.); (Y.D.); (Y.W.); (L.N.); (Y.Z.); (M.G.); (L.S.)
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yihui Liu
- Sichuan Province General Station of Animal Husbandry, Chengdu 610066, China;
| | - Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.J.); (X.Y.); (L.Z.); (Y.Y.); (C.L.); (Y.D.); (Y.W.); (L.N.); (Y.Z.); (M.G.); (L.S.)
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.J.); (X.Y.); (L.Z.); (Y.Y.); (C.L.); (Y.D.); (Y.W.); (L.N.); (Y.Z.); (M.G.); (L.S.)
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (W.J.); (X.Y.); (L.Z.); (Y.Y.); (C.L.); (Y.D.); (Y.W.); (L.N.); (Y.Z.); (M.G.); (L.S.)
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Xiong S, Cui D, Yu N, He R, Zhu H, Wei J, Wang M, Duan W, Huang X, Ge L, Guo Y. Exploring the Maintaining Period and the Differentially Expressed Genes between the Yellow and Black Stripes of the Juvenile Stripe in the Offspring of Wild Boar and Duroc. Animals (Basel) 2024; 14:2109. [PMID: 39061571 PMCID: PMC11274008 DOI: 10.3390/ani14142109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Coloration is a crucial trait that allows species to adapt and survive in different environments. Wild boars exhibit alternating black (dark) and yellow (light) longitudinal stripes on their back during their infancy (juvenile stripes), and as adults, they transform into uniform wild-type coat color. Aiming to record the procedure of juvenile stripes disappearing, piglets (WD) with juvenile stripes were produced by crossing a wild boar with Duroc sows, and photos of their coat color were taken from 20 d to 220 d. The pigments in the hairs from the black and yellow stripes were determined. Furthermore, the differentially expressed genes between the black and yellow stripes were investigated in 5 WD with the age of 30 d using whole-transcriptome sequencing to explore the genetic mechanism of the juvenile stripes. The juvenile stripes started to disappear at about 70 d, and stripes were not distinguished with the naked eye at about 160 d; that is, the juvenile stripe completely disappeared. A hotspot of a differentially expressing (DE) region was found on chromosome 13, containing/covering 2 of 13 DE genes and 8 of 10 DE lncRNAs in this region. A network among ZIC4, ssc-miR-532-3p, and ENSSSCG00000056225 might regulate the formation of juvenile stripes. Altogether, this study provides new insights into spatiotemporal coat color pattern.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yuanmei Guo
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
4
|
Wang Y, Jiang Y, Ni G, Li S, Balderson B, Zou Q, Liu H, Jiang Y, Sun J, Ding X. Integrating Single-Cell and Spatial Transcriptomics Reveals Heterogeneity of Early Pig Skin Development and a Subpopulation with Hair Placode Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306703. [PMID: 38561967 PMCID: PMC11132071 DOI: 10.1002/advs.202306703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/08/2024] [Indexed: 04/04/2024]
Abstract
The dermis and epidermis, crucial structural layers of the skin, encompass appendages, hair follicles (HFs), and intricate cellular heterogeneity. However, an integrated spatiotemporal transcriptomic atlas of embryonic skin has not yet been described and would be invaluable for studying skin-related diseases in humans. Here, single-cell and spatial transcriptomic analyses are performed on skin samples of normal and hairless fetal pigs across four developmental periods. The cross-species comparison of skin cells illustrated that the pig epidermis is more representative of the human epidermis than mice epidermis. Moreover, Phenome-wide association study analysis revealed that the conserved genes between pigs and humans are strongly associated with human skin-related diseases. In the epidermis, two lineage differentiation trajectories describe hair follicle (HF) morphogenesis and epidermal development. By comparing normal and hairless fetal pigs, it is found that the hair placode (Pc), the most characteristic initial structure in HFs, arises from progenitor-like OGN+/UCHL1+ cells. These progenitors appear earlier in development than the previously described early Pc cells and exhibit abnormal proliferation and migration during differentiation in hairless pigs. The study provides a valuable resource for in-depth insights into HF development, which may serve as a key reference atlas for studying human skin disease etiology using porcine models.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Animal Biotech BreedingNational Engineering Laboratory for Animal BreedingLaboratory of Animal GeneticsBreeding and ReproductionMinistry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Yao Jiang
- State Key Laboratory of Animal Biotech BreedingNational Engineering Laboratory for Animal BreedingLaboratory of Animal GeneticsBreeding and ReproductionMinistry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Guiyan Ni
- Division of Genetics and GenomicsInstitute for Molecular BioscienceThe University of QueenslandBrisbane4072Australia
| | - Shujuan Li
- State Key Laboratory of Animal Biotech BreedingNational Engineering Laboratory for Animal BreedingLaboratory of Animal GeneticsBreeding and ReproductionMinistry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Brad Balderson
- School of Chemistry & Molecular BiosciencesThe University of QueenslandBrisbane4067Australia
| | - Quan Zou
- State Key Laboratory of Animal Biotech BreedingNational Engineering Laboratory for Animal BreedingLaboratory of Animal GeneticsBreeding and ReproductionMinistry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Huatao Liu
- State Key Laboratory of Animal Biotech BreedingNational Engineering Laboratory for Animal BreedingLaboratory of Animal GeneticsBreeding and ReproductionMinistry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Yifan Jiang
- State Key Laboratory of Animal Biotech BreedingNational Engineering Laboratory for Animal BreedingLaboratory of Animal GeneticsBreeding and ReproductionMinistry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| | - Jingchun Sun
- Key Laboratory of Animal GeneticsBreeding and Reproduction of Shaanxi ProvinceLaboratory of Animal Fat Deposition & Muscle DevelopmentCollege of Animal Science and TechnologyNorthwest A&F UniversityYangling712100China
| | - Xiangdong Ding
- State Key Laboratory of Animal Biotech BreedingNational Engineering Laboratory for Animal BreedingLaboratory of Animal GeneticsBreeding and ReproductionMinistry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyChina Agricultural UniversityBeijing100193China
| |
Collapse
|
5
|
Abstract
Diseases affecting the hair follicle are common in domestic animals, but despite the importance of an intact skin barrier and a fully functional hair coat, knowledge about the detailed morphological features and the diversity of these complex mini-organs are often limited, although mandatory to evaluate skin biopsies with a history of alopecia. The factors that regulate the innate hair follicle formation and the postnatal hair cycle are still not completely understood in rodents, only rudimentarily known in humans, and are poorly understood in our companion animals. This review aims to summarize the current knowledge about hair follicle and hair shaft anatomy, the arrangement of hair follicles, hair follicle morphogenesis in the embryo, and the lifelong regeneration during the postnatal hair cycle in domestic animals. The role of follicular stem cells and the need for a multitude of interacting signaling events during hair follicle morphogenesis and regeneration is unquestioned. Because of the lack of state of the art methods that can be applied in rodents but are not feasible in companion animals, most of the information in this review is based on rodent studies. However, the few data from domestic animals that are available will be discussed, and it can be assumed that at least the principal molecular mechanisms are similar in rodents and other species.
Collapse
|
6
|
Liu WX, Li CX, Xie XX, Ge W, Qiao T, Sun XF, Shen W, Cheng SF. Transcriptomic landscape reveals germline potential of porcine skin-derived multipotent dermal fibroblast progenitors. Cell Mol Life Sci 2023; 80:224. [PMID: 37480481 PMCID: PMC11072884 DOI: 10.1007/s00018-023-04869-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/15/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
According to estimations, approximately about 15% of couples worldwide suffer from infertility, in which individuals with azoospermia or oocyte abnormalities cannot be treated with assisted reproductive technology. The skin-derived stem cells (SDSCs) differentiation into primordial germ cell-like cells (PGCLCs) is one of the major breakthroughs in the field of stem cells intervention for infertility treatment in recent years. However, the cellular origin of SDSCs and their dynamic changes in transcription profile during differentiation into PGCLCs in vitro remain largely undissected. Here, the results of single-cell RNA sequencing indicated that porcine SDSCs are mainly derived from multipotent dermal fibroblast progenitors (MDFPs), which are regulated by growth factors (EGF/bFGF). Importantly, porcine SDSCs exhibit pluripotency for differentiating into three germ layers and can effectively differentiate into PGCLCs through complex transcriptional regulation involving histone modification. Moreover, this study also highlights that porcine SDSC-derived PGCLCs specification exhibit conservation with the human primordial germ cells lineage and that its proliferation is mediated by the MAPK signaling pathway. Our findings provide substantial novel insights into the field of regenerative medicine in which stem cells differentiate into germ cells in vitro, as well as potential therapeutic effects in individuals with azoospermia and/or defective oocytes.
Collapse
Affiliation(s)
- Wen-Xiang Liu
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010021, China
| | - Chun-Xiao Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xin-Xiang Xie
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Ge
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tian Qiao
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiao-Feng Sun
- Anqiu Women and Children's Hospital, Weifang, 262100, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Shun-Feng Cheng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
7
|
Khaveh N, Schachler K, Berghöfer J, Jung K, Metzger J. Altered hair root gene expression profiles highlight calcium signaling and lipid metabolism pathways to be associated with curly hair initiation and maintenance in Mangalitza pigs. Front Genet 2023; 14:1184015. [PMID: 37351343 PMCID: PMC10282778 DOI: 10.3389/fgene.2023.1184015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023] Open
Abstract
Hair types have been under strong targeted selection in domestic animals for their impact on skin protection, thermoregulation and exterior morphology, and subsequent economic importance. In pigs, a very special hair phenotype was observed in Mangalitza, who expresses a thick coat of curly bristles and downy hair. Two breed-specific missense variants in TRPM2 and CYP4F3 were suggested to be associated with the Mangalitza pig's hair shape due to their role in hair follicle morphogenesis reported for human and mice. However, the mechanism behind this expression of a curly hair type is still unclear and needs to be explored. In our study, hair shafts were measured and investigated for the curvature of the hair in Mangalitza and crossbreeds in comparison to straight-coated pigs. For molecular studies, hair roots underwent RNA sequencing for a differential gene expression analysis using DESeq2. The output matrix of normalized counts was then used to construct weighted gene co-expression networks. The resulting hair root gene expression profiles highlighted 454 genes to be significantly differentially expressed for initiation of curly hair phenotype in newborn Mangalitza piglets versus post-initiation in later development. Furthermore, 2,554 genes showed a significant differential gene expression in curly hair in comparison to straight hair. Neither TRPM2 nor CYP4F3 were identified as differentially expressed. Incidence of the genes in weighted co-expression networks associated with TRPM2 and CYP4F3, and prominent interactions of subsequent proteins with lipids and calcium-related pathways suggested calcium signaling and/or lipid metabolism as essential players in the induction of the curly hair as well as an ionic calcium-dependency to be a prominent factor for the maintenance of this phenotype. Subsequently, our study highlights the complex interrelations and dependencies of mutant genes TRPM2 and CYP4F3 and associated gene expression patterns, allowing the initiation of curly hair type during the development of a piglet as well as the maintenance in adult individuals.
Collapse
Affiliation(s)
- Nadia Khaveh
- Research Group Veterinary Functional Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kathrin Schachler
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jan Berghöfer
- Research Group Veterinary Functional Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Klaus Jung
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Julia Metzger
- Research Group Veterinary Functional Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
8
|
Chenzhe G, Hui M, Dong N, Koko MYF. Extraction, purification, and in vitro biological activities of intestinal alkaline phosphatase from pig intestine mucous waste. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gao Chenzhe
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition Northeast Agricultural University Harbin P. R. China
- College of Food Northeast Agricultural University Harbin P. R. China
| | - Mizhou Hui
- College of Food Northeast Agricultural University Harbin P. R. China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition Northeast Agricultural University Harbin P. R. China
| | | |
Collapse
|
9
|
Jiang Y, Liu H, Zou Q, Li S, Ding X. miR-29a-5p Inhibits Prenatal Hair Placode Formation Through Targeting EDAR by ceRNA Regulatory Network. Front Cell Dev Biol 2022; 10:902026. [PMID: 35646897 PMCID: PMC9133881 DOI: 10.3389/fcell.2022.902026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Hair placode formation is an important stage of hair follicle morphogenesis and it is a complex process facilitated by non-coding RNAs. In this study, we conducted whole transcriptome sequencing analysis of skin, heart, liver, lung, and kidney tissues of day 41 (E41) normal and hairless pig embryos, and respectively detected 15, 8, and 515 skin-specific differentially expressed (DE) lncRNAs, miRNAs, and mRNAs. Furthermore, 18 competing endogenous RNA (ceRNA) networks were constructed. Following weighted gene co-expression network analysis (WGCNA) of stages E39, E41, E45, E52, and E60, between normal and hairless pig embryos, only two ceRNAs (lncRNA2162.1/miR-29a-5p/BMPR1b and lncRNA627.1/miR-29a-5p/EDAR) that showed period-specific differential expression in E41 skin were retained. Dual-luciferase reporter assays further indicated that EDAR was a direct, functioning target of miR-29a-5p and that no binding site was found in BMPR1b. Moreover, miR-29a-5p overexpression inhibited the mRNA and protein expression of EDAR while no significant differential expression of BMPR1b was detected. In addition, over-expressed lncRNA627.1 reduces the expression of miR-29a-5p and increase EDAR expression while inhibits lncRNA627.1 resulted in a opposite expression trend. Cell proliferation result demonstrated that lower expression of EDAR and lncRNA627.1 inhibited hair placode precursor cells (HPPCs) proliferation in a manner similar to that shown by over-expressed miR-29a-5p. This study identified that miR-29a-5p inhibited HPPCs proliferation via the suppression of EDAR expression in the EDA/EDAR signaling pathway, while lncRNA627.1 rescues EDAR expression. Our study provides a basis for a better understanding of the mechanisms underlying the ceRNA complex, miR29a-5p/EDAR/lncRNA627.1, that could regulate hair placode formation, which may help decipher diseases affecting human hair.
Collapse
Affiliation(s)
- Yao Jiang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Huatao Liu
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Quan Zou
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shujuan Li
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangdong Ding
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Xiangdong Ding,
| |
Collapse
|