1
|
Liu Y, Zhang L, Wang J, Xu J, Xu J, Xie M, Wang R. Lung cancer cell derived sEVs enhance the metastasis of non-small cell lung cancer via SNHG12/miR-326/SLC7A11 axis. Cancer Biol Ther 2025; 26:2510041. [PMID: 40417819 PMCID: PMC12118444 DOI: 10.1080/15384047.2025.2510041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 05/15/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025] Open
Abstract
Abnormally expressed long non-coding (lnc)RNAs are closely associated with the pathogenesis of non-small cell lung cancer (NSCLC); thus, the present study aimed to investigate the potential role of SNHG12 in NSCLC. Transmission electron microscopy and nanoparticle tracking analysis were conducted to verify NSCLC cell-derived small extracellular vesicles (sEVs). MicroRNA (miRNA/miR) and mRNA expression levels were determined using reverse transcription-quantitative PCR, while protein expression levels were determined using western blot analysis and immunofluorescence. In addition, potential binding sites between miR-326 and SNHG12/SLC7A11 were verified using a dual-luciferase reporter assay. Cell behavior was detected using flow cytometry, colony formation, wound healing and Transwell assays, and xenograft experiments were conducted to confirm the roles of SNHG12 in NSCLC. H&E staining was used for histological analysis, and each experiment was repeated three times. Results of the present study demonstrated that NSCLC-derived SNHG12 promoted type-2 tumor-associated macrophage (TAM2) polarization. However, the decrease of SNHG12 expression in EVs reduced TAM2 polarization, weakened NSCLC cell proliferation, migration and invasion, and promoted tumor cell ferroptosis. Moreover, results of the present study revealed that SNHG12 knockdown markedly suppressed tumor growth and the metastasis of NSCLC. In addition, SNHG12 upregulated SLC7A11 expression via binding to miR-326. Overexpressed SLC7A11 promoted tumor aggressiveness and suppressed the ferroptosis of NSCLC cells. Collectively, results of the present study revealed that SNHG12 suppressed ferroptosis and promoted the metastasis of NSCLC, further demonstrating that high SNHG12 expression levels may be indicative of poor clinical outcomes for patients with NSCLC. Thus, the present study highlighted that the SNHG12/miR-326/SLC7A11 axis may exhibit potential as a novel target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Yiqian Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ling Zhang
- Department of Oncology, Jintan Hospital Affiliated to Jiangsu University, Changzhou, China
| | - Jian Wang
- Department of Oncology, Wuxi Second Geriatric Hospital, Wuxi, Jiangsu, China
| | - Jiali Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mengyan Xie
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rong Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Dey NS, Dey S, Brown N, Senarathne S, Campos Reis L, Sengupta R, Lindoso JA, James SR, Gilbert L, Boucher D, Chatterjee M, Goto H, Ranasinghe S, Kaye PM. IL-32-producing CD8+ memory T cells define immunoregulatory niches in human cutaneous leishmaniasis. J Clin Invest 2025; 135:e182040. [PMID: 40371647 PMCID: PMC12077899 DOI: 10.1172/jci182040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 03/12/2025] [Indexed: 05/16/2025] Open
Abstract
Human cutaneous leishmaniasis (CL) is characterized by chronic skin pathology. Experimental and clinical data suggest that immune checkpoints (ICs) play a crucial role in disease outcome, but the cellular and molecular niches that facilitate IC molecule expression during leishmaniasis are ill defined. In Sri Lankan patients with CL, indoleamine 2,3-dioxygenase 1 (IDO1) and programmed death-ligand 1 (PD-L1) were enriched in skin lesions, and reduced PD-L1 expression early after treatment initiation was predictive of a cure rate following antimonial therapy. Here, we used spatial cell interaction mapping to identify IL-32-expressing CD8+ memory T cells and Tregs as key components of the IDO1/PD-L1 niche in Sri Lankan patients with CL and in patients with distinct forms of dermal leishmaniasis in Brazil and India. Furthermore, the abundance of IL-32+ cells and IL-32+CD8+ T cells at treatment initiation was negatively correlated with the rate of cure in Sri Lankan patients. This study provides insights into the spatial mechanisms underpinning IC expression during CL and offers a strategy for identifying additional biomarkers of treatment response.
Collapse
Affiliation(s)
- Nidhi S. Dey
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Shoumit Dey
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Naj Brown
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Sujai Senarathne
- Department of Parasitology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Luiza Campos Reis
- Department of Preventive Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ritika Sengupta
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India
| | - Jose A.L. Lindoso
- Secretaria de Saúde do Estado de São Paulo, Instituto de Infectologia Emílio Ribas, São Paulo, Brazil
- University of São Paulo, Faculty of Medicine, Department of Infectious and Parasitic Diseases, São Paulo, Brazil
| | - Sally R. James
- Technology Facility, Department of Biology, University of York, York, United Kingdom
| | - Lesley Gilbert
- Technology Facility, Department of Biology, University of York, York, United Kingdom
| | - Dave Boucher
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Mitali Chatterjee
- Department of Pharmacology, Institute of Postgraduate Medical Education and Research, Kolkata, India
| | - Hiro Goto
- Department of Preventive Medicine, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Shalindra Ranasinghe
- Department of Parasitology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - Paul M. Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| |
Collapse
|
3
|
Ma C, Hu H, Liu H, Zhong C, Wu B, Lv C, Tian Y. Lipotoxicity, lipid peroxidation and ferroptosis: a dilemma in cancer therapy. Cell Biol Toxicol 2025; 41:75. [PMID: 40285867 PMCID: PMC12033115 DOI: 10.1007/s10565-025-10025-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
The vulnerability of tumor cells to lipid peroxidation, driven by redox imbalance and lipid overabundance within the tumor microenvironment (TME), has become a focal point for novel antitumor strategies. Ferroptosis, a form of regulated cell death predicated on lipid peroxidation, is emerging as a promising approach. Beyond their role in directly eliminating tumor cells, lipid peroxidation and its products, such as 4-hydroxynonenal (HNE), exert an additional influence by damaging DNA and shaping an environment conducive to tumor growth and metastasis. This process polarizes macrophages towards a pro-inflammatory phenotype, dampens the antigen-presenting capacity of dendritic cells (DCs), and undermines the cytotoxic functions of T and NK cells. Furthermore, it transforms neutrophils into pro-tumorigenic polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). The lipid peroxidation of stroma cells also contributes to tumor progression. Although advanced nanotherapies have shown the ability to target tumor cells precisely, they often overlook the nuanced effects of lipid peroxidation products. In this review, we highlight a synergistic mechanism in which lipid peroxidation products and ferroptosis contribute to an immunosuppressive state that is temporally distinct from cell death. This insight broadens our understanding of ferroptosis-derived immunosuppression, encompassing all types of immune cells within the TME. This review aims to catalyze further research in this underexplored area, emphasizing the potential of lipid peroxidation products to hinder the clinical translation of ferroptosis-based therapies.
Collapse
Affiliation(s)
- Chuhan Ma
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Huixin Hu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Hao Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Chongli Zhong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Baokang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
4
|
Ye Y, Wang P, Wu D, Tang F, Shen N, Hou G. Deubiquitinating enzyme UCHL1 stabilizes CAV1 to inhibit ferroptosis and enhance docetaxel resistance in nasopharyngeal carcinoma. Anticancer Drugs 2025:00001813-990000000-00387. [PMID: 40279201 DOI: 10.1097/cad.0000000000001721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
The overexpression of CAV1 in many cancers is linked to chemotherapy resistance, but the exact mechanisms by which CAV1 contributes to resistance in nasopharyngeal carcinoma (NPC) are not fully known. Our research aims to elucidate the potential pathways by which CAV1 contributes to chemotherapy resistance in NPC, providing a basis for developing strategies to overcome resistance. A docetaxel-resistant NPC cell line was established, and CAV1 expression was analyzed in the cell line and the resistant variant using western blot. The sensitivity of the resistant cell line to docetaxel was assessed via cell counting kit-8, colony formation assays, and flow cytometry. Flow cytometry was used to measure lipid reactive oxygen species levels, while kits were employed to determine Fe2+ and malondialdehyde concentrations. The Ubibrowser database helped identify ubiquitination enzymes that interact with CAV1. The binding relationship between UCHL1 and CAV1 was studied using co-immunoprecipitation and immunofluorescence, which also evaluated the deubiquitination activity of UCHL1 on CAV1. CAV1 is overexpressed in NPC tissues and cells, correlating with adverse patient prognoses. In docetaxel-resistant cells, CAV1 expression is elevated compared to standard NPC cells. Silencing CAV1 increased the sensitivity of these resistant cells to docetaxel. Additionally, treatment with the ferroptosis inducer erastin could counteract the effects of CAV1 overexpression on drug resistance. UCHL1 interacted with CAV1 and inhibited its ubiquitin-mediated degradation pathway. By deubiquitinating CAV1, UCHL1 stabilizes and increases its expression, which inhibits ferroptosis and enhances the resistance of NPC cells to docetaxel.
Collapse
Affiliation(s)
- Yixian Ye
- Department of Otorhinolaryngology, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen City, Fujian Province
| | - Peng Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai City
| | - Daquan Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai City
| | - Fengrong Tang
- Department of Nursing, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen City, Fujian Province, China
| | - Na Shen
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai City
| | - Guanghui Hou
- Department of Otorhinolaryngology, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen City, Fujian Province
| |
Collapse
|
5
|
Wang X, Zhang W, Liang K, Wang Y, Zhang J, Wang J, Li A, Yun Y, Liu H, Sun Y. Identification of m6 A-regulated ferroptosis biomarkers for prognosis in laryngeal cancer. BMC Cancer 2025; 25:694. [PMID: 40229748 PMCID: PMC11998228 DOI: 10.1186/s12885-025-14134-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 04/10/2025] [Indexed: 04/16/2025] Open
Abstract
Laryngeal cancer (LC) is a malignant tumor that occurs in the larynx. N6-methyladenosine (m6A) RNA methylation, a pivotal and prevalent epigenetic modification in eukaryotic mRNA, intricately intertwines with ferroptosis, and together, they play a crucial role in the development of LC. Accordingly, further research on related molecular mechanisms and pathology of LC is necessary. Weighted gene co-expression network analysis and correlation analysis were used to identify differentially expressed m6A-related ferroptosis genes in LC. The TCGA-HNSC and GSE65858 datasets were obtained from public databases. The TCGA-HNSC dataset consisted of 110 primary tumor oropharynx samples and 12 control oropharynx samples, while the GSE65858 dataset contained forty-eight primary tumor oropharynx samples. Univariate Cox and least absolute shrinkage and selection operator (LASSO) regression were utilized for feature selection and risk model construction in the TCGA-HNSC dataset. The risk model was validated in the GSE65858 dataset. Then, a nomogram was built based on the independent prognostic factor identified using univariate and multivariate Cox regression in the TCGA-HNSC dataset. Mutation analysis, immune-related analysis, and drug sensitivity prediction were applied to analyze the utility of the risk model in the TCGA-HNSC dataset. Additionally, qRT-PCR and western blot were performed to detect the TFRC, RGS4, and FTH1 expression. Three biomarkers were identified to build a risk model using the univariate Cox and LASSO regression algorithms. Receiver operating characteristic (ROC) analysis verified the accuracy of the risk model. Tumor Immune Dysfunction and Exclusion (TIDE) and Estimation of STromal and Immune cells in MAlignant Tumors using the Expression data (ESTIMATE) algorithm showed a positive relationship between risk score and TIDE or ESTIMATE score. Furthermore, drug sensitivity prediction found that 19 chemotherapy drugs were strongly correlated with a risk score. TFRC, RGS4, and FTH1 exhibited high expression levels in 30 laryngeal carcinoma tissues and cell lines. Notably, TFRC and FTH1 expression levels were significantly associated with patient prognosis. In Conclusion, TFRC, RGS4, and FTH1, were identified as m6A-regulated ferroptosis biomarkers in LC, providing insights into LC treatment and prognosis.
Collapse
Affiliation(s)
- Xin Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, 256 Youyi Road, Xi'an, 710000, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, China
- Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, China
| | - Wen Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, 256 Youyi Road, Xi'an, 710000, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, China
- Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710068, China
| | - Kun Liang
- Department of Otorhinolaryngology, Head and Neck Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, 256 Youyi Road, Xi'an, 710000, China
| | - Yujuan Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, 256 Youyi Road, Xi'an, 710000, China
| | - Jin Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, 256 Youyi Road, Xi'an, 710000, China
| | - Jinping Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, 256 Youyi Road, Xi'an, 710000, China
| | - An Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, 256 Youyi Road, Xi'an, 710000, China
| | - Yonggang Yun
- Department of Otorhinolaryngology, Head and Neck Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, 256 Youyi Road, Xi'an, 710000, China
| | - Hiu Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, 256 Youyi Road, Xi'an, 710000, China.
| | - Yanan Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin, 150000, China.
| |
Collapse
|
6
|
Gergues M, Bari R, Koppisetti S, Gosiewska A, Kang L, Hariri RJ. Senescence, NK cells, and cancer: navigating the crossroads of aging and disease. Front Immunol 2025; 16:1565278. [PMID: 40255394 PMCID: PMC12006071 DOI: 10.3389/fimmu.2025.1565278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/18/2025] [Indexed: 04/22/2025] Open
Abstract
Cellular senescence, a state of stable cell cycle arrest, acts as a double-edged sword in cancer biology. In young organisms, it acts as a barrier against tumorigenesis, but in the aging population, it may facilitate tumor growth and metastasis through the senescence-associated secretory phenotype (SASP). Natural killer (NK) cells play a critical role in the immune system, particularly in the surveillance, targeting, and elimination of malignant and senescent cells. However, age-related immunosenescence is characterized by declining NK cell function resulting in diminished ability to fight infection, eliminate senescent cells and suppress tumor development. This implies that preserving or augmenting NK cell function may be central to defense against age-related degenerative and malignant diseases. This review explores the underlying mechanisms behind these interactions, focusing on how aging influences the battle between the immune system and cancer, the implications of senescent NK cells in disease progression, and the potential of adoptive NK cell therapy as a countermeasure to these age-related immunological challenges.
Collapse
Affiliation(s)
| | | | | | | | - Lin Kang
- Research and Development, Celularity Inc., Florham Park, NJ, United States
| | | |
Collapse
|
7
|
Qiu Y, Su Y, Sai W, Feng G. Research progress on ferroptosis in head and neck squamous cell carcinoma. J Mol Histol 2025; 56:109. [PMID: 40095205 DOI: 10.1007/s10735-025-10381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
Ferroptosis, a regulated iron-dependent cell death pathway driven by lipid peroxidation and mitochondrial dysfunction, has emerged as a critical player in diseases characterized by dysregulated iron metabolism and redox imbalance. In recent years, its therapeutic potential has garnered significant attention in head and neck squamous cell carcinoma (HNSCC), a malignancy notorious for its high incidence, frequent recurrence, and poor prognosis. This review systematically delineates the molecular underpinnings of ferroptosis in HNSCC pathogenesis and therapy, focusing on four interconnected axes: (1) iron homeostasis disruption, exemplified by dysregulation of the iron efflux channel ferroportin (FPN); (2) lipid peroxidation dynamics, mediated through key regulators such as SLC7A11; (3) mitochondrial remodeling, including structural and functional alterations during ferroptosis execution; and (4) critical signaling cascades, notably the PI3K-AKT-mTOR pathway, which orchestrates cellular survival and death decisions. Therapeutic exploration has identified ferroptosis inducers (e.g., erastin) as promising agents to disrupt redox equilibrium in HNSCC cells, while pharmacological inhibitors offer potential for mitigating off-target toxicity. Notably, combination strategies integrating ferroptosis modulation with conventional therapies or other programmed cell death mechanisms demonstrate synergistic efficacy, highlighting a paradigm shift in precision oncology. This study aims to provide a mechanistic framework for ferroptosis in HNSCC, bridging preclinical insights with translational opportunities. By elucidating context-dependent regulatory networks and optimizing therapeutic targeting, we propose novel strategies to overcome treatment resistance, ultimately improving clinical outcomes and quality of life for HNSCC patients.
Collapse
Affiliation(s)
- Yi Qiu
- Nantong University Medical College, Nantong, 226001, China
| | - Yuyuan Su
- Nantong University Medical College, Nantong, 226001, China
| | - Wenli Sai
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, West Temple Rd.20, Nantong, 226001, China.
| | - Guijuan Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
8
|
Luo Y, He Y, Xu S, Chen Y, Qin F, Hu W. Ferroptosis: a potential target for non-surgical treatment of laryngeal cancer. Eur Arch Otorhinolaryngol 2025:10.1007/s00405-025-09279-y. [PMID: 40087171 DOI: 10.1007/s00405-025-09279-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/17/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Laryngeal cancer (LC) is among the most prevalent tumors of the respiratory tract. In recent years, the implementation of non-surgical treatments like radiotherapy and chemotherapy has significantly enhanced the therapeutic outcomes for LC. Nevertheless, the underlying therapeutic mechanisms remain unclear, posing a hindrance to the progression of subsequent treatment strategies. OBJECTIVES To explore the potential mechanisms from existing effective treatments for LC and identify relevant targets, thereby providing guidance for subsequent therapeutic research on LC. METHODS This study focuses on ferroptosis, a common type of non-apoptotic cell death that is closely linked to various malignancies. It examines the relationship between ferroptosis and LC by analyzing how regulating ferroptosis-related targets in LC cells can influence the development of the cancer. RESULTS There is a strong association between ferroptosis and LC. Regulating the targets related to ferroptosis in LC cells can effectively counteract the progression of LC. CONCLUSIONS Taking ferroptosis as an entry point, analyzing its potential mechanism in inhibiting LC can provide a direction for the treatment of laryngeal cancer, which may contribute to the improvement of therapeutic strategies for this disease.
Collapse
Affiliation(s)
- Yang Luo
- Department of Otolaryngology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yuzhu He
- Department of Otolaryngology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Shuang Xu
- Department of Otolaryngology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yuxiang Chen
- Department of Otolaryngology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Fengfeng Qin
- Department of Otolaryngology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Wenjian Hu
- Department of Otolaryngology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University of Luzhou, NO. 182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
9
|
Gao XD, Ding JE, Xie JX, Xu HM. Epigenetic regulation of iron metabolism and ferroptosis in Parkinson's disease: Identifying novel epigenetic targets. Acta Pharmacol Sin 2025:10.1038/s41401-025-01499-6. [PMID: 40069488 DOI: 10.1038/s41401-025-01499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/28/2025] [Indexed: 03/17/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease, and emerging evidence has shown that iron deposition, ferroptosis and epigenetic modifications are implicated in the pathogenesis of PD. However, the interplay among these factors in PD has not been fully understood. In this review, we provide an overview of the current research progress on iron metabolism, ferroptosis and epigenetic alterations associated with PD. Furthermore, we present new frontiers concerning various epigenetic modifications related to iron metabolism and ferroptosis that might contribute to the pathology of PD. Notably, epigenetic modifications of iron metabolism and ferroptosis as both diagnostic and therapeutic targets in PD have been discussed. This opens new avenues for the regulation of iron homeostasis and ferroptosis in PD from epigenetic perspectives, and provides evidence for their potential implications in the diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Xiao-Die Gao
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Jian-E Ding
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Jun-Xia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| | - Hua-Min Xu
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
10
|
Miao C, You X, Zhang Z, Jiang Z, Liu L, Jia Y, Bai J, Gao Y, Ye L, Cao Y, Li L, Pan J. SCG2 Mediates HNSCC Progression With CCL2/TGFβ1 high M2 Macrophage Infiltration. Oral Dis 2025; 31:782-795. [PMID: 39404611 DOI: 10.1111/odi.15154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/29/2024] [Accepted: 09/24/2024] [Indexed: 03/17/2025]
Abstract
OBJECTIVES This study aims to unravel the mechanisms underlying M2 macrophage polarization in head and neck squamous cell carcinoma (HNSCC), and identify potential therapeutic targets. MATERIALS AND METHODS We conducted an integrated bioinformatic analysis using HNSCC bulk transcriptomes from TCGA and GEO databases to pinpoint critical factors influencing M2 macrophage polarization and tumor prognosis. The significance of these genes was validated in function analysis, single-cell transcriptome datasets, and in vitro experiments. Their mechanisms in modulating M2 macrophage polarization were further explored by gene knockdown, cell coculture, and other assays for quantification. RESULTS We identified a novel prognostic signature of five genes associated with M2 macrophage infiltration, in which SCG2 emerged as a pivotal factor in M2 macrophage polarization in HNSCC. High expression of SCG2 in tumor patients correlated with poorer prognoses, and knocking down SCG2 reduced the proliferation and migration of HNSCC cells, disrupting M2 macrophage polarization. Furthermore, interference of SCG2 resulted in a significant decrease in the secretion of pro-tumor cytokines such as CCL2 and TGFβ1. CONCLUSIONS Our findings provide deeper insights into the pathogenesis of HNSCC and offer promising therapeutic targets for HNSCC, especially SCG2, to inhibit M2 macrophage polarization and modulate cytokine secretion.
Collapse
Affiliation(s)
- Cheng Miao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaotong You
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zijian Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhishen Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yinan Jia
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jincheng Bai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yujie Gao
- Department of Stomatology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Li Ye
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Pan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Su C, Xue Y, Fan S, Sun X, Si Q, Gu Z, Wang J, Deng R. Ferroptosis and its relationship with cancer. Front Cell Dev Biol 2025; 12:1423869. [PMID: 39877159 PMCID: PMC11772186 DOI: 10.3389/fcell.2024.1423869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Marked by iron buildup and lipid peroxidation, ferroptosis is a relatively new regulatory cell death (RCD) pathway. Many diseases like cancer, myocardial ischemia-reperfusion injury (MIRI), neurological disorders and acute renal failure (AKI) are corelated with ferroptosis. The main molecular processes of ferroptosis discovered yet will be presented here, along with the approaches in which it interacts with tumour-associated signaling pathways and its uses in systemic therapy, radiation therapy, and immunotherapy managing tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Runzhi Deng
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Li L, Zeng J, He S, Yang Y, Wang C. METTL14 decreases FTH1 mRNA stability via m6A methylation to promote sorafenib-induced ferroptosis of cervical cancer. Cancer Biol Ther 2024; 25:2349429. [PMID: 38738555 PMCID: PMC11093024 DOI: 10.1080/15384047.2024.2349429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
Cervical cancer (CC) is a prevalent malignancy among women worldwide. This study was designed to investigate the role of METTL14 in sorafenib-induced ferroptosis in CC. METTL14 expression and m6A methylation were determined in CC tissues, followed by analyzes correlating these factors with clinical features. Subsequently, METTL14 was knocked down in CC cell lines, and the effects on cell proliferation, mitochondrial morphology and ferroptosis were assessed using CCK-8, microscopy, and markers associated with ferroptosis, respectively. The regulatory relationship between METTL14 and FTH1 was verified using qRT-PCR and luciferase reporter assays. The functional significance of this interaction was further investigated both in vitro and in vivo by co-transfecting cells with overexpression vectors or shRNAs targeting METTL14 and FTH1 after sorafenib treatment. METTL14 expression and m6A methylation were significantly reduced in CC tissues, and lower METTL14 expression levels were associated with a poorer CC patients' prognosis. Notably, METTL14 expression increased during sorafenib-induced ferroptosis, and METTL14 knockdown attenuated the ferroptotic response induced by sorafenib in CC cells. FTH1 was identified as a direct target of METTL14, with METTL14 overexpression leading to increased m6A methylation of FTH1 mRNA, resulting in reduced stability and expression of FTH1 in CC. Furthermore, FTH1 overexpression or treatment with LY294002 partially counteracted the promotion of sorafenib-induced ferroptosis by METTL14. In vivo xenograft experiments demonstrated that inhibiting METTL14 reduced the anticancer effects of sorafenib, whereas suppression of FTH1 significantly enhanced sorafenib-induced ferroptosis and increased its anticancer efficacy. METTL14 reduces FTH1 mRNA stability through m6A methylation, thereby enhancing sorafenib-induced ferroptosis, which contributes to suppressing CC progression via the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Lijie Li
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Jie Zeng
- Pharmacy Intravenous Admixture Services, The Third Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Sili He
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Yanfei Yang
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| | - Chen Wang
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, Changsha, Hunan, P. R. China
| |
Collapse
|
13
|
He X, Ran Q, Li X, Xiong A, Zhang L, Jiang M, Bai L, Peng D, Wang J, Sun B, Li G. Candida albicans-Derived β-Glucan as a Novel Modulator of Tumor Microenvironment: Targeting Macrophage Polarization and Inducing Ferroptosis in Lung Cancer. J Inflamm Res 2024; 17:10479-10494. [PMID: 39659749 PMCID: PMC11630740 DOI: 10.2147/jir.s489191] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Tumor-associated macrophages (TAMs) play a crucial role in the tumor microenvironment (TME), and their polarization state significantly influences patient outcomes. This study investigates the inhibitory effects of β-glucan extracted from Candida albicans on lung cancer progression, focusing on its impact on TAM polarization and the induction of ferroptosis, a form of regulated cell death. Methods Utilizing both in vivo animal models and in vitro cellular assays, we assessed the impact of β-glucan on tumor growth, cellular proliferation, and migration. We evaluated TAM polarization by analyzing the expression of M1 and M2 markers and identified differentially expressed genes (DEGs) related to ferroptosis. The role of ferroptosis in TAM polarization was further confirmed by assessing the protein levels of ACSL4 and GPX4, intracellular ferrous ion levels, and lipid peroxides. Results β-glucan treatment significantly reduced tumor size and weight, along with cellular proliferation and migration, suggesting a potent suppressive effect on lung cancer cell growth. β-glucan promoted an M1-like phenotype in TAMs, as evidenced by increased CD86 expression and decreased CD206 expression, and modulated cytokine mRNA levels. RNA sequencing analysis post β-glucan treatment identified a substantial number of DEGs enriched in the ferroptosis pathway. The induction of ferroptosis by β-glucan was further confirmed through the significant upregulation of ACSL4 and downregulation of GPX4, alongside increased intracellular ferrous ion levels and lipid peroxides. The ferroptosis inhibitor Fer-1 abrogated these effects, highlighting the specificity of β-glucan-mediated polarization. Conclusion These results collectively provide novel insights into the immunotherapeutic potential of β-glucan from Candida albicans and its role in modulating TAM polarization and lung cancer growth, offering a promising avenue for cancer treatment strategies.
Collapse
Affiliation(s)
- Xiang He
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, People’s Republic of China
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, 610031, People’s Republic of China
- Department of Respiration, Chengdu third People’s hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, People’s Republic of China
| | - Qin Ran
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, 610031, People’s Republic of China
- Department of Respiration, Chengdu third People’s hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, People’s Republic of China
| | - Xiaolan Li
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, 610031, People’s Republic of China
- Department of Respiration, Chengdu third People’s hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, People’s Republic of China
| | - Anying Xiong
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, 610031, People’s Republic of China
- Department of Respiration, Chengdu third People’s hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, People’s Republic of China
| | - Lei Zhang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, 610031, People’s Republic of China
- Department of Respiration, Chengdu third People’s hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, People’s Republic of China
| | - Manling Jiang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, 610031, People’s Republic of China
- Department of Respiration, Chengdu third People’s hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, People’s Republic of China
| | - Lingling Bai
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, 610031, People’s Republic of China
| | - Dan Peng
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, 610031, People’s Republic of China
| | - Junyi Wang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, 610031, People’s Republic of China
- Department of Respiration, Chengdu third People’s hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, People’s Republic of China
| | - Baoqing Sun
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Guoping Li
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, People’s Republic of China
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, 610031, People’s Republic of China
- Department of Respiration, Chengdu third People’s hospital Branch of National Clinical Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University, Chengdu, 610031, People’s Republic of China
| |
Collapse
|
14
|
Xu M, Hu X, Xiao Z, Zhang S, Lu Z. Silencing KPNA2 Promotes Ferroptosis in Laryngeal Cancer by Activating the FoxO Signaling Pathway. Biochem Genet 2024; 62:4867-4883. [PMID: 38379037 DOI: 10.1007/s10528-023-10655-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/29/2023] [Indexed: 02/22/2024]
Abstract
We aim to clarify the specific role of Karyopherin α2 (KPNA2) in the progression of laryngeal cancer, a kind of malignant tumor with a poor curative effect. We performed the bioinformatic analysis to obtain the ferroptosis-related differentially expressed genes. KPNA2 was screened out. Then the CCK-8 assay, wound healing assay, and transwell assay were used to clarify the changes in the proliferation, migration, and invasion abilities of laryngeal cancer cells after silencing KPNA2. The concentrations of iron ions, glutathione, superoxide dismutase, and malondialdehyde were evaluated by the corresponding detection kits. The expression levels of cyclooxygenase 2, Acyl-CoA synthetase long-chain family member 4, glutathione peroxidase 4, forkhead box O (FoxO)1a and FoxO3a were determined by Western Blot. A total of 45 ferroptosis-related differentially expressed genes in laryngeal cancer were obtained, and KPNA2 was selected after bioinformatic analysis. In ferroptosis-induced laryngeal cancer cells, the cell viability, migration rate, invasion ability, and the expression of glutathione peroxidase 4, glutathione, and superoxide dismutase were further decreased and the expression of cyclooxygenase 2, Acyl-CoA synthetase long-chain family member 4, iron ions, and malondialdehyde were further increased after silencing KPNA2. The expression levels of FoxO1a and FoxO3a in laryngeal cancer cells were increased by silencing KPNA2. KPNA2 may be a promising therapeutic target for laryngeal cancer. Down-regulation of KPNA2 can promote ferroptosis in laryngeal cancer by stimulating the FoxO signaling pathway.
Collapse
Affiliation(s)
- Mimi Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106, Zhongshan 2nd Road, Yuexiu District, 510080, Guangzhou City, Guangdong Province, China
| | - Xiaoqi Hu
- Department of Otorhinolaryngology Head and Neck Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106, Zhongshan 2nd Road, Yuexiu District, 510080, Guangzhou City, Guangdong Province, China
| | - Zhixue Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106, Zhongshan 2nd Road, Yuexiu District, 510080, Guangzhou City, Guangdong Province, China
| | - Siyi Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106, Zhongshan 2nd Road, Yuexiu District, 510080, Guangzhou City, Guangdong Province, China
| | - Zhongming Lu
- Department of Otorhinolaryngology Head and Neck Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, No. 106, Zhongshan 2nd Road, Yuexiu District, 510080, Guangzhou City, Guangdong Province, China.
| |
Collapse
|
15
|
Lin YS, Tsai YC, Li CJ, Wei TT, Wang JL, Lin BW, Wu YN, Wu SR, Lin SC, Lin SC. Overexpression of NUDT16L1 sustains proper function of mitochondria and leads to ferroptosis insensitivity in colorectal cancer. Redox Biol 2024; 77:103358. [PMID: 39317106 PMCID: PMC11465047 DOI: 10.1016/j.redox.2024.103358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
Cancer research is continuously exploring new avenues to improve treatments, and ferroptosis induction has emerged as a promising approach. However, the lack of comprehensive analysis of the ferroptosis sensitivity in different cancer types has limited its clinical application. Moreover, identifying the key regulator that influences the ferroptosis sensitivity during cancer progression remains a major challenge. In this study, we shed light on the role of ferroptosis in colorectal cancer and identified a novel ferroptosis repressor, NUDT16L1, that contributes to the ferroptosis insensitivity in this cancer type. Mechanistically, NUDT16L1 promotes ferroptosis insensitivity in colon cancer by enhancing the expression of key ferroptosis repressor and mitochondrial genes through direct binding to NAD-capped RNAs and the indirect action of MALAT1. Our findings also reveal that NUDT16L1 localizes to the mitochondria to maintain its proper function by preventing mitochondrial DNA leakage after treatment of ferroptosis inducer in colon cancer cells. Importantly, our orthotopic injection and Nudt16l1 transgenic mouse models of colon cancer demonstrated the critical role of NUDT16L1 in promoting tumor growth. Moreover, clinical specimens revealed that NUDT16L1 was overexpressed in colorectal cancer, indicating its potential as a therapeutic target. Finally, our study shows the therapeutic potential of a NUDT16L1 inhibitor in vitro, in vivo and ex vivo. Taken together, these findings provide new insights into the crucial role of NUDT16L1 in colorectal cancer and highlight its potential as a promising therapeutic target.
Collapse
Affiliation(s)
- Yi-Syuan Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Chuan Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Tzu-Tang Wei
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jui-Lin Wang
- National Laboratory Animal Center, National Applied Research Laboratories, Tainan, Taiwan
| | - Bo-Wen Lin
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Na Wu
- School of Dentistry and Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Rung Wu
- School of Dentistry and Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shin-Chih Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Chieh Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
16
|
Lan W, Yang L, Tan X. Crosstalk between ferroptosis and macrophages: potential value for targeted treatment in diseases. Mol Cell Biochem 2024; 479:2523-2543. [PMID: 37880443 DOI: 10.1007/s11010-023-04871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Ferroptosis is a newly identified form of programmed cell death that is connected to iron-dependent lipid peroxidization. It involves a variety of physiological processes involving iron metabolism, lipid metabolism, oxidative stress, and biosynthesis of nicotinamide adenine dinucleotide phosphate, glutathione, and coenzyme Q10. So far, it has been discovered to contribute to the pathological process of many diseases, such as myocardial infarction, acute kidney injury, atherosclerosis, and so on. Macrophages are innate immune system cells that regulate metabolism, phagocytize pathogens and dead cells, mediate inflammatory reactions, promote tissue repair, etc. Emerging evidence shows strong associations between macrophages and ferroptosis, which can provide us with a deeper comprehension of the pathological process of diseases and new targets for the treatments. In this review, we summarized the crosstalk between macrophages and ferroptosis and anatomized the application of this association in disease treatments, both non-neoplastic and neoplastic diseases. In addition, we have also addressed problems that remain to be investigated, in the hope of inspiring novel therapeutic strategies for diseases.
Collapse
Affiliation(s)
- Wanxin Lan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Lei Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Xuelian Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, 14# 3rd Section, Renmin South Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
17
|
Li Y, Bi Y, Li W, Piao Y, Piao J, Wang T, Ren X. Research progress on ferroptosis in colorectal cancer. Front Immunol 2024; 15:1462505. [PMID: 39359721 PMCID: PMC11444962 DOI: 10.3389/fimmu.2024.1462505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Ferroptosis is a new form of cell death that differs from traditional forms of death. It is ferroptosis-dependent lipid peroxidation death. Colorectal cancer(CRC) is the most common tumor in the gastrointestinal tract with a long occultation period and a poor five-year prognosis. Exploring effective systemic treatments for CRC remains a great challenge worldwide. Numerous studies have demonstrated that ferroptosis can participate in the biological malignant process of various tumor, including CRC, so understanding the role and regulatory mechanisms of ferroptosis in CRC plays a crucial role in the treatment of CRC. In this paper, we reviews the mechanisms of ferroptosis in CRC, the associated regulatory factors and their interactions with various immune cells in the immune microenvironment. In addition, targeting ferroptosis has emerged as an encouraging strategy for CRC treatment. Finally, to inform subsequent research and clinical diagnosis and treatment, we review therapeutic approaches to CRC radiotherapy, immunotherapy, and herbal therapy targeting ferroptosis.
Collapse
Affiliation(s)
- Yuan Li
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Pathology & Cancer Research Center, Yanbian University, Yanji, China
| | - Yao Bi
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Pathology & Cancer Research Center, Yanbian University, Yanji, China
| | - Wenjing Li
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Pathology & Cancer Research Center, Yanbian University, Yanji, China
- Department of Anesthesia, Yanbian University Hospital, Yanji, China
| | - Yingshi Piao
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Gynecology, Yanbian University Hospital, Yanji, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, China
| | - Junjie Piao
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Gynecology, Yanbian University Hospital, Yanji, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, China
| | - Tong Wang
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Gynecology, Yanbian University Hospital, Yanji, China
| | - Xiangshan Ren
- Central Laboratory, Yanbian University Hospital & Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanbian University, Yanji, China
- Department of Pathology & Cancer Research Center, Yanbian University, Yanji, China
- Department of Gynecology, Yanbian University Hospital, Yanji, China
| |
Collapse
|
18
|
Zou Y, Li D, Guan G, Liu W. Phosphoglycerate Dehydrogenase Overexpression Inhibits Ferroptosis to Repress Calcification of Human Coronary Artery Vascular Smooth Muscle Cells via the P53/SLC7A11 Pathway. Int J Gen Med 2024; 17:3673-3687. [PMID: 39206267 PMCID: PMC11352603 DOI: 10.2147/ijgm.s473908] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
Background Coronary artery calcification (CAC) is in almost all patients with coronary artery disease and requires more effective therapies. We aim to explore the effects of phosphoglycerate dehydrogenase (PHGDH) on CAC. Methods We identified the differentially expressed genes through bioinformatic analysis and selected PHGDH for further verification. Human coronary artery smooth muscle cells (HCASMCs) cultured with calcifying medium were used as models of CAC in vitro. Erastin was administered to induce ferroptosis. We determined the cell viability by the cell count kit-8 assay. The alkaline phosphatase activity, calcium content, and the expression of glutathione were evaluated by the corresponding detection kits. The calcification level was detected by alizarin red staining. Then we performed Western blot to examine the expression of runt-related transcription factor 2, bone morphogenetic protein 2, cyclooxygenase 2, glutathione peroxidase 4, P53, and solute carrier family 7a member 11 (SLC7A11). Results We acquired 201 differentially expressed genes and selected PHGDH to verify. In calcifying medium-induced HCASMCs, PHGDH overexpression increased the cell viability and decreased the alkaline phosphatase activity, calcium content, calcification level, and the expression of bone morphogenetic protein 2 and runt-related transcription factor 2. Additionally, we found higher levels of glutathione, glutathione peroxidase 4, and SLC7A11 and lower levels of cyclooxygenase 2 and P53 after up-regulating PHGDH. Erastin reversed the effects of PHGDH on calcification of HCASMCs. Conclusion PHGDH overexpression suppresses the calcification level of HCASMCs by inhibiting ferroptosis through the P53/SLC7A11 signaling pathway, suggesting PHGDH as a promising therapeutic target of CAC.
Collapse
Affiliation(s)
- Yuhai Zou
- Department of Cardiology, General Hospital of Southern Theatre Command of PLA, Guangzhou, 510010, People’s Republic of China
| | - Dongdong Li
- Department of Cardiology, General Hospital of Southern Theatre Command of PLA, Guangzhou, 510010, People’s Republic of China
| | - Ge Guan
- Department of Cardiology, General Hospital of Southern Theatre Command of PLA, Guangzhou, 510010, People’s Republic of China
| | - Wenting Liu
- Department of Otorhinolaryngology, Guangzhou First People’s Hospital, Guangzhou, 510180, People’s Republic of China
| |
Collapse
|
19
|
Zhang L, Li Z, Ma X, Yang W, Hao Y, Zhang L, Piao S. Combination treatment with ferroptosis and autophagy inducers significantly inhibit the proliferation and migration of oral squamous cell carcinoma. Biochem Biophys Res Commun 2024; 709:149842. [PMID: 38554601 DOI: 10.1016/j.bbrc.2024.149842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
Oral squamous cell carcinoma (OSCC), a malignancy originating from mucosal epithelial cells. Currently, triggering apoptotic cell death with anticancer drugs is the main way to inhibit OSCC cells. However, the capability to trigger apoptosis in tumors is constrained by the intrinsic resistance of tumor cells to apoptosis, hampering its effectiveness. Thus, utilizing alternative modes of non-apoptotic cell death offers new therapeutic possibilities, such as using a drug combination strategy to simultaneously induce ferroptosis and autophagy has the potential to improve OSCC therapy. In this study, we found the ferroptosis inducer RSL3 has certain inhibitory effects on the proliferation and migration of OSCC cells. Interestingly, our studies showed that RSL3 is also associated with autophagy activation. Based on this finding, we tried to combine RSL3 with the autophagy inducer LYN-1604 to improve the therapeutic effect. The results demonstrated that simultaneous regulation of autophagy and ferroptosis significantly reduced the proliferation and migration of OSCC cells. Taken together, we demonstrated the therapeutic potential of RSL3 in OSCC cells and proposed that simultaneous activation of autophagy and ferroptosis have synergistic effects, which would provide valuable clues for further exploration of targeted therapy for OSCC.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xue Ma
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Wenwen Yang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yacui Hao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Songlin Piao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
20
|
Zhang L, Yang L, Du K. Exosomal HSPB1, interacting with FUS protein, suppresses hypoxia-induced ferroptosis in pancreatic cancer by stabilizing Nrf2 mRNA and repressing P450. J Cell Mol Med 2024; 28:e18209. [PMID: 38682349 PMCID: PMC11056849 DOI: 10.1111/jcmm.18209] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/20/2024] [Accepted: 02/14/2024] [Indexed: 05/01/2024] Open
Abstract
Ferroptosis is a new type of programmed cell death, which has been involved in the progression of tumours. However, the regulatory network of ferroptosis in pancreatic cancer is still largely unknown. Here, using datasets from GEO and TCGA, we screened HSPB1, related to the P450 monooxygenase signalling, a fuel of ferroptosis, to be a candidate gene for regulating pancreatic cancer cell ferroptosis. We found that HSPB1 was enriched in the exosomes derived from human pancreatic cancer cell lines SW1990 and Panc-1. Then, hypoxic SW1990 cells were incubated with exosomes alone or together with HSPB1 siRNA (si-HSPB1), and we observed that exosomes promoted cell proliferation and invasion and suppressed ferroptosis, which was reversed by si-HSPB1. Moreover, we found a potential binding affinity between HSPB1 and FUS, verified their protein interaction by using dual-colour fluorescence colocalization and co-IP assays, and demonstrated the promoting effect of FUS on oxidative stress and ferroptosis in hypoxic SW1990 cells. Subsequently, FUS was demonstrated to bind with and stabilize the mRNA of Nrf2, a famous anti-ferroptosis gene that negatively regulates the level of P450. Furthermore, overexpressing FUS and activating the Nrf2/HO-1 pathway (using NK-252) both reversed the inhibitory effect of si-HSPB1 on exosome functions. Finally, our in vivo studies showed that exosome administration promote tumour growth in nude mice of xenotransplantation, which was able to be eliminated by knockdown of HSPB1. In conclusion, exosomal HSPB1 interacts with the RNA binding protein FUS and decreases FUS-mediated stability of Nrf2 mRNA, thus suppressing hypoxia-induced ferroptosis in pancreatic cancer.
Collapse
Affiliation(s)
- Lun Zhang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiP.R. China
| | - Liuxu Yang
- Health Science CenterXi'an Jiaotong UniversityXi'anShaanxiP.R. China
| | - Keyuan Du
- Health Science CenterXi'an Jiaotong UniversityXi'anShaanxiP.R. China
| |
Collapse
|
21
|
Mei L, Long J, Wu S, Mei M, Mei D, Qiu H. APOC1 reduced anti-PD-1 immunotherapy of nonsmall cell lung cancer via the transformation of M2 into M1 macrophages by ferroptosis by NRF2/HO-1. Anticancer Drugs 2024; 35:333-343. [PMID: 38241194 DOI: 10.1097/cad.0000000000001573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
The treatment strategy for nonsmall cell lung cancer (NSCLC) has always been a hot topic of concern, and its treatment strategies are also emerging. This experiment wants to know the effects of apolipoprotein C1 (APOC1) in immunotherapy of NSCLC. APOC1 mRNA and protein expression were upregulated in lung cancer tissue of patients with NSCLC. programmed cell death protein 1 (PD-1) mRNA expression was negatively correlated with PD-1 mRNA expression in patients. The survival rate of APOC1 high expression was lower than that of low expression in patients with NSCLC. APOC1 gene reduced the transformation of M2 into M1 macrophages (TMMM). APOC1 gene promoted cell growth, and the gene reduced ferroptosis of NSCLC. APOC1-induced nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (NRF2/HO-1) signaling pathway. Sh-APOC1 gene reduced cell growth in mice of NSCLC through the inhibition of NRF2/HO-1 signaling pathway. The inhibition of NRF2 reduced the TMMM by APOC1. The activation of NRF2 reduced the TMMM by si-APOC1. In conclusion, APOC1 reduced anti-PD-1 immunotherapy of NSCLC via the TMMM by ferroptosis by NRF2/HO-1, suggesting that targeting this mechanism of APOC1 may be a feasible strategy for anti-PD-1 immunotherapy for NSCLC.
Collapse
Affiliation(s)
- Langhua Mei
- Department of Oncology, Fuzhou, Jiangxi First People's Hospital
| | - Jian Long
- Department of Oncology, Fuzhou, Jiangxi First People's Hospital
| | | | - Meie Mei
- Department of Nursing, Jiangxi College Of Traditional Chinese Medicine, Fuzhou City, China
| | | | - Huaping Qiu
- Department of Oncology, Fuzhou, Jiangxi First People's Hospital
| |
Collapse
|
22
|
Makuch M, Stepanechko M, Bzowska M. The dance of macrophage death: the interplay between the inevitable and the microenvironment. Front Immunol 2024; 15:1330461. [PMID: 38576612 PMCID: PMC10993711 DOI: 10.3389/fimmu.2024.1330461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Macrophages are highly plastic cells ubiquitous in various tissues, where they perform diverse functions. They participate in the response to pathogen invasion and inflammation resolution following the immune response, as well as the maintenance of homeostasis and proper tissue functions. Macrophages are generally considered long-lived cells with relatively strong resistance to numerous cytotoxic factors. On the other hand, their death seems to be one of the principal mechanisms by which macrophages perform their physiological functions or can contribute to the development of certain diseases. In this review, we scrutinize three distinct pro-inflammatory programmed cell death pathways - pyroptosis, necroptosis, and ferroptosis - occurring in macrophages under specific circumstances, and explain how these cells appear to undergo dynamic yet not always final changes before ultimately dying. We achieve that by examining the interconnectivity of these cell death types, which in macrophages seem to create a coordinated and flexible system responding to the microenvironment. Finally, we discuss the complexity and consequences of pyroptotic, necroptotic, and ferroptotic pathway induction in macrophages under two pathological conditions - atherosclerosis and cancer. We summarize damage-associated molecular patterns (DAMPs) along with other microenvironmental factors, macrophage polarization states, associated mechanisms as well as general outcomes, as such a comprehensive look at these correlations may point out the proper methodologies and potential therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Małgorzata Bzowska
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
23
|
Wen Z, Zhang Y, Gao B, Chen X. Baicalin induces ferroptosis in oral squamous cell carcinoma by suppressing the activity of FTH1. J Gene Med 2024; 26:e3669. [PMID: 38380717 DOI: 10.1002/jgm.3669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND This study investigated the role of the ferroptosis-related gene FTH1 in oral squamous cell carcinoma (OSCC) and evaluated the therapeutic potential of baicalin in OSCC cell treatment. METHODS A prognostic model was established by bioinformatic analysis, consisting of 12 ferroptosis related genes (FRGs), and FTH1 was selected as the most significantly up-regulated FRGs. The clinical correlation of FTH1 in OSCC samples was evaluated by both immunohistochemical and bioinformatic characterizations. The effects of FTH1 on migration, invasion, epithelial-mesenchymal transition (EMT) and proliferation were determined by wound healing assays, transwell assays, western blotting and 5'-ethynl 2'-deoxyuridine proliferation assays, respectively. The effects of FTH1 on ferroptosis were tested via ferroptosis markers and Mito Tracker staining. In addition, the therapeutic effects of baicalin on OSCC cells were confirmed using EMT, migration, invasion, proliferation and ferroptosis assays. RESULTS The 12 FRGs were predictive of the prognosis for OSCC patients, and FTH1 expression was identified as significantly up-regulated in OSCC samples, which was highly associated with survival, immune cell infiltration and drug sensitivity. Moreover, knocking down FTH1 inhibited cell proliferation, EMT and invasive phenotypes, but induced ferroptosis in OSCC cells (Cal27 and SCC25). Furthermore, baicalin directly suppressed expression of FTH1 in OSCC cells, and effectively promoted ferroptosis and inhibited the proliferation as well as EMT by directly targeting FTH1. CONCLUSIONS This study has demonstrated that FTH1 is a therapeutic target for OSCC treatment, and has provided evidence that baicalin offers a promising alternative for OSCC treatment.
Collapse
Affiliation(s)
- Zhihao Wen
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxiao Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Bo Gao
- Kunming Medical University, Kunming, China
| | - Xin Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Chen Q, Wang L, Wei Y, Xu X, Guo X, Liang Q. Ferroptosis as a Potential Therapeutic Target for Reducing Inflammation and Corneal Scarring in Bacterial Keratitis. Invest Ophthalmol Vis Sci 2024; 65:29. [PMID: 38381413 PMCID: PMC10893897 DOI: 10.1167/iovs.65.2.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/03/2024] [Indexed: 02/22/2024] Open
Abstract
Purpose Bacterial keratitis (BK) is a serious ocular infection that can cause severe inflammation and corneal scarring, leading to vision loss. In this study, we aimed to investigate the involvement of ferroptosis in the pathogenesis of BK. Methods Transcriptome analysis was performed to evaluate ferroptosis-related gene expression in human BK corneas. Subsequently, the ferroptosis in mouse models of Pseudomonas aeruginosa keratitis and corneal stromal stem cells (CSSCs) were validated. The mice were treated with levofloxacin (LEV) or levofloxacin combined with ferrostatin-1 (LEV+Fer-1). CSSCs were treated with lipopolysaccharide (LPS) or LPS combined Fer-1. Inflammatory cytokines, α-SMA, and ferroptosis-related regulators were evaluated by RT-qPCR, immunostaining, and Western blot. Iron and reactive oxygen species (ROS) were measured. Results Transcriptome analysis revealed significant alterations in ferroptosis-related genes in human BK corneas. In the BK mouse models, the group treated with LEV+Fer-1 exhibited reduced inflammatory cytokines (MPO, TNF-α, and IFN-γ), decreased corneal scarring and α-SMA expression, and lower Fe3+ compared to the BK and LEV groups. Notably, the LEV+Fer-1 group showed elevated GPX4 and SLC7A11 in contrast to the BK and LEV group. In vitro, Fer-1 treatment effectively restored the alterations of ROS, Fe2+, GPX4, and SLC7A11 induced by LPS in CSSCs. Conclusions Ferroptosis plays a crucial role in the pathogenesis of BK. The inhibition of ferroptosis holds promise for mitigating inflammation, reducing corneal scarring, and ultimately enhancing the prognosis of BK. Consequently, this study provides a potential target for innovative therapeutic strategies for BK, which holds immense potential to transform the treatment of BK.
Collapse
Affiliation(s)
- Qiankun Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| | - Leying Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| | - Yuan Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| | - Xizhan Xu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| | - Xiaoyan Guo
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| | - Qingfeng Liang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| |
Collapse
|
25
|
Ban M, Bredikhin D, Huang Y, Bonder MJ, Katarzyna K, Oliver AJ, Wilson NK, Coupland P, Hadfield J, Göttgens B, Madissoon E, Stegle O, Sawcer S. Expression profiling of cerebrospinal fluid identifies dysregulated antiviral mechanisms in multiple sclerosis. Brain 2024; 147:554-565. [PMID: 38038362 PMCID: PMC10834244 DOI: 10.1093/brain/awad404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/06/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023] Open
Abstract
Despite the overwhelming evidence that multiple sclerosis is an autoimmune disease, relatively little is known about the precise nature of the immune dysregulation underlying the development of the disease. Reasoning that the CSF from patients might be enriched for cells relevant in pathogenesis, we have completed a high-resolution single-cell analysis of 96 732 CSF cells collected from 33 patients with multiple sclerosis (n = 48 675) and 48 patients with other neurological diseases (n = 48 057). Completing comprehensive cell type annotation, we identified a rare population of CD8+ T cells, characterized by the upregulation of inhibitory receptors, increased in patients with multiple sclerosis. Applying a Multi-Omics Factor Analysis to these single-cell data further revealed that activity in pathways responsible for controlling inflammatory and type 1 interferon responses are altered in multiple sclerosis in both T cells and myeloid cells. We also undertook a systematic search for expression quantitative trait loci in the CSF cells. Of particular interest were two expression quantitative trait loci in CD8+ T cells that were fine mapped to multiple sclerosis susceptibility variants in the viral control genes ZC3HAV1 (rs10271373) and IFITM2 (rs1059091). Further analysis suggests that these associations likely reflect genetic effects on RNA splicing and cell-type specific gene expression respectively. Collectively, our study suggests that alterations in viral control mechanisms might be important in the development of multiple sclerosis.
Collapse
Affiliation(s)
- Maria Ban
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Danila Bredikhin
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Yuanhua Huang
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge CB10 1SD, UK
| | - Marc Jan Bonder
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Kania Katarzyna
- University of Cambridge, CRUK Cambridge Institute, Cambridge CB2 0RE, UK
| | - Amanda J Oliver
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Nicola K Wilson
- Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Paul Coupland
- University of Cambridge, CRUK Cambridge Institute, Cambridge CB2 0RE, UK
| | - James Hadfield
- University of Cambridge, CRUK Cambridge Institute, Cambridge CB2 0RE, UK
| | - Berthold Göttgens
- Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Elo Madissoon
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge CB10 1SD, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Oliver Stegle
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge CB10 1SD, UK
| | - Stephen Sawcer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
26
|
Luo Y, Liu C, Yao Y, Tang X, Yin E, Lu Z, Sun N, He J. A comprehensive pan-cancer analysis of prognostic value and potential clinical implications of FTH1 in cancer immunotherapy. Cancer Immunol Immunother 2024; 73:37. [PMID: 38281198 PMCID: PMC10822802 DOI: 10.1007/s00262-023-03625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Numerous studies have highlighted the crucial value of the heavy chain of ferritin (FTH1) as a key regulator of iron metabolism and a suppressor of ferroptosis, intimately tied to the tumor immune microenvironment (TIME). Nevertheless, the precise impact of FTH1 on cancer immunotherapy remains vague. Our study aims to systematically explore the prognostic significance and immune role of FTH1 in pan-cancers immunotherapy. METHODS Our study delves into the potential of FTH1 as an immunotherapeutic target within the TIME of various solid cancers. The immune landscape and underlying mechanisms of FTH1 in the TIME were investigated by multiple algorithms and bioinformatics methods. Single-cell sequencing analysis and multiplex immunofluorescence staining techniques are applied to observe FTH1 co-expression on both tumor and immune cells. RESULTS FTH1 exhibited aberrant expression patterns across multiple cancers, which is strongly correlated with immunotherapy resistance. Patients with high FTH1 expression levels tended to derive less benefit from immunotherapies. Moreover, FTH1 demonstrated a significant correlation with TIME infiltration, immune checkpoint molecules, and immune-related pathways. Notably, FTH1 showed a positive association with macrophage infiltrations, its expression was particularly noteworthy in malignant cells and macrophages. Inhibiting FTH1-related signaling pathways appeared to be a potential strategy to counteract tumor immunotherapy resistance. CONCLUSION Our comprehensive analyses may offer valuable insights into the role of FTH1 in tumor immunotherapy. The observed correlations pave the way for further functional experiments, fostering an enhanced understanding that could shape future research endeavors.
Collapse
Affiliation(s)
- Yuejun Luo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengming Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuxin Yao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoya Tang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Enzhi Yin
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiliang Lu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
27
|
朱 权, 黄 柏, 位 磊, 罗 奇. [Overexpression of LncRNA MEG3 promotes ferroptosis and enhances chemotherapy sensitivity of hepatocellular carcinoma cells to cisplatin]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:17-24. [PMID: 38293972 PMCID: PMC10878888 DOI: 10.12122/j.issn.1673-4254.2024.01.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Indexed: 02/01/2024]
Abstract
OBJECTIVE To investigate the effect of overexpression of LncRNA MEG3 on proliferation, migration and cisplatin sensitivity of hepatoma cells HepG2 and LM3 and explore the underlying and mechanism. METHODS The expression of MEG3 in healthy individuals and patients with hepatocellular carcinoma (HCC) was analyzed by online bioinformatics analysis, and Real-time fluorescence quantitative PCR (qRT-PCR) was used to detect MEG3 expression in different HCC cell lines. A MEG3-overexpresing plasmid was transfected in HepG2 and LM3 cells, and the changes in cell proliferation and migration were examined using CCK8 assay and scratch assay. CCK8 assay was used to determine the inhibitory rate of cisplatin on the transfected cells. A reactive oxygen species (ROS) fluorescence probe (DCFH-DA) and malondialdehyde (MDA) kit were used to assess the changes in ROS production and MDA level in the cells. Western blotting was performed to detect the expression levels of ferroptosis-related proteins glutathione peroxidase 4 (GPX4) and ferritin heavy chain 1 (FTH1). RESULTS The expression of MEG3 was significantly lower in HCC cells than in LO2 cells, which was consistent with the results of bioinformatic analysis (P < 0.05). Overexpression of MEG3 in the HCC cell lines significantly suppressed cell proliferation and migration (P < 0.05), increased the cell inhibition rate of cisplatin (P < 0.05), enhanced cellular ROS production and increased MDA levels in the cells (P < 0.05). MEG3 overexpression significantly decreased the expressions of GPX4 and FTH1 in the HCC cell lines. CONCLUSION The expression of MEG3 is decreased in HCC cells, and its overexpression inhibits proliferation and migration and enhances cisplatin sensitivity of HCC cells by promoting ferroptosis of the cells.
Collapse
Affiliation(s)
- 权 朱
- 中南大学基础医学院免疫学系,湖南 长沙 410008Department of Immunology, School of Basic Medical Sciences, Central South University, Changsha 410008, China
| | - 柏胜 黄
- 中南大学基础医学院生理学系,湖南 长沙 410008Department of Physiology, School of Basic Medical Sciences, Central South University, Changsha 410008, China
| | - 磊艳 位
- 中南大学基础医学院免疫学系,湖南 长沙 410008Department of Immunology, School of Basic Medical Sciences, Central South University, Changsha 410008, China
| | - 奇志 罗
- 中南大学基础医学院免疫学系,湖南 长沙 410008Department of Immunology, School of Basic Medical Sciences, Central South University, Changsha 410008, China
| |
Collapse
|
28
|
Cao X, Ge Y, Yan Z, Hu X, Peng F, Zhang Y, He X, Zong D. MTDH enhances radiosensitivity of head and neck squamous cell carcinoma by promoting ferroptosis based on a prognostic signature. JOURNAL OF RADIATION RESEARCH 2024; 65:10-27. [PMID: 37981296 PMCID: PMC10803166 DOI: 10.1093/jrr/rrad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/16/2023] [Indexed: 11/21/2023]
Abstract
Ionizing radiation (IR) induces ferroptosis in head and neck squamous cell carcinoma (HNSCC). But, it remains unclear whether ferroptosis affects the prognosis of HNSCC patients after receiving radiotherapy. This study aims to develop a ferroptosis signature to predict the radiosensitivity and prognosis of HNSCC. Ferroptosis-related genes, clinical data and RNA expression profiles were obtained from the FerrDb database, The Cancer Genome Atlas and GEO database. Prognostic genes were identified by random survival forest, univariate Cox regression, Kaplan-Meier and ROC analyses. Principal component analysis, multivariate Cox regression, nomogram and DCA analyses were conducted to estimate its predictive ability. Functional enrichment and immune-related analyses were performed to explore potential biological mechanisms and tumor immune microenvironment. The effect of the hub gene on ferroptosis and radiosensitivity was verified using flow cytometry, quantitative real-time PCR and clonogenic survival assay. We constructed a ferroptosis-related signature, including IL6, NCF2, metadherin (MTDH) and CBS. We classified patients into high-risk (HRisk) and low-risk groups according to the risk scores. The risk score was confirmed to be an independent predictor for overall survival (OS). Combining the clinical stage with the risk score, we established a predictive nomogram for OS. Furthermore, pathways related to tumorigenesis and tumor immune suppression were mainly enriched in HRisk. MTDH was verified to have a potent effect on IR-induced ferroptosis and consequently promoted radiosensitivity. We constructed a ferroptosis-related signature to predict radiosensitivity and OS in HNSCC patients. MTDH was identified as a promising therapeutic target in radioresistant HNSCC patients.
Collapse
Affiliation(s)
- Xiang Cao
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| | - Yizhi Ge
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| | - Zhenyu Yan
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| | - Xinyu Hu
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| | - Fanyu Peng
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| | - Yujie Zhang
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| | - Xia He
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu 210000, China
- Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, Jiangsu 221000, China
| | - Dan Zong
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, China
| |
Collapse
|
29
|
Wang J, Tian F, Cao L, Du R, Tong J, Ding X, Yuan Y, Wang C. Macrophage polarization in spinal cord injury repair and the possible role of microRNAs: A review. Heliyon 2023; 9:e22914. [PMID: 38125535 PMCID: PMC10731087 DOI: 10.1016/j.heliyon.2023.e22914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The prevention, treatment, and rehabilitation of spinal cord injury (SCI) have always posed significant medical challenges. After mechanical injury, disturbances in microcirculation, edema formation, and the generation of free radicals lead to additional damage, impeding effective repair processes and potentially exacerbating further dysfunction. In this context, inflammatory responses, especially the activation of macrophages, play a pivotal role. Different phenotypes of macrophages have distinct effects on inflammation. Activation of classical macrophage cells (M1) promotes inflammation, while activation of alternative macrophage cells (M2) inhibits inflammation. The polarization of macrophages is crucial for disease healing. A non-coding RNA, known as microRNA (miRNA), governs the polarization of macrophages, thereby reducing inflammation following SCI and facilitating functional recovery. This study elucidates the inflammatory response to SCI, focusing on the infiltration of immune cells, specifically macrophages. It examines their phenotype and provides an explanation of their polarization mechanisms. Finally, this paper introduces several well-known miRNAs that contribute to macrophage polarization following SCI, including miR-155, miR-130a, and miR-27 for M1 polarization, as well as miR-22, miR-146a, miR-21, miR-124, miR-223, miR-93, miR-132, and miR-34a for M2 polarization. The emphasis is placed on their potential therapeutic role in SCI by modulating macrophage polarization, as well as the present developments and obstacles of miRNA clinical therapy.
Collapse
Affiliation(s)
- Jiawei Wang
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Feng Tian
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Lili Cao
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Ruochen Du
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Jiahui Tong
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Xueting Ding
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Yitong Yuan
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Chunfang Wang
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| |
Collapse
|
30
|
Wusiman D, Li W, Guo L, Huang Z, Zhang Y, Zhang X, Zhao X, Li L, An Z, Li Z, Ying J, An C. Comprehensive analysis of single-cell and bulk RNA-sequencing data identifies B cell marker genes signature that predicts prognosis and analysis of immune checkpoints expression in head and neck squamous cell carcinoma. Heliyon 2023; 9:e22656. [PMID: 38125461 PMCID: PMC10731009 DOI: 10.1016/j.heliyon.2023.e22656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Recent studies have shown that B cells and the associated tertiary lymphoid structures (TLS) correlate with the response of patients to immune checkpoint inhibitors (ICIs) and predict overall survival (OS) in cancer patients. We screened 145 B cell marker genes (BCMG) by a comprehensive analysis of single-cell RNA-sequencing (scRNA-seq) data of head and neck squamous cell carcinoma (HNSC) from the Gene Expression Omnibus (GEO) database. The BCMG signature (BCMGS) was established using The Cancer Genome Atlas (TCGA) dataset of HNSC and verified in four independent datasets. The multivariate Cox regression analysis identified the signature as an independent prognostic factor. A prognostic nomogram was constructed with independent prognostic factors using the TCGA dataset. GO and KEGG analysis revealed the underlying signaling pathways related to this signature. Study of immune profiles showed that patients in the low-risk group presented discriminative immune-cell infiltrations. Furthermore, the low-risk group was featured by higher TCR and BCR diversity, which suggested that low-risk patients may be more sensitive to ICIs. Immunohistochemistry was performed, and we found that high expression of FTH1 was significantly correlated with poor OS (P = 0.025). The expression of TIM-3, LAG-3 and PD-1 was positively correlated and associated with better OS in HNSC. However, there was no statistically significant difference between PD-L1, PD-L2, CTLA-4, TIGIT and prognosis. The BCMGS was a promising prognostic biomarker in HNSC, which may help to interpret the responses to immunotherapy and provide a new perspective for future research on the treatment in HNSC.
Collapse
Affiliation(s)
- Dilinaer Wusiman
- Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenbin Li
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lei Guo
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zehao Huang
- Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yi Zhang
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiwei Zhang
- Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaohui Zhao
- Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Li
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhaohong An
- Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhengjiang Li
- Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Changming An
- Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
31
|
Liao Q, Yang J, Lu Z, Jiang Q, Gong Y, Liu L, Peng H, Wang Q, Zhang X, Liu Z. FTH1 indicates poor prognosis and promotes metastasis in head and neck squamous cell carcinoma. PeerJ 2023; 11:e16493. [PMID: 38025726 PMCID: PMC10658887 DOI: 10.7717/peerj.16493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Background Currently, ferritin heavy chain (FTH1) has been increasingly found to play a crucial role in cancer as a core regulator of ferroptosis, while its role of non-ferroptosis in head and neck squamous cell carcinoma (HNSCC) is still unclear. Methods Herein, we analyzed the expression level of FTH1 in HNSCC using TCGA database, and FTH1 protein in HNSCC tissues and cell lines was determined by immunohistochemistry (IHC) and western blotting, respectively. Then, its prognostic value and relationship with clinical parameters were investigated in HNSCC patients. Additionally, the biological function of FTH1 in HNSCC was explored. Results The current study showed that FTH1 is significantly overexpressed in HNSCC tissues and related to poor prognosis and lymph node metastasis of HNSCC. FTH1 knockdown could suppress the metastasis and epithelial-mesenchymal transition (EMT) process of HNSCC. Conclusion Our findings indicate that FTH1 plays a critical role in the progression and metastasis of HNSCC and can serve as a promising prognostic factor and therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Qingyun Liao
- The First Affiliated Hospital, Department of Otolaryngology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jing Yang
- Cancer Research Institute, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Gastroenterology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhaoyi Lu
- Otolaryngology Major Disease Research, Key Laboratory of Hunan Province, Central South University, Changsha, Hunan, China
| | - Qingshan Jiang
- The First Affiliated Hospital, Department of Otolaryngology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yongqian Gong
- The First Affiliated Hospital, Department of Otolaryngology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Lijun Liu
- The First Affiliated Hospital, Department of Otolaryngology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hong Peng
- The First Affiliated Hospital, Department of Otolaryngology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qin Wang
- The First Affiliated Hospital, Department of Otolaryngology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xin Zhang
- Otolaryngology Major Disease Research, Key Laboratory of Hunan Province, Central South University, Changsha, Hunan, China
| | - Zhifeng Liu
- The First Affiliated Hospital, Department of Otolaryngology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
32
|
Teng Y, Gao L, Mäkitie AA, Florek E, Czarnywojtek A, Saba NF, Ferlito A. Iron, Ferroptosis, and Head and Neck Cancer. Int J Mol Sci 2023; 24:15127. [PMID: 37894808 PMCID: PMC10606477 DOI: 10.3390/ijms242015127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Ferroptosis is an iron-dependent regulatory form of cell death characterized by the accumulation of intracellular reactive oxygen species and lipid peroxidation. It plays a critical role not only in promoting drug resistance in tumors, but also in shaping therapeutic approaches for various malignancies. This review aims to elucidate the relationship between ferroptosis and head and neck cancer treatment by discussing its conceptual framework, mechanism of action, functional aspects, and implications for tumor therapy. In addition, this review consolidates strategies aimed at improving the efficacy of head and neck cancer treatment through modulation of ferroptosis, herein serving as a valuable reference for advancing the treatment landscape for this patient population.
Collapse
Affiliation(s)
- Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Lixia Gao
- College of Pharmaceutical Sciences and Chinese Medicine, Southwest University, Chongqing 400715, China;
| | - Antti A. Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery, Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, FI-00014 Helsinki, Finland;
| | - Ewa Florek
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland;
| | - Agata Czarnywojtek
- Department of Pharmacology, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznan, Poland
| | - Nabil F. Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, 35125 Padua, Italy;
| |
Collapse
|
33
|
Huang L, Chen G, He J, Wang P. ZC3H13 reduced DUOX1-mediated ferroptosis in laryngeal squamous cell carcinoma cells through m6A-dependent modification. Tissue Cell 2023; 84:102187. [PMID: 37536262 DOI: 10.1016/j.tice.2023.102187] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
Laryngeal squamous cell carcinoma (LSCC) is the second most common head and neck cancer. To identify the link between ferroptosis and LSCC, we targeted the dual oxidase 1 (DUOX1) gene. This study aimed to reveal the intrinsic mechanism by which the DUOX1-zinc-finger CCCH domain-containing protein 13 (ZC3H13) ferroptosis axis affected the LSCC process. GEPIA was used to investigate the expression of DUOX1 in LSCC, and the expression levels of DUOX1 and ZC3H13 were manipulated by overexpression and RNA interference. MTT assay was used to detect cell proliferation. Chromatin immunoprecipitation (CHIP) detected the binding of DUOX1 and ZC3H13, and ROS assessment and intracellular Fe2+ content determination were performed to examine the ferroptosis. MeRIP was used to analyze the m6A methylation of DUOX1. Ferroptosis-related proteins were detected by qRT-PCR. DUOX1 was found to be poorly expressed in LSCC cells, low DUOX1 level promoted LSCC cell proliferation, and low ZC3H13 level decreased LSCC cell proliferation. Besides, there was an interaction between DUOX1 and ZC3H13. DUOX1 could inhibit the expression levels of ferroptosis-related genes GPX4 and F1H1 in LSCC cells DUOX1 inhibited the expression levels of ROS and ferroptosis-related genes GPX4 and F1H1 and increased intracellular iron content in LSCC cells, but ZC3H13 reversed this phenomenon by inhibiting DUOX1 gene through m6A methylation modification. ZC3H13 reduced DUOX1-mediated ferroptosis in LSCC cells through m6A-dependent modification. The regulatory pathway of DUOX1 and ferroptosis are potential targets for designing diagnostic and combination therapeutic strategies for LSCC patients.
Collapse
Affiliation(s)
- Lili Huang
- Department of Otorhinolaryngology, The First People's Hospital of Fuyang Hangzhou, 311400 Hangzhou, Zhejiang Province, China
| | - Guangli Chen
- Department of Otorhinolaryngology, The First People's Hospital of Fuyang Hangzhou, 311400 Hangzhou, Zhejiang Province, China
| | - Jing He
- Department of Otorhinolaryngology, The First People's Hospital of Fuyang Hangzhou, 311400 Hangzhou, Zhejiang Province, China
| | - Pu Wang
- Department of Otorhinolaryngology, The First People's Hospital of Fuyang Hangzhou, 311400 Hangzhou, Zhejiang Province, China.
| |
Collapse
|
34
|
Chen P, Wang D, Xiao T, Gu W, Yang H, Yang M, Wang H. ACSL4 promotes ferroptosis and M1 macrophage polarization to regulate the tumorigenesis of nasopharyngeal carcinoma. Int Immunopharmacol 2023; 122:110629. [PMID: 37451020 DOI: 10.1016/j.intimp.2023.110629] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/29/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a head and neck malignant tumor with a high incidence and recurrence rate. The crosstalk between ferroptosis and tumor-associated macrophages (TAMs) is thought to have major implications in interfering with cancers. We intended to explore the effect of acyl-CoA synthetase long-chain family member 4 (ACSL4) on the pathogenesis of NPC via ferroptosis and TAMs. METHODS Differential genes in NPC patients were analyzed using publicly available databases, and the ferroptosis-related gene ACSL4 was identified. Expression of ACSL4 in NPC cell lines and xenografted mice was examined. Colony formation, cell proliferation, migration, and invasion were assessed. The abundance of epithelial-mesenchymal transition (EMT) markers (E-cadherin, N-cadherin, and Vimentin) was confirmed. Lipid peroxidation levels and related markers were measured. Clophosome was administered to determine the role of TAMs in NPC mice. RESULTS Low levels of ACSL4 were observed in NPC patients and CNE-2 and 5-8F cells. Erastin (a ferroptosis inducer) and ACSL4 increased lipid peroxidation, decreased cell viability, colony formation, cell proliferation, migration and invasion, and inhibited EMT. Moreover, Erastin and ACSL4 promoted M2 to M1 macrophage polarization. The effects of erastin and ACSL4 were additive. Ferrostatin-1, an inhibitor of ferroptosis, exerted the opposite effect and reversed the beneficial effects of ACSL4 overexpression. In xenograft mice, ACSL4 and clophosome hindered the growth of NPC, and extra clophosome slightly enhanced the antitumor effect of ACSL4. CONCLUSION Our findings indicated that ACSL4 inhibited the pathogenesis of NPC, at least through crosstalk between ferroptosis and macrophages, providing potential direction for NPC therapy.
Collapse
Affiliation(s)
- Pan Chen
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410031, Hunan, China
| | - Dan Wang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Hunan Clinical Research Center of Pediatric Cancer, Changsha 410013, Hunan, China
| | - Tengfei Xiao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410031, Hunan, China
| | - Wangning Gu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410031, Hunan, China
| | - Hongmin Yang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410031, Hunan, China
| | - Minghua Yang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China; Hunan Clinical Research Center of Pediatric Cancer, Changsha 410013, Hunan, China.
| | - Hui Wang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410031, Hunan, China.
| |
Collapse
|
35
|
Zheng Y, Wu S, Huang X, Luo L. Ferroptosis-Related lncRNAs Act as Novel Prognostic Biomarkers in the Gastric Adenocarcinoma Microenvironment, Immunotherapy, and Chemotherapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9598783. [PMID: 37251440 PMCID: PMC10219779 DOI: 10.1155/2023/9598783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/01/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023]
Abstract
Ferroptosis, a form of programmed cell death akin to necrosis, is managed by iron and is distinguished by lipid peroxidation. Gastric cancer is a highly aggressive form of cancer, responsible for the third highest number of cancer-related deaths globally. Despite this, the potential of ferroptosis to predict the occurrence of this cancer is yet to be determined. In this research, a comprehensive examination was conducted to explore the link between long noncoding RNAs (lncRNAs) and ferroptosis, in order to uncover an lncRNA signature that can predict drug susceptibility and tumor mutational burden (TMB) in gastric adenocarcinoma. We conducted an in-depth analysis of the GC immune microenvironment and immunotherapy, with a particular focus on ferroptosis-related lncRNA prognostic biomarkers, and further explored the correlation between these factors and prognosis, immune infiltration, single nucleotide variation (SNV), and drug sensitivity for gastric adenocarcinoma patients. Through our investigations, we have discovered five lncRNA signatures related to ferroptosis that can accurately forecast the prognosis of gastric adenocarcinoma patients and also regulate the proliferation, migration, and occurrence of ferroptosis in gastric adenocarcinoma cells. In conclusion, this lncRNA signature associated with ferroptosis may be employed as a prognostic indicator for gastric adenocarcinoma, thus presenting a potential solution.
Collapse
Affiliation(s)
- Yushi Zheng
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Shanshan Wu
- Department of Biology, School of Basic Medical Science, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Xueshan Huang
- Department of Biology, School of Basic Medical Science, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China
| |
Collapse
|
36
|
Xue Y, Jiang X, Wang J, Zong Y, Yuan Z, Miao S, Mao X. Effect of regulatory cell death on the occurrence and development of head and neck squamous cell carcinoma. Biomark Res 2023; 11:2. [PMID: 36600313 PMCID: PMC9814270 DOI: 10.1186/s40364-022-00433-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/08/2022] [Indexed: 01/06/2023] Open
Abstract
Head and neck cancer is a malignant tumour with a high mortality rate characterized by late diagnosis, high recurrence and metastasis rates, and poor prognosis. Head and neck squamous cell carcinoma (HNSCC) is the most common type of head and neck cancer. Various factors are involved in the occurrence and development of HNSCC, including external inflammatory stimuli and oncogenic viral infections. In recent years, studies on the regulation of cell death have provided new insights into the biology and therapeutic response of HNSCC, such as apoptosis, necroptosis, pyroptosis, autophagy, ferroptosis, and recently the newly discovered cuproptosis. We explored how various cell deaths act as a unique defence mechanism against cancer emergence and how they can be exploited to inhibit tumorigenesis and progression, thus introducing regulatory cell death (RCD) as a novel strategy for tumour therapy. In contrast to accidental cell death, RCD is controlled by specific signal transduction pathways, including TP53 signalling, KRAS signalling, NOTCH signalling, hypoxia signalling, and metabolic reprogramming. In this review, we describe the molecular mechanisms of nonapoptotic RCD and its relationship to HNSCC and discuss the crosstalk between relevant signalling pathways in HNSCC cells. We also highlight novel approaches to tumour elimination through RCD.
Collapse
Affiliation(s)
- Yuting Xue
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xuejiao Jiang
- grid.24696.3f0000 0004 0369 153XBeijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Junrong Wang
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuxuan Zong
- Department of Breast Surgery, The First of hospital of Qiqihar, Qiqihar, China
| | - Zhennan Yuan
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Susheng Miao
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xionghui Mao
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
37
|
Overcoming cancer chemotherapy resistance by the induction of ferroptosis. Drug Resist Updat 2023; 66:100916. [PMID: 36610291 DOI: 10.1016/j.drup.2022.100916] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Development of resistance to chemotherapy in cancer continues to be a major challenge in cancer management. Ferroptosis, a unique type of cell death, is mechanistically and morphologically different from other forms of cell death. Ferroptosis plays a pivotal role in inhibiting tumour growth and has presented new opportunities for treatment of chemotherapy-insensitive tumours in recent years. Emerging studies have suggested that ferroptosis can regulate the therapeutic responses of tumours. Accumulating evidence supports ferroptosis as a potential target for chemotherapy resistance. Pharmacological induction of ferroptosis could reverse drug resistance in tumours. In this review article, we first discuss the key principles of chemotherapeutic resistance in cancer. We then provide a brief overview of the core mechanisms of ferroptosis in cancer chemotherapeutic drug resistance. Finally, we summarise the emerging data that supports the fact that chemotherapy resistance in different types of cancers could be subdued by pharmacologically inducing ferroptosis. This review article suggests that pharmacological induction of ferroptosis by bioactive compounds (ferroptosis inducers) could overcome chemotherapeutic drug resistance. This article also highlights some promising therapeutic avenues that could be used to overcome chemotherapeutic drug resistance in cancer.
Collapse
|
38
|
Liu CQ, Liu XY, Ouyang PW, Liu Q, Huang XM, Xiao F, Cui YH, Zhou Q, Pan HW. Ferrostatin-1 attenuates pathological angiogenesis in oxygen-induced retinopathy via inhibition of ferroptosis. Exp Eye Res 2023; 226:109347. [PMID: 36502924 DOI: 10.1016/j.exer.2022.109347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Retinopathy of prematurity (ROP) is a vision-threatening ocular disease that occurs in premature infants, but the underlying mechanism is still unclear. Since oxidative stress has been well documented in the ROP development, we aimed to investigate whether ferroptosis, a new type of cell death characterized by lipid peroxidation and iron overload, is also involved in ROP. We detected the lipid peroxidation, oxidative stress and the expression of ferroptosis markers in the retina of mouse model of oxygen-induced retinopathy. After ferroptosis inhibitor, ferrostatin-1, was administered by intravitreal injection, ferroptosis marker, lipid peroxidation, retinal vasculature and glial cell activation were examined. We found decreased expression of SLC7A11 and GPX4, increased expression of FTH1 and TFRC, as well as increase of lipid peroxidation in the retina of OIR mice. Ferrostatin-1 administration significantly reduced lipid peroxidation, and also reversed the change of ferroptosis marker. Neovascular area and avascular area were suppressed and the pathological vasculature changes including acellular vessels and ghost pericytes were decreased. Microglial cell and Müller cell activation was not evidently influenced by ferrostatin-1 treatment. Our findings suggest that ferroptosis is involved in the pathological angiogenesis and might be a promising target for ROP therapy.
Collapse
Affiliation(s)
- Chao-Qun Liu
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China; Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiao-Yong Liu
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Pei-Wen Ouyang
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China; Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Qun Liu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiao-Mei Huang
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China; Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Fan Xiao
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China; Department of Public Health and Preventive Medicine, Jinan University, Guangzhou, China
| | - Yu-Hong Cui
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qing Zhou
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China.
| | - Hong-Wei Pan
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, China; Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
39
|
Ma J, Zhang H, Chen Y, Liu X, Tian J, Shen W. The Role of Macrophage Iron Overload and Ferroptosis in Atherosclerosis. Biomolecules 2022; 12:1702. [PMID: 36421722 PMCID: PMC9688033 DOI: 10.3390/biom12111702] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 07/21/2023] Open
Abstract
Ferroptosis is a new type of cell death caused by iron-dependent lipid peroxidation. In recent years, it has been found that ferroptosis can promote the progression of atherosclerosis (AS). Macrophages have been proven to play multiple roles in the occurrence and development of AS. Iron is a necessary mineral that participates in different functions of macrophages under physiological conditions. But iron overload and ferroptosis in macrophages may promote the progression of AS. Herein, we summarize the role of iron overload and ferroptosis in macrophages in AS from the perspective of iron metabolism, and iron overload and ferroptosis are significant contributors to AS development.
Collapse
Affiliation(s)
- Jiedong Ma
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hongqi Zhang
- Department of Anatomy, Histology and Embryology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yufei Chen
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaojin Liu
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiamin Tian
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wei Shen
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
40
|
Induction of ferroptosis in head and neck cancer: A novel bridgehead for fighting cancer resilience. Cancer Lett 2022; 546:215854. [PMID: 35973621 DOI: 10.1016/j.canlet.2022.215854] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/11/2022]
Abstract
Most head and neck cancers (HNCs) originate from mucosal epithelial cells and show epithelial traits. It often changes to a mesenchymal or poorly differentiated state as cancer progresses, leading to invasion, metastasis, and resistance to treatment. The loss of epithelial traits by the epithelial-mesenchymal transition may render resilient cancers vulnerable to a novel non-apoptotic regulated cell death ferroptosis by the iron-dependent accumulation of excessive lipid peroxidation. By regulating mitochondrial or iron metabolism, intracellular ferrous iron and lipid peroxidation accumulation can be boosted, making resistant cancer cells more susceptible to ferroptosis. This article discusses the potential effect of ferroptosis induction as a novel treatment for resilient HNCs.
Collapse
|
41
|
Identification of ATG7 as a Regulator of Proferroptosis and Oxidative Stress in Osteosarcoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8441676. [PMID: 36254233 PMCID: PMC9569205 DOI: 10.1155/2022/8441676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022]
Abstract
Background Ferroptosis has gained significant attention from oncologists as a vital outcome of oxidative stress. The aim of this study was to develop a prognostic signature that was based on the ferroptosis-related genes (FRGs) for osteosarcoma patients and explore their specific role in osteosarcoma. Methods The training cohort dataset was extracted from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. Different techniques like the univariate Cox regression, least absolute shrinkage and selection operator (LASSO) regression, multivariate Cox regression analyses, and the Kaplan-Meier (KM) survival analyses were utilized to develop a prognostic signature. Then, the intrinsic relationship between the developed gene signature and the infiltration levels of the immune cells was further investigated. An external validation dataset from the Gene Expression Omnibus (GEO) database was employed to assess the predictive ability of the developed gene signature. Subsequently, the specific function of potential FRG in affecting the oxidative stress reaction and ferroptosis of osteosarcoma cells was identified. Results A prognostic signature based on 5 FRGs (CBS, MUC1, ATG7, SOCS1, and PEBP1) was developed, and the patients were classified into the low- and high-risk groups (categories). High-risk patients displayed poor overall survival outcomes. The risk level was seen to be an independent risk factor for determining the prognosis of osteosarcoma patients (p < 0.001, hazard ratio: 7.457, 95% CI: 3.302-16.837). Additionally, the risk level was associated with immune function, which might affect the survival status of osteosarcoma patients. Moreover, the findings of the study indicated that the expression of ATG7 was related to the regulation of oxidative stress in osteosarcoma. Silencing the ATG7 gene promoted the proliferation and migration in osteosarcoma cells, suppressing the oxidative stress and ferroptosis process. Conclusions A novel FRG signature was developed in this study to predict the prognosis of osteosarcoma patients. The results indicated that ATG7 might regulate the process of oxidative stress and ferroptosis in osteosarcoma cells and could be used as a potential target to develop therapeutic strategies for treating osteosarcoma.
Collapse
|
42
|
Novel Diagnostic Biomarkers Related to Oxidative Stress and Macrophage Ferroptosis in Atherosclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8917947. [PMID: 36035208 PMCID: PMC9410850 DOI: 10.1155/2022/8917947] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/25/2022]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease, which has a complex interplay between altered immune metabolism and oxidative stress. Therefore, we aimed to determine the oxidative stress and immune-related biomarkers in AS. Differential gene expression analyses are based on the GSE100927 dataset in the Gene Expression Omnibus (GEO), and 389 oxidative stress (OS) genes are identified based on gene set enrichment analysis (GSEA). We identified 74 differentially expressed genes related to oxidative stress (DEOSGs). “CIBERSORT” and “WGCNA” R Packages were used to compare the differences in immune infiltration levels between AS and control samples. The DEOSGs (N = 74) were intersected with the key module's genes of WGCNA (N = 972), and 27 differentially expressed immune-related oxidative stress genes (DEIOSGs) were obtained. To identify the pivotal genes, a protein-protein interaction (PPI) network was constructed using the STRING database and the Cytoscape software. MMP9, ALOX5, NCF2, NCF, and NCF4 were identified as diagnostic markers of AS, and we validated them in the GSE57691 dataset. The expression levels of the five diagnostic genes were significantly highly expressed in the AS group. Correlation analysis and single-cell analysis revealed that five diagnostic genes were mainly correlated with macrophages M1. We, respectively, intersected differentially expressed genes (DEGs) with ferroptosis gene set, necroptosis gene set, and pyroptosis gene set. The findings suggested that ALOX5 and NCF2 were differentially expressed genes of ferroptosis. High expression of five hub genes in RAW264.7 macrophages were confirmed by PCR. High ALOX5 and NCF2 expression levels in plaque tissues were confirmed by immunohistochemistry (IHC) and western blotting. Our study identified that MMP9, ALOX5, NCF2, NCF1, and NCF4 were diagnostic genes of AS and associated with oxidative stress. ALOX5 and NCF2 may be involved in the formation of the necrotic core in AS by regulating macrophage ferroptosis.
Collapse
|
43
|
Zhang Q, Yang J, Yang C, Yang X, Chen Y. Eucommia ulmoides Oliver- Tribulus terrestris L. Drug Pair Regulates Ferroptosis by Mediating the Neurovascular-Related Ligand-Receptor Interaction Pathway- A Potential Drug Pair for Treatment Hypertension and Prevention Ischemic Stroke. Front Neurol 2022; 13:833922. [PMID: 35345408 PMCID: PMC8957098 DOI: 10.3389/fneur.2022.833922] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/08/2022] [Indexed: 01/04/2023] Open
Abstract
Background In this study, we used the network pharmacology approach to explore the potential disease targets of the Eucommia ulmoides Oliver (EUO)-Tribulus terrestris L. (TT) drug pair in the treatment of hypertension-associated neurovascular lesions and IS via the ferroptosis pathway. Methods We used the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform to search for the key active compounds and targets of the drug pair. Based on the GeneCards database, the relevant targets for the drug pair were obtained. Then, we performed the molecular docking of the screened core active ingredients and proteins using the DAVID database and the R AutoDock Vina software. Based on the GSE22255 dataset, these screened target proteins were used to build random forest (RF) and support vector machine (SVM) models. Finally, a new IS nomogram prediction model was constructed and evaluated. Results There were 36 active compounds in the EUO-TT drug pair. CHRM1, NR3C1, ADRB2, and OPRD1 proteins of the neuroactive ligand-receptor interaction pathway interacted with the proteins related to the ferroptosis pathway. Molecular docking experiments identified 12 active ingredients of the drug pair that may tightly bind to those target proteins. We constructed a visual IS nomogram prediction model using four genes (CHRM1, NR3C1, ADRB2, and OPRD1). The calibration curve, DCA, and clinical impact curves all indicated that the nomogram model is clinically applicable and diagnostically capable. CHRM1, NR3C1, ADRB2, and OPRD1, the target genes of the four effective components of the EUO-TT drug pair, were considered as risk markers for IS. Conclusions The active ingredients of EUO-TT drug pair may act on proteins associated with the neuroactive ligand-receptor interaction pathway to regulate ferroptosis in vascular neurons cells, ultimately affecting the onset and progression of hypertension.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Science and Technology Office, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Yang
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanhua Yang
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuesong Yang
- Department of Vascular Surgery, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongzhi Chen
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
44
|
Liu J, Zhang Z, Yang Y, Di T, Wu Y, Bian T. NCOA4-Mediated Ferroptosis in Bronchial Epithelial Cells Promotes Macrophage M2 Polarization in COPD Emphysema. Int J Chron Obstruct Pulmon Dis 2022; 17:667-681. [PMID: 35386390 PMCID: PMC8978690 DOI: 10.2147/copd.s354896] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/07/2022] [Indexed: 01/04/2023] Open
Abstract
Background Macrophage polarization plays an important role in the pathogenesis of COPD emphysema. Changes in macrophage polarization in COPD remain unclear, while polarization and ferroptosis are essential factors in its pathogenesis. Therefore, this study investigated the relationship between macrophage polarization and ferroptosis in COPD emphysema. Methods We measured macrophage polarization and the levels of matrix metalloproteinases (MMPs) in the lung tissues of COPD patients and cigarette smoke (CS)-exposed mice. Flow cytometry was used to determine macrophage (THP-M cell) polarization changes. Ferroptosis was examined by FerroOrange, Perls' DAB, C11-BODIPY and 4-HNE staining. Nuclear receptor coactivator 4 (NCOA4) was measured in the lung tissues of COPD patients and CS-exposed mice by western blotting. A cell study was performed to confirm the regulatory effect of NCOA4 on macrophage polarization. Results Increased M2 macrophages and MMP9 and MMP12 levels were observed in COPD patients, CS-exposed mice and THP-M cells cocultured with CS extract (CSE)-treated human bronchial epithelial (HBE) cells. Increased NCOA4 levels and ferroptosis were confirmed in COPD. Treatment with NCOA4 siRNA and the ferroptosis inhibitor ferrostatin-1 revealed an association between ferroptosis and M2 macrophages. These findings support a role for NCOA4, which induces an increase in M2 macrophages, in the pathogenesis of COPD emphysema. Conclusion In our study, CS led to the dominance of the M2 phenotype in COPD. We identified NCOA4 as a regulator of M2 macrophages and emphysema by mediating ferroptosis, which offers a new direction for research into COPD diagnostics and treatment.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Respiratory Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Zixiao Zhang
- Department of Respiratory Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Yue Yang
- Department of Respiratory Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Tingting Di
- Department of Respiratory Medicine, First People’s Hospital of Nantong, Nantong, Jiangsu, 226006, People’s Republic of China
| | - Yan Wu
- Department of Respiratory Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| | - Tao Bian
- Department of Respiratory Medicine, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214023, People’s Republic of China
| |
Collapse
|
45
|
Development and Validation of a Necroptosis-Related Prognostic Model in Head and Neck Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:8402568. [PMID: 35222645 PMCID: PMC8881120 DOI: 10.1155/2022/8402568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/28/2022] [Indexed: 12/30/2022]
Abstract
Necroptosis is a new regulated cell-death mechanism that plays a critical role in various cancers. However, few studies have considered necroptosis-related genes (NRGs) as prognostic indexes for cancer. As one of the most common cancers in the world, head and neck squamous cell carcinoma (HNSCC) lacks effective diagnostic strategies at present. Hence, a series of novel prognostic indexes are required to support clinical diagnosis. Recently, many studies have confirmed that necroptosis was a key regulated mechanism in HNSCC, but no systematic study has ever studied the correlation between necroptosis-related signatures and the prognosis of HNSCC. Thus, in the current study, we aimed to construct a risk model of necroptosis-related signatures for HNSCC. We acquired 159 NRGs from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and compared them with samples of normal tissue downloaded from The Cancer Genome Atlas (TCGA), ultimately screening 38 differentially expressed NRGs (DE-NRGs). Then, by Cox regression analysis, we successfully identified 7 NRGs as prognostic factors. We next separated patients into high- and low-risk groups via the prognostic model consisting of 7 NRGs. Individuals in the high-risk group had much shorter overall survival (OS) times than their counterparts. Furthermore, using Cox regression analysis, we confirmed the necroptosis-related prognostic model to be an independent prognostic factor for HNSCC. Receiver operating characteristic (ROC) curve analysis proved the predictive ability of this model. Finally, Gene Expression Omnibus (GEO) data sets (GSE65858, GSE4163) were used as independent databases to verify the model’s predictive ability, and similar results obtained from two data sets confirmed our conclusion. Collectively, in this study, we first referred to necroptosis-related signatures as an independent prognostic model for cancer via bioinformatics measures, and the necroptosis-related prognostic model we constructed could precisely forecast the OS time of patients with HNSCC. Utilizing the model may significantly improve the diagnostic rate and provide a series of new targets for treatment in the future.
Collapse
|