1
|
Zhao Y, Sui L, Pan M, Jin F, Huang Y, Fang S, Wang M, Che L, Xu W, Liu N, Gao H, Hou Z, Du F, Wei Z, Bell-Sakyi L, Zhao J, Zhang K, Zhao Y, Liu Q. The segmented flavivirus Alongshan virus reduces mitochondrial mass by degrading STAT2 to suppress the innate immune response. J Virol 2025; 99:e0130124. [PMID: 39655955 PMCID: PMC11784234 DOI: 10.1128/jvi.01301-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/20/2024] [Indexed: 02/01/2025] Open
Abstract
Alongshan virus (ALSV) is a newly discovered pathogen in the Flaviviridae family, characterized by a unique multi-segmented genome that is distantly related to the canonical flaviviruses. Understanding the pathogenic mechanism of this emerging segmented flavivirus is crucial for the development of effective intervention strategies. In this study, we demonstrate that ALSV can infect various mammalian cells and induce the expression of antiviral genes. Furthermore, ALSV is sensitive to IFN-β, but it has developed strategies to counteract the host's type I IFN response. Mechanistically, ALSV's nonstructural protein NSP1 interacts with and degrades human STAT2 through an autophagy pathway, with species-dependent effects. This degradation directly inhibits the expression of interferon-stimulated genes (ISGs). Additionally, NSP1-mediated degradation of STAT2 disrupts mitochondrial dynamics, leading to mitophagy and inhibition of mitochondrial biogenesis. This, in turn, suppresses the host's innate immune response. Interestingly, we found that inhibiting mitophagy using 3-methyladenine and enhancing mitochondrial biogenesis with the PPARγ agonist pioglitazone can reverse NSP1-mediated inhibition of ISGs, suggesting that promoting mitochondrial mass could serve as an effective antiviral strategy. Specifically, the NSP1 methyltransferase domain binds to the key sites of F175/R176 located in the coiled-coil domain of STAT2. Our findings provide valuable insights into the intricate regulatory cross talk between ALSV and the host's innate immune response, shedding light on the pathogenesis of this emerging segmented flavivirus and offering potential intervention strategies.IMPORTANCEAlongshan virus (ALSV), a segmented flavivirus belonging to the Flaviviridae family, was first identified in individuals who had been bitten by ticks in Northeastern China. ALSV infection is responsible for causing Alongshan fever, a condition characterized by various clinical symptoms, including fever, headache, skin rash, myalgia, arthralgia, depression, and coma. There is an urgent need for effective antiviral therapies. Here, we demonstrate that ALSV is susceptible to IFN-β but has developed mechanisms to counteract the host's innate immune response. Specifically, the ALSV nonstructural protein NSP1 interacts with STAT2, leading to its degradation via an autophagy pathway that exhibits species-dependent effects. Additionally, NSP1 disrupts mitochondrial dynamics and suppresses mitochondrial biogenesis, resulting in a reduction in mitochondrial mass, which ultimately contributes to the inhibition of the host's innate immune response. Interestingly, we found that inhibiting mitophagy and promoting mitochondrial biogenesis can reverse NSP1-mediated suppression of innate immune response by increasing mitochondrial mass. These findings provide valuable insights into the molecular mechanisms of ALSV pathogenesis and suggest potential therapeutic targets against ALSV infection.
Collapse
Affiliation(s)
- Yinghua Zhao
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Liyan Sui
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Mingming Pan
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Fangyu Jin
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Yuan Huang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Shu Fang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Mengmeng Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Lihe Che
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Wenbo Xu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Nan Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Haicheng Gao
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Zhijun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Fang Du
- Department of Neurology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Zhengkai Wei
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jixue Zhao
- Department of Pediatric Surgery, The First Hospital of Jilin University, Changchun, China
| | - Kaiyu Zhang
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Yicheng Zhao
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Quan Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Pays E. Apolipoprotein-L Functions in Membrane Remodeling. Cells 2024; 13:2115. [PMID: 39768205 PMCID: PMC11726835 DOI: 10.3390/cells13242115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
The mammalian Apolipoprotein-L families (APOLs) contain several isoforms of membrane-interacting proteins, some of which are involved in the control of membrane dynamics (traffic, fission and fusion). Specifically, human APOL1 and APOL3 appear to control membrane remodeling linked to pathogen infection. Through its association with Non-Muscular Myosin-2A (NM2A), APOL1 controls Golgi-derived trafficking of vesicles carrying the lipid scramblase Autophagy-9A (ATG9A). These vesicles deliver APOL3 together with phosphatidylinositol-4-kinase-B (PI4KB) and activated Stimulator of Interferon Genes (STING) to mitochondrion-endoplasmic reticulum (ER) contact sites (MERCSs) for the induction and completion of mitophagy and apoptosis. Through direct interactions with PI4KB and PI4KB activity controllers (Neuronal Calcium Sensor-1, or NCS1, Calneuron-1, or CALN1, and ADP-Ribosylation Factor-1, or ARF1), APOL3 controls PI(4)P synthesis. PI(4)P is required for different processes linked to infection-induced inflammation: (i) STING activation at the Golgi and subsequent lysosomal degradation for inflammation termination; (ii) mitochondrion fission at MERCSs for induction of mitophagy and apoptosis; and (iii) phagolysosome formation for antigen processing. In addition, APOL3 governs mitophagosome fusion with endolysosomes for mitophagy completion, and the APOL3-like murine APOL7C is involved in phagosome permeabilization linked to antigen cross-presentation in dendritic cells. Similarly, APOL3 can induce the fusion of intracellular bacterial membranes, and a role in membrane fusion can also be proposed for endothelial APOLd1 and adipocyte mAPOL6, which promote angiogenesis and adipogenesis, respectively, under inflammatory conditions. Thus, different APOL isoforms play distinct roles in membrane remodeling associated with inflammation.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular Parasitology, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, 6041 Gosselies, Belgium
| |
Collapse
|
3
|
Sun Z, Wang Y, Jin X, Li S, Qiu HJ. Crosstalk between Dysfunctional Mitochondria and Proinflammatory Responses during Viral Infections. Int J Mol Sci 2024; 25:9206. [PMID: 39273156 PMCID: PMC11395300 DOI: 10.3390/ijms25179206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Mitochondria play pivotal roles in sustaining various biological functions including energy metabolism, cellular signaling transduction, and innate immune responses. Viruses exploit cellular metabolic synthesis to facilitate viral replication, potentially disrupting mitochondrial functions and subsequently eliciting a cascade of proinflammatory responses in host cells. Additionally, the disruption of mitochondrial membranes is involved in immune regulation. During viral infections, mitochondria orchestrate innate immune responses through the generation of reactive oxygen species (ROS) and the release of mitochondrial DNA, which serves as an effective defense mechanism against virus invasion. The targeting of mitochondrial damage may represent a novel approach to antiviral intervention. This review summarizes the regulatory mechanism underlying proinflammatory response induced by mitochondrial damage during viral infections, providing new insights for antiviral strategies.
Collapse
Affiliation(s)
- Zitao Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Yanjin Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xin Jin
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
4
|
Su L, Luo H, Yan Y, Yang Z, Lu J, Xu D, Du L, Liu J, Yang G, Chi H. Exploiting gender-based biomarkers and drug targets: advancing personalized therapeutic strategies in hepatocellular carcinoma. Front Pharmacol 2024; 15:1433540. [PMID: 38966543 PMCID: PMC11222576 DOI: 10.3389/fphar.2024.1433540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
This review systematically examines gender differences in hepatocellular carcinoma (HCC), identifying the influence of sex hormones, genetic variance, and environmental factors on the disease's epidemiology and treatment outcomes. Recognizing the liver as a sexually dimorphic organ, we highlight how gender-specific risk factors, such as alcohol consumption and obesity, contribute differently to hepatocarcinogenesis in men and women. We explore molecular mechanisms, including the differential expression of androgen and estrogen receptors, which mediate diverse pathways in tumor biology such as cell proliferation, apoptosis, and DNA repair. Our analysis underscores the critical need for gender-specific research in liver cancer, from molecular studies to clinical trials, to improve diagnostic accuracy and therapeutic effectiveness. By incorporating a gender perspective into all facets of liver cancer research, we advocate for a more precise and personalized approach to cancer treatment that acknowledges gender as a significant factor in both the progression of HCC and its response to treatment. This review aims to foster a deeper understanding of the biological and molecular bases of gender differences in HCC and to promote the development of tailored interventions that enhance outcomes for all patients.
Collapse
Affiliation(s)
- Lanqian Su
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Huanyu Luo
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Yalan Yan
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Zhongqiu Yang
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Jiaan Lu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Danqi Xu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Linjuan Du
- Department of Oncology, Dazhou Central Hospital, Dazhou, China
| | - Jie Liu
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Chen S, Liao Z, Xu P. Mitochondrial control of innate immune responses. Front Immunol 2023; 14:1166214. [PMID: 37325622 PMCID: PMC10267745 DOI: 10.3389/fimmu.2023.1166214] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Mitochondria are versatile organelles and essential components of numerous biological processes such as energy metabolism, signal transduction, and cell fate determination. In recent years, their critical roles in innate immunity have come to the forefront, highlighting impacts on pathogenic defense, tissue homeostasis, and degenerative diseases. This review offers an in-depth and comprehensive examination of the multifaceted mechanisms underlying the interactions between mitochondria and innate immune responses. We will delve into the roles of healthy mitochondria as platforms for signalosome assembly, the release of mitochondrial components as signaling messengers, and the regulation of signaling via mitophagy, particularly to cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling and inflammasomes. Furthermore, the review will explore the impacts of mitochondrial proteins and metabolites on modulating innate immune responses, the polarization of innate immune cells, and their implications on infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Shasha Chen
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Zhiyong Liao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Pinglong Xu
- Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University (HIC-ZJU), Hangzhou, China
- Ministry of Education (MOE) Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Kenaston MW, Shah PS. The Archer and the Prey: The Duality of PAF1C in Antiviral Immunity. Viruses 2023; 15:1032. [PMID: 37243120 PMCID: PMC10222983 DOI: 10.3390/v15051032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
In the ongoing arms race between virus and host, fine-tuned gene expression plays a critical role in antiviral signaling. However, viruses have evolved to disrupt this process and promote their own replication by targeting host restriction factors. Polymerase-associated factor 1 complex (PAF1C) is a key player in this relationship, recruiting other host factors to regulate transcription and modulate innate immune gene expression. Consequently, PAF1C is consistently targeted by a diverse range of viruses, either to suppress its antiviral functions or co-opt them for their own benefit. In this review, we delve into the current mechanisms through which PAF1C restricts viruses by activating interferon and inflammatory responses at the transcriptional level. We also highlight how the ubiquity of these mechanisms makes PAF1C especially vulnerable to viral hijacking and antagonism. Indeed, as often as PAF1C is revealed to be a restriction factor, viruses are found to have targeted the complex in reply.
Collapse
Affiliation(s)
- Matthew W. Kenaston
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Priya S. Shah
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
- Department of Chemical Engineering, University of California, Davis, CA 95616, USA
| |
Collapse
|
7
|
Wang W, Li K, Zhang T, Dong H, Liu J. RNA-seq and microRNA association analysis to explore the pathogenic mechanism of DHAV-1 infection with DEHs. Funct Integr Genomics 2023; 23:99. [PMID: 36959488 PMCID: PMC10035973 DOI: 10.1007/s10142-023-01022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/25/2023]
Abstract
Duck hepatitis A virus 1 (DHAV-1) is one of the main contagious pathogens that causes rapid death of ducklings. To illuminate the potential of DHAV-1-infected underlying mechanisms, we analyzed the mRNA and microRNA (miRNA) expression profiles of duck embryonic hepatocytes (DEHs) in response to DHAV-1. We found 3410 differentially expressed genes (DEGs) and 142 differentially expressed miRNAs (DEMs) at 36 h after DHAV-1 infection. Additionally, DEGs and the target genes of miRNA expression were analyzed and enriched utilizing GO and KEGG, which may be crucial for immune responses, viral resistance, and mitophagy. For instance, the dysregulation of DDX58, DHX58, IRF7, IFIH1, STING1, TRAF3, CALCOCO2, OPTN, PINK1, and MFN2 in DHAV-1-infected DEHs was verified by RT-qPCR. Then, the association analysis of mRNAs and miRNAs was constructed utilizing the protein-protein interaction (PPI) networks, and the expressions of main miRNAs were confirmed, including miR-132c-3p, miR-6542-3p, and novel-mir163. These findings reveal a synthetic characterization of the mRNA and miRNA in DHAV-1-infected DEHs and advance the understanding of molecular mechanism in DHAV-1 infection, which may provide a hint for the interactions of virus and host.
Collapse
Affiliation(s)
- Weiran Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Kun Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Tao Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Hong Dong
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.
| | - Jiaguo Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China.
| |
Collapse
|
8
|
Fu C, Cao N, Liu W, Zhang Z, Yang Z, Zhu W, Fan S. Crosstalk between mitophagy and innate immunity in viral infection. Front Microbiol 2022; 13:1064045. [PMID: 36590405 PMCID: PMC9800879 DOI: 10.3389/fmicb.2022.1064045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are important organelles involved in cell metabolism and programmed cell death in eukaryotic cells and are closely related to the innate immunity of host cells against viruses. Mitophagy is a process in which phagosomes selectively phagocytize damaged or dysfunctional mitochondria to form autophagosomes and is degraded by lysosomes, which control mitochondrial mass and maintain mitochondrial dynamics and cellular homeostasis. Innate immunity is an important part of the immune system and plays a vital role in eliminating viruses. Viral infection causes many physiological and pathological alterations in host cells, including mitophagy and innate immune pathways. Accumulating evidence suggests that some virus promote self-replication through regulating mitophagy-mediated innate immunity. Clarifying the regulatory relationships among mitochondria, mitophagy, innate immunity, and viral infection will shed new insight for pathogenic mechanisms and antiviral strategies. This review systemically summarizes the activation pathways of mitophagy and the relationship between mitochondria and innate immune signaling pathways, and then discusses the mechanisms of viruses on mitophagy and innate immunity and how viruses promote self-replication by regulating mitophagy-mediated innate immunity.
Collapse
Affiliation(s)
- Cheng Fu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Nan Cao
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wenjun Liu
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Zilin Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zihui Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenhui Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China,*Correspondence: Wenhui Zhu,
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China,Shuangqi Fan,
| |
Collapse
|
9
|
Peña-Martinez C, Rickman AD, Heckmann BL. Beyond autophagy: LC3-associated phagocytosis and endocytosis. SCIENCE ADVANCES 2022; 8:eabn1702. [PMID: 36288309 PMCID: PMC9604515 DOI: 10.1126/sciadv.abn1702] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/26/2022] [Indexed: 05/08/2023]
Abstract
Noncanonical functions of the autophagy machinery in pathways including LC3-associated phagocytosis and LC3-associated endocytosis have garnered increasing interest in both normal physiology and pathobiology. New discoveries over the past decade of noncanonical uses of the autophagy machinery in these distinct molecular mechanisms have led to robust investigation into the roles of single-membrane LC3 lipidation. Noncanonical autophagy pathways have now been implicated in the regulation of multiple processes ranging from debris clearance, cellular signaling, and immune regulation and inflammation. Accumulating evidence is demonstrating roles in a variety of disease states including host-pathogen responses, autoimmunity, cancer, and neurological and neurodegenerative pathologies. Here, we broadly summarize the differences in the mechanistic regulation between autophagy and LAP and LANDO and highlight some of the key roles of LAP and LANDO in innate immune function, inflammation, and disease pathology.
Collapse
Affiliation(s)
- Carolina Peña-Martinez
- Department of Molecular Medicine, USF Morsani College of Medicine, Tampa, FL, USA
- Byrd Alzheimer’s Center, USF Health Neuroscience Institute, Tampa, FL, USA
| | - Alexis D. Rickman
- Department of Molecular Medicine, USF Morsani College of Medicine, Tampa, FL, USA
- Byrd Alzheimer’s Center, USF Health Neuroscience Institute, Tampa, FL, USA
| | - Bradlee L. Heckmann
- Department of Molecular Medicine, USF Morsani College of Medicine, Tampa, FL, USA
- Byrd Alzheimer’s Center, USF Health Neuroscience Institute, Tampa, FL, USA
| |
Collapse
|
10
|
Wen R, Liu YP, Tong XX, Zhang TN, Yang N. Molecular mechanisms and functions of pyroptosis in sepsis and sepsis-associated organ dysfunction. Front Cell Infect Microbiol 2022; 12:962139. [PMID: 35967871 PMCID: PMC9372372 DOI: 10.3389/fcimb.2022.962139] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/06/2022] [Indexed: 12/17/2022] Open
Abstract
Sepsis, a life-threatening organ dysfunction caused by a dysregulated host response to infection, is a leading cause of death in intensive care units. The development of sepsis-associated organ dysfunction (SAOD) poses a threat to the survival of patients with sepsis. Unfortunately, the pathogenesis of sepsis and SAOD is complicated, multifactorial, and has not been completely clarified. Recently, numerous studies have demonstrated that pyroptosis, which is characterized by inflammasome and caspase activation and cell membrane pore formation, is involved in sepsis. Unlike apoptosis, pyroptosis is a pro-inflammatory form of programmed cell death that participates in the regulation of immunity and inflammation. Related studies have shown that in sepsis, moderate pyroptosis promotes the clearance of pathogens, whereas the excessive activation of pyroptosis leads to host immune response disorders and SAOD. Additionally, transcription factors, non-coding RNAs, epigenetic modifications and post-translational modifications can directly or indirectly regulate pyroptosis-related molecules. Pyroptosis also interacts with autophagy, apoptosis, NETosis, and necroptosis. This review summarizes the roles and regulatory mechanisms of pyroptosis in sepsis and SAOD. As our understanding of the functions of pyroptosis improves, the development of new diagnostic biomarkers and targeted therapies associated with pyroptosis to improve clinical outcomes appears promising in the future.
Collapse
Affiliation(s)
| | | | | | | | - Ni Yang
- *Correspondence: Tie-Ning Zhang, ; Ni Yang,
| |
Collapse
|
11
|
Chen X, Wang Y, Cai J, Wang S, Cheng Z, Zhang Z, Zhang C. Anti-inflammatory effect of baicalin in rats with adjuvant arthritis and its autophagy- related mechanism. Technol Health Care 2022; 30:191-200. [PMID: 35124596 PMCID: PMC9028621 DOI: 10.3233/thc-228018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND: It has been found that baicalin have anti-inflammatory effects since it reduces the elevated levels of pro-inflammatory cytokines. Meanwhile, it has also been shown that baicalin brings positive effects against rheumatoid arthritis (RA). However, little is observed on its beneficial effects on adjuvant arthritis. OBJECTIVE: To consider the anti-inflammatory influence of baicalin on adjuvant arthritis rats and its related autophagy mechanism. METHODS: In this research, there are six groups of rats, each has 10 rats in it. These groups are normal group (normal saline), model group (normal saline), dexamethasone group (0.125 mg/kg dexamethasone), low-dose baicalin group (50 mg/kg baicalin), medium-dose baicalin group (100 mg/kg baicalin) and high-dose baicalin group (200 mg/kg baicalin). The degrees of adjuvant-induced swelling in rats’ feet were measured every 4 days and the arthritis scores were calculated every 7 days. The inflamed joint tissues were taken after rats were sacrificed. The rat’ joints showed pathological changes, which were observed by HE staining. The relative expression levels of inflammatory factors IL-6, IL-1, IL-17, TNF-α, COX2, and COX1 in the rats’ snovial tissues were detected by RT-PCR. As for the expression levels of autophagy markers Beclin1, Atg5, Atg7, Atg12, microtubule-associated protein-light chain3-II (LC3-II), Bcl-2, and Bax in the synovial tissue, they were discoverd by Western blot. RESULTS: Baicalin could significantly inhibit the inflammatory response of adjuvant arthritis rats. CONCLUSIONS: RT-PCR studies showed that the different doses of baicalin could inhibit the expression of TNF-a, IL-6, IL-1, IL-17, COX2 and COX1 in the synovial tissue (P< 0.05 or P< 0.01). Western blot studies showed that the different doses of baicalin could reduce the expression of Atg5, Atg7, Atg12, LC3-II, Beclin1 and Bcl-2 proteins, and increase the expression of Bax proteins in the synovial tissue.
Collapse
Affiliation(s)
- Xi Chen
- College of Basic Medicine, Beihua University, Jilin, China
| | - Yingying Wang
- College of Basic Medicine, Beihua University, Jilin, China
| | - Jiye Cai
- Mingzheng Forensic Identificaiton Centre of Jilin, Jilin, China
| | - Shuang Wang
- College of Basic Medicine, Beihua University, Jilin, China
| | - Zihao Cheng
- College of Pharmacy, Beihua University, Jilin, China
| | - Zhengxu Zhang
- College of Pharmacy, Beihua University, Jilin, China
| | - Chengyi Zhang
- College of Pharmacy, Beihua University, Jilin, China
| |
Collapse
|
12
|
Guo-Parke H, Linden D, Weldon S, Kidney JC, Taggart CC. Deciphering Respiratory-Virus-Associated Interferon Signaling in COPD Airway Epithelium. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:121. [PMID: 35056429 PMCID: PMC8781535 DOI: 10.3390/medicina58010121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 01/08/2023]
Abstract
COPD is a chronic lung disorder characterized by a progressive and irreversible airflow obstruction, and persistent pulmonary inflammation. It has become a global epidemic affecting 10% of the population, and is the third leading cause of death worldwide. Respiratory viruses are a primary cause of COPD exacerbations, often leading to secondary bacterial infections in the lower respiratory tract. COPD patients are more susceptible to viral infections and associated severe disease, leading to accelerated lung function deterioration, hospitalization, and an increased risk of mortality. The airway epithelium plays an essential role in maintaining immune homeostasis, and orchestrates the innate and adaptive responses of the lung against inhaled and pathogen insults. A healthy airway epithelium acts as the first line of host defense by maintaining barrier integrity and the mucociliary escalator, secreting an array of inflammatory mediators, and initiating an antiviral state through the interferon (IFN) response. The airway epithelium is a major site of viral infection, and the interaction between respiratory viruses and airway epithelial cells activates host defense mechanisms, resulting in rapid virus clearance. As such, the production of IFNs and the activation of IFN signaling cascades directly contributes to host defense against viral infections and subsequent innate and adaptive immunity. However, the COPD airway epithelium exhibits an altered antiviral response, leading to enhanced susceptibility to severe disease and impaired IFN signaling. Despite decades of research, there is no effective antiviral therapy for COPD patients. Herein, we review current insights into understanding the mechanisms of viral evasion and host IFN antiviral defense signaling impairment in COPD airway epithelium. Understanding how antiviral mechanisms operate in COPD exacerbations will facilitate the discovery of potential therapeutic interventions to reduce COPD hospitalization and disease severity.
Collapse
Affiliation(s)
- Hong Guo-Parke
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK; (H.G.-P.); (D.L.); (S.W.)
| | - Dermot Linden
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK; (H.G.-P.); (D.L.); (S.W.)
| | - Sinéad Weldon
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK; (H.G.-P.); (D.L.); (S.W.)
| | - Joseph C. Kidney
- Department of Respiratory Medicine, Mater Hospital Belfast, Belfast BT14 6AB, UK;
| | - Clifford C. Taggart
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast BT9 7AE, UK; (H.G.-P.); (D.L.); (S.W.)
| |
Collapse
|