1
|
Xiao D, Su X. Methyltransferase-like 3 is a target for the diagnose and therapy of clear cell renal carcinoma. Front Pharmacol 2025; 16:1534655. [PMID: 40313614 PMCID: PMC12043664 DOI: 10.3389/fphar.2025.1534655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/10/2025] [Indexed: 05/03/2025] Open
Abstract
Patients diagnosed with clear cell renal carcinoma (ccRCC) frequently exhibit metastatic disease, which complicates treatment strategies, underscoring the urgent need for mechanistic insights and early diagnostic biomarkers. Current research is dedicated to uncovering the mechanisms behind ccRCC development and resistance to treatment, with a particular focus on the role of methyltransferase-like 3 (METTL3) in RNA N6-methyladenosine modification, a key gene regulatory process. This review synthesizes current evidence on METTL3's functions, revealing its oncogenic activity through m6A-mediated regulation of RNA stability and translation, which promotes tumor progression, metastasis, and chemoresistance. We further explore METTL3's dual diagnostic and therapeutic relevance, including its utility as a prognostic biomarker and its targeting via novel strategies such as small-molecule inhibitors (e.g., Erianin) and combination therapies with mTOR or immune checkpoint inhibitors. By consolidating these advances, this review positions METTL3 as a critical node for advancing precision medicine in ccRCC.
Collapse
Affiliation(s)
| | - Xiaojuan Su
- Department of Emergency, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Li N, Wei X, Dai J, Yang J, Xiong S. METTL3: a multifunctional regulator in diseases. Mol Cell Biochem 2025:10.1007/s11010-025-05208-z. [PMID: 39853661 DOI: 10.1007/s11010-025-05208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/04/2025] [Indexed: 01/26/2025]
Abstract
N6-methyladenosine (m6A) methylation is the most prevalent and abundant internal modification of mRNAs and is catalyzed by the methyltransferase complex. Methyltransferase-like 3 (METTL3), the best-known m6A methyltransferase, has been confirmed to function as a multifunctional regulator in the reversible epitranscriptome modulation of m6A modification according to follow-up studies. Accumulating evidence in recent years has shown that METTL3 can regulate a variety of functional genes, that aberrant expression of METTL3 is usually associated with many pathological conditions, and that its expression regulatory mechanism is related mainly to its methyltransferase activity or mRNA posttranslational modification. In this review, we discuss the regulatory functions of METTL3 in various diseases, including metabolic diseases, cardiovascular diseases, and cancer. We focus mainly on recent progress in identifying the downstream target genes of METTL3 and its underlying molecular mechanisms and regulators in the above systems. Studies have revealed that the use of METTL3 as a therapeutic target and a new diagnostic biomarker has broad prospects. We hope that this review can serve as a reference for further studies.
Collapse
Affiliation(s)
- Na Li
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Dai
- Department of Critical Care Medicine, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jinfeng Yang
- Department of Medical Affairs, Wuhan Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China.
| | - Sizheng Xiong
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Uddin MB, Wang Z, Yang C. Epitranscriptomic RNA m 6A Modification in Cancer Therapy Resistance: Challenges and Unrealized Opportunities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 12:e2403936. [PMID: 39661414 PMCID: PMC11775542 DOI: 10.1002/advs.202403936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/24/2024] [Indexed: 12/12/2024]
Abstract
Significant advances in the development of new cancer therapies have given rise to multiple novel therapeutic options in chemotherapy, radiotherapy, immunotherapy, and targeted therapies. Although the development of resistance is often reported along with temporary disease remission, there is often tumor recurrence of an even more aggressive nature. Resistance to currently available anticancer drugs results in poor overall and disease-free survival rates for cancer patients. There are multiple mechanisms through which tumor cells develop resistance to therapeutic agents. To date, efforts to overcome resistance have only achieved limited success. Epitranscriptomics, especially related to m6A RNA modification dysregulation in cancer, is an emerging mechanism for cancer therapy resistance. Here, recent studies regarding the contributions of m6A modification and its regulatory proteins to the development of resistance to different cancer therapies are comprehensively reviewed. The promise and potential limitations of targeting these entities to overcome resistance to various anticancer therapies are also discussed.
Collapse
Affiliation(s)
- Mohammad Burhan Uddin
- Department of Pharmaceutical SciencesNorth South UniversityBashundharaDhaka1229Bangladesh
| | - Zhishan Wang
- Stony Brook Cancer CenterStony Brook UniversityStony BrookNY11794USA
| | - Chengfeng Yang
- Stony Brook Cancer CenterStony Brook UniversityStony BrookNY11794USA
- Department of PathologyRenaissance School of MedicineStony Brook UniversityStony BrookNY11794USA
| |
Collapse
|
4
|
Yang Q, Li X. Pan-cancer analysis of ADAR1 with its prognostic relevance in low-grade glioma. Immunobiology 2024; 229:152855. [PMID: 39340957 DOI: 10.1016/j.imbio.2024.152855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/08/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
ADAR1, known as the primary enzyme for adenosine-to-inosine RNA editing, has recently been implicated in cancer development through both RNA editing-dependent and -independent pathways. These discoveries suggest that ADAR1's functions may extend beyond our current understanding. A pan-cancer analysis offers a unique opportunity to identify both common and distinct mechanisms across various cancers, thereby advancing personalized medicine. Low-grade glioma (LGG), characterized by a diverse group of tumor cells, presents a challenge in risk stratification, leading to significant variations in treatment approaches. Recently discovered molecular alterations in LGG have helped to refine the stratification of of these tumors and offered novel targets for predicting likely outcomes. This study aims to provide a detailed analysis of ADAR mRNA across multiple cancers, emphasizing its prognostic significance in LGG. We observed inconsistent mRNA and consistent protein expression patterns of ADAR1/ADAR in pan-cancer analyses that across tumor types. ADAR mRNA expression did not always correlate with ADAR1 protein expression. Nevertheless, the transcript levels correlated significantly with genetic alterations, tumor mutation burden, microsatellite instability, overall survival, recurrence-free survival, immune marker presence, immune infiltration, and the survival of patients undergoing immunotherapy in select cancers. Furthermore, ADAR and its top 50 associated genes were primarily involved in mRNA-related events, as identified through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Utilizing the Cox proportional hazards model, we developed a 3-gene signature (ADAR, HNRNPK, and SMG7), which effectively stratified patients into high- and low-risk groups, with high-risk patients exhibiting poorer overall survival, higher tumor grades, and a greater number of non-codeletions. Overall, this signature was inversely related to immune infiltration across cancers. Transcription factor SPI1 and miR-206, potential upstream regulators of the signature genes, were closely linked to patient survival in LGG. The promoter regions of these genes were hypermethylated, further associating them with patient outcomes. Additionally, these genes displayed consistent drug susceptibility patterns. In conclusion, our findings reveal multiple aspects of ADAR1's role in cancer and underscore its prognostic value in LGG, offering insights into potential therapeutic targets and strategies.
Collapse
Affiliation(s)
- Qin Yang
- Puai Medical College, Shaoyang University, Shaoyang, Hunan, China.
| | - Xin Li
- Department of Immunology, School of Basic Medical of Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Cai Y, Zhou J, Xu A, Huang J, Zhang H, Xie G, Zhong K, Wu Y, Ye P, Wang H, Niu H. N6-methyladenosine triggers renal fibrosis via enhancing translation and stability of ZEB2 mRNA. J Biol Chem 2024; 300:107598. [PMID: 39059495 PMCID: PMC11381876 DOI: 10.1016/j.jbc.2024.107598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/13/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
In recent years, a surge in studies investigating N6-methyladenosine (m6A) modification in human diseases has occurred. However, the specific roles and mechanisms of m6A in kidney disease remain incompletely understood. This study revealed that m6A plays a positive role in regulating renal fibrosis (RF) by inducing epithelial-to-mesenchymal phenotypic transition (EMT) in renal tubular cells. Through comprehensive analyses, including m6A sequencing, RNA-seq, and functional studies, we confirmed the pivotal involvement of zinc finger E-box binding homeobox 2 (ZEB2) in m6A-mediated RF and EMT. Notably, the m6A-modified coding sequence of ZEB2 mRNA significantly enhances its translational elongation and mRNA stability by interacting with the YTHDF1/eEF-2 complex and IGF2BP3, respectively. Moreover, targeted demethylation of ZEB2 mRNA using the dm6ACRISPR system substantially decreases ZEB2 expression and disrupts the EMT process in renal tubular epithelial cells. In vivo and clinical data further support the positive influence of m6A/ZEB2 on RF progression. Our findings highlight the m6A-mediated regulation of RF through ZEB2, revealing a novel therapeutic target for RF treatment and enhancing our understanding of the impact of mRNA methylation on kidney disease.
Collapse
Affiliation(s)
- Yating Cai
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiawang Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Abai Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jinchang Huang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haisheng Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Guoyou Xie
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ke Zhong
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - You Wu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pengfei Ye
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongsheng Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Hongxin Niu
- Department of General Practice, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Special Medical Service Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Xiao B, Li Y, Yang Y, Chen C, Gong S, Li H, Yao Q, Wang L. METTL3 and IGF2BP1-Mediated m6A Modification of ZHX2 Promotes Tumor Property of Renal Cell Carcinoma. Kidney Blood Press Res 2024; 49:787-798. [PMID: 39159608 DOI: 10.1159/000540483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/18/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Renal cell carcinoma (RCC) is a common type of kidney cancer with limited treatment options and a high mortality rate. Therefore, it is essential to understand the role and mechanism of key genes in RCC development and progression. This study aimed to analyze the role of zinc fingers and homeoboxes 2 (ZHX2) in RCC and the underlying mechanism. METHODS RNA expression was analyzed by quantitative real-time polymerase chain reaction, while protein expression was analyzed by Western blotting assay and immunohistochemistry assay. Cell viability was evaluated using CCK-8 assay, and cell proliferation was assessed by EdU assay. The rate of cell apoptosis was quantified by flow cytometry. Transwell assays were conducted to analyze cell migration and invasion. The sphere formation assay was performed to assess the formation of microspheres. Additionally, m6A RNA immunoprecipitation assay and RNA immunoprecipitation assay were utilized to investigate the relationship between ZHX2 and two proteins, methyltransferase like 3 (METTL3) and insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1). The stability of ZHX2 mRNA was analyzed through the Actinomycin D assay. Furthermore, a xenograft mouse model assay was conducted to analyze the effect of ZHX2 overexpression and METTL3 silencing on RCC cell tumor properties in vivo. RESULTS ZHX2 expression was upregulated in both RCC tissues and cells when compared with healthy renal tissues and human renal cortex proximal convoluted tubule epithelial cells. Depletion of ZHX2 inhibited RCC cell proliferation, migration, invasion, and spheroid-forming capacity but promoted cell apoptosis. Moreover, it was found that METTL3-mediated m6A methylation of ZHX2 and IGF2BP1 also stabilized ZHX2 through m6A methylation modification. Furthermore, ZHX2 overexpression showed a potential for attenuating the effects induced by METTL3 silencing and counteracted the inhibitory effect of METTL3 depletion on tumor formation in vivo. CONCLUSION METTL3 and IGF2BP1-mediated m6A modification of ZHX2 promoted RCC progression. The finding suggests that ZHX2 may serve as a potential therapeutic target in RCC, providing valuable insights for future clinical interventions.
Collapse
Affiliation(s)
- Bangming Xiao
- Department of Urology, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Yalan Li
- Reproductive Medicine Laboratory Center, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Yong Yang
- Department of Urology, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Congbo Chen
- Department of Urology, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Shide Gong
- Department of Urology, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Hao Li
- Department of Urology, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Qisheng Yao
- Department of Urology, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| | - Li Wang
- Department of Urology, Taihe Hospital, Hubei University of Medicine, Shiyan City, China
| |
Collapse
|
7
|
Yang L, Ying J, Tao Q, Zhang Q. RNA N 6-methyladenosine modifications in urological cancers: from mechanism to application. Nat Rev Urol 2024; 21:460-476. [PMID: 38347160 DOI: 10.1038/s41585-023-00851-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 08/04/2024]
Abstract
The N6-methyladenosine (m6A) modification is the most common modification of messenger RNAs in eukaryotes and has crucial roles in multiple cancers, including in urological malignancies such as renal cell carcinoma, bladder cancer and prostate cancer. The m6A RNA modification is controlled by three types of regulators, including methyltransferases (writers), demethylases (erasers) and RNA-binding proteins (readers), which are responsible for gene regulation at the post-transcriptional level. This Review summarizes the current evidence indicating that aberrant or dysregulated m6A modification is associated with urological cancer development, progression and prognosis. The complex and context-dependent effects of dysregulated m6A modifications in urological cancers are described, along with the potential for aberrantly expressed m6A regulators to provide valuable diagnostic and prognostic biomarkers as well as new therapeutic targets.
Collapse
Affiliation(s)
- Lei Yang
- Department of Urology, Peking University First Hospital, Institute of Urology, National Research Center for Genitourinary Oncology, Peking University, Beijing, China
| | - Jianming Ying
- Department of Pathology, Cancer Institute and Cancer Hospital, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Qian Zhang
- Department of Urology, Peking University First Hospital, Institute of Urology, National Research Center for Genitourinary Oncology, Peking University, Beijing, China.
- Department of Urology, Peking University Binhai Hospital, Tianjin, China.
| |
Collapse
|
8
|
Li R, Zhu C, Wang Y, Wang X, Wang Y, Wang J, Wang K. The relationship between the network of non-coding RNAs-molecular targets and N6-methyladenosine modification in tumors of urinary system. Cell Death Dis 2024; 15:275. [PMID: 38632251 PMCID: PMC11024199 DOI: 10.1038/s41419-024-06664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
N6-methyladenosine (m6A) methylation, a prevalent eukaryotic post-transcriptional modification, is involved in multiple biological functions, including mediating variable splicing, RNA maturation, transcription, and nuclear export, and also is vital for regulating RNA translation, stability, and cytoplasmic degradation. For example, m6A methylation can regulate pre-miRNA expression by affecting both splicing and maturation. Non-coding RNA (ncRNA), which includes microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), does not encode proteins but has powerful impacts on transcription and translation. Conversely, ncRNAs may impact m6A methylation by affecting the expression of m6A regulators, including miRNAs targeting mRNA of m6A regulators, or lncRNAs, and circRNAs, acting as scaffolds to regulate transcription of m6A regulatory factors. Dysregulation of m6A methylation is common in urinary tumors, and the regulatory role of ncRNAs is also important for these malignancies. This article provides a systematic review of the role and mechanisms of action of m6A methylation and ncRNAs in urinary tumors.
Collapse
Affiliation(s)
- Ruiming Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Chunming Zhu
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yuan Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yibing Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Jiahe Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
9
|
Jin J, Liu XM, Shao W, Meng XM. Nucleic acid and protein methylation modification in renal diseases. Acta Pharmacol Sin 2024; 45:661-673. [PMID: 38102221 PMCID: PMC10943093 DOI: 10.1038/s41401-023-01203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023]
Abstract
Although great efforts have been made to elucidate the pathological mechanisms of renal diseases and potential prevention and treatment targets that would allow us to retard kidney disease progression, we still lack specific and effective management methods. Epigenetic mechanisms are able to alter gene expression without requiring DNA mutations. Accumulating evidence suggests the critical roles of epigenetic events and processes in a variety of renal diseases, involving functionally relevant alterations in DNA methylation, histone methylation, RNA methylation, and expression of various non-coding RNAs. In this review, we highlight recent advances in the impact of methylation events (especially RNA m6A methylation, DNA methylation, and histone methylation) on renal disease progression, and their impact on treatments of renal diseases. We believe that a better understanding of methylation modification changes in kidneys may contribute to the development of novel strategies for the prevention and management of renal diseases.
Collapse
Affiliation(s)
- Juan Jin
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xue-Mei Liu
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Wei Shao
- School of Basic Medicine, Anhui Medical University, Hefei, 230032, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
10
|
Liu J, Wang Y, Sheng Y, Cai L, Wang Y. Construction and validation of m6A-related diagnostic model for psoriasis. PeerJ 2024; 12:e17027. [PMID: 38436011 PMCID: PMC10909359 DOI: 10.7717/peerj.17027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Background Psoriasis is a chronic immune-mediated inflammatory disease. N6-methyladenosine (m6A) is involved in numerous biological processes in both normal and diseased states. Herein, we aimed to explore the potential role of m6A regulators in the diagnosis of psoriasis and predict molecular mechanisms by which m6A regulators impact psoriasis. Methods GSE30999 (170 human skin tissue samples) and GSE13355 (180 human skin tissue samples) were downloaded as the training analysis dataset and validation dataset respectively. M6A-related genes were obtained from the literature and their expression levels in GSE30999 samples were measured to identify M6A-related DEGs between psoriasis lesions (LS) and non-lesional lesions (NL). We identified m6A-related DEGs using differential expression analysis and assessed their interactions through correlation analysis and network construction. A logistic regression analysis followed by LASSO optimization was employed to select m6A-related DEGs for the construction of a diagnostic model. The performance of the model was validated using support vector machine (SVM) methodology with sigmoid kernel function and extensive cross-validation. Additionally, the correlation between m6A-related DEGs and immune cell infiltration was analyzed, as well as the association of these DEGs with psoriasis subtypes. Functional analysis of the m6A-related DEGs included the construction of regulatory networks involving miRNAs, transcription factors (TFs), and small-molecule drugs. The m6A modification patterns were also explored by examining the gene expression differences between psoriasis subtypes and their enriched biological pathways. Finally, the expression of significant m6A regulators involved in the diagnostic model was examined by RT-qPCR. Results In this study, ten optimal m6A-related DEGs were identified, including FTO, IGF2BP2, METTL3, YTHDC1, ZC3H13, HNRNPC, IGF2BP3, LRPPRC, YTHDC2, and HNRNPA2B1. A diagnostic model based on these m6A-related DEGs was constructed, demonstrating high diagnostic accuracy with an area under the curve (AUC) in GSE30999 and GSE13355 of 0.974 and 0.730, respectively. Meanwhile, the expression level of m6A regulators verified by RT-qPCR was consistent with the results in GSE30999. The infiltration of activated mast cells and NK cells was significantly associated with all ten m6A-related DEGs in psoriasis. Among them, YTHDC1, HNRNPC, and FTO were targeted by most miRNAs and were regulated by nine related TFs. Therefore, patients may benefit from dorsomorphin and cyclosporine therapy. Between the two subgroups, 1,592 DEGs were identified, including LRPPRC and METTL3. These DEGs were predicted to be involved in neutrophil activation, cytokine-cytokine receptor interactions, and chemokine signaling pathways. Conclusions A diagnostic model based on ten m6A-related DEGs in patients with psoriasis was constructed, which may provide early diagnostic biomarkers and therapeutic targets for psoriasis.
Collapse
Affiliation(s)
- Jing Liu
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Youlin Wang
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yu Sheng
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Limin Cai
- Department of Dermatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yongchen Wang
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- General Practice Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
11
|
Zhou X, Zhu H, Luo C, Yan Z, Zheng G, Zou X, Zou J, Zhang G. The role of RNA modification in urological cancers: mechanisms and clinical potential. Discov Oncol 2023; 14:235. [PMID: 38117350 PMCID: PMC10733275 DOI: 10.1007/s12672-023-00843-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
RNA modification is a post-transcriptional level of regulation that is widely distributed in all types of RNAs, including mRNA, tRNA, rRNA, miRNA, and lncRNA, where N6-methyladenine (m6A) is the most abundant mRNA methylation modification. Significant evidence has depicted that m6A modifications are closely related to human diseases, especially cancer, and play pivotal roles in RNA transcription, splicing, stabilization, and translation processes. The most common urological cancers include prostate, bladder, kidney, and testicular cancers, accounting for a certain proportion of human cancers, with an ever-increasing incidence and mortality. The recurrence, systemic metastasis, poor prognosis, and drug resistance of urologic tumors have prompted the identification of new therapeutic targets and mechanisms. Research on m6A modifications may provide new solutions to the current puzzles. In this review, we provide a comprehensive overview of the key roles played by RNA modifications, especially m6A modifications, in urologic cancers, as well as recent research advances in diagnostics and molecularly targeted therapies.
Collapse
Affiliation(s)
- Xuming Zhou
- First Clinical College, Gannan Medical University, Ganzhou, 341000, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Hezhen Zhu
- First Clinical College, Gannan Medical University, Ganzhou, 341000, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Cong Luo
- First Clinical College, Gannan Medical University, Ganzhou, 341000, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Zhaojie Yan
- First Clinical College, Gannan Medical University, Ganzhou, 341000, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Guansong Zheng
- First Clinical College, Gannan Medical University, Ganzhou, 341000, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Xiaofeng Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, 341000, China
| | - Junrong Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, 341000, China
| | - Guoxi Zhang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, 341000, China.
| |
Collapse
|
12
|
Sun Y, Jin D, Zhang Z, Ji H, An X, Zhang Y, Yang C, Sun W, Zhang Y, Duan Y, Kang X, Jiang L, Zhao X, Lian F. N6-methyladenosine (m6A) methylation in kidney diseases: Mechanisms and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194967. [PMID: 37553065 DOI: 10.1016/j.bbagrm.2023.194967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
The N6-methyladenosine (m6A) modification is regulated by methylases, commonly referred to as "writers," and demethylases, known as "erasers," leading to a dynamic and reversible process. Changes in m6A levels have been implicated in a wide range of cellular processes, including nuclear RNA export, mRNA metabolism, protein translation, and RNA splicing, establishing a strong correlation with various diseases. Both physiologically and pathologically, m6A methylation plays a critical role in the initiation and progression of kidney disease. The methylation of m6A may also facilitate the early diagnosis and treatment of kidney diseases, according to accumulating research. This review aims to provide a comprehensive overview of the potential role and mechanism of m6A methylation in kidney diseases, as well as its potential application in the treatment of such diseases. There will be a thorough examination of m6A methylation mechanisms, paying particular attention to the interplay between m6A writers, m6A erasers, and m6A readers. Furthermore, this paper will elucidate the interplay between various kidney diseases and m6A methylation, summarize the expression patterns of m6A in pathological kidney tissues, and discuss the potential therapeutic benefits of targeting m6A in the context of kidney diseases.
Collapse
Affiliation(s)
- Yuting Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Ziwei Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hangyu Ji
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuedong An
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cunqing Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjie Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuqing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefei Zhao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
13
|
Wang Q, Fan X, Sheng Q, Yang M, Zhou P, Lu S, Gao Y, Kong Z, Shen N, Lv Z, Wang R. N6-methyladenosine methylation in kidney injury. Clin Epigenetics 2023; 15:170. [PMID: 37865763 PMCID: PMC10590532 DOI: 10.1186/s13148-023-01586-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
Multiple mechanisms are involved in kidney damage, among which the role of epigenetic modifications in the occurrence and development of kidney diseases is constantly being revealed. However, N6-methyladenosine (M6A), a well-known post-transcriptional modification, has been regarded as the most prevalent epigenetic modifications in higher eukaryotic, which is involved in various biological processes of cells such as maintaining the stability of mRNA. The role of M6A modification in the mechanism of kidney damage has attracted widespread attention. In this review, we mainly summarize the role of M6A modification in the progression of kidney diseases from the following aspects: the regulatory pattern of N6-methyladenosine, the critical roles of N6-methyladenosine in chronic kidney disease, acute kidney injury and renal cell carcinoma, and then reveal its potential significance in the diagnosis and treatment of various kidney diseases. A better understanding of this field will be helpful for future research and clinical treatment of kidney diseases.
Collapse
Affiliation(s)
- Qimeng Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Xiaoting Fan
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Qinghao Sheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ping Zhou
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ning Shen
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
14
|
Zeng Y, Lv C, Wan B, Gong B. The current landscape of m6A modification in urological cancers. PeerJ 2023; 11:e16023. [PMID: 37701836 PMCID: PMC10493088 DOI: 10.7717/peerj.16023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023] Open
Abstract
N6-methyladenosine (m6A) methylation is a dynamic and reversible procession of epigenetic modifications. It is increasingly recognized that m6A modification has been involved in the tumorigenesis, development, and progression of urological tumors. Emerging research explored the role of m6A modification in urological cancer. In this review, we will summarize the relationship between m6A modification, renal cell carcinoma, bladder cancer, and prostate cancer, and discover the biological function of m6A regulators in tumor cells. We will also discuss the possible mechanism and future application value used as a potential biomarker or therapeutic target to benefit patients with urological cancers.
Collapse
Affiliation(s)
- Yaohui Zeng
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Cai Lv
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Bangbei Wan
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Binghao Gong
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| |
Collapse
|
15
|
Lin H, Fu L, Li P, Zhu J, Xu Q, Wang Y, Mumin MA, Zhou X, Chen Y, Shu G, Yao G, Chen M, Lu J, Zhang L, Liu Y, Zhao Y, Bao J, Chen W, Luo J, Li X, Chen Z, Cao J. Fatty acids metabolism affects the therapeutic effect of anti-PD-1/PD-L1 in tumor immune microenvironment in clear cell renal cell carcinoma. J Transl Med 2023; 21:343. [PMID: 37221577 DOI: 10.1186/s12967-023-04161-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/25/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is a highly invasive and metastatic subtype of kidney malignancy and is correlated with metabolic reprogramming for adaptation to the tumor microenvironment comprising infiltrated immune cells and immunomodulatory molecules. The role of immune cells in the tumor microenvironment (TME) and their association with abnormal fatty acids metabolism in ccRCC remains poorly understood. METHOD RNA-seq and clinical data of KIRC from The Cancer Genome Atlas (TCGA) and E-MTAB-1980 from the ArrayExpress dataset. The Nivolumab group and Everolimus group of the CheckMate 025 study, the Atezolizumab arm of IMmotion150 and the Atezolizumab plus Bevacizumab group of IMmotion151 cohort were obtained for subsequent analysis. After differential expression genes identification, the signature was constructed through univariate Cox proportional hazard regression and simultaneously the least absolute shrinkage and selection operator (Lasso) analysis and the predictive performance of our signature was assessed by using receiver operating characteristic (ROC), Kaplan-Meier (KM) survival analysis, nomogram, drug sensitivity analysis, immunotherapeutic effect analysis and enrichment analysis. Immunohistochemistry (IHC), qPCR and western blot were performed to measure related mRNA or protein expression. Biological features were evaluated by wound healing, cell migration and invasion assays and colony formation test and analyzed using coculture assay and flow cytometry. RESULTS Twenty fatty acids metabolism-related mRNA signatures were constructed in TCGA and possessed a strong predictive performance demonstrated through time-dependent ROC and KM survival analysis. Notably, the high-risk group exhibited an impaired response to anti-PD-1/PD-L1 (Programmed death-1 receptor/Programmed death-1 receptor-ligand) therapy compared to the low-risk group. The overall levels of the immune score were higher in the high-risk group. Additionally, drug sensitivity analysis observed that the model could effectively predict efficacy and sensitivity to chemotherapy. Enrichment analysis revealed that the IL6-JAK-STAT3 signaling pathway was a major pathway. IL4I1 could promote ccRCC cells' malignant features through JAK1/STAT3 signaling pathway and M2-like macrophage polarization. CONCLUSION The study elucidates that targeting fatty acids metabolism can affect the therapeutic effect of PD-1/PD-L1 in TME and related signal pathways. The model can effectively predict the response to several treatment options, underscoring its potential clinical utility.
Collapse
Affiliation(s)
- Hansen Lin
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Liangmin Fu
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Pengju Li
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Jiangquan Zhu
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Quanhui Xu
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yinghan Wang
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Mukhtar Adan Mumin
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xinwei Zhou
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yuhang Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Guannan Shu
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Gaosheng Yao
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Minyu Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Jun Lu
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Lizhen Zhang
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - YuJun Liu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yiqi Zhao
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jiahao Bao
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Junhang Luo
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.
| | - Xiaofei Li
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.
| | - Zhenhua Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.
| | - Jiazheng Cao
- Department of Urology, Jiangmen Central Hospital, Haibang Street 23, Pengjiang District, Jiangmen, 529030, Guangdong, China.
| |
Collapse
|
16
|
Zhu W, Zhao R, Guan X, Wang X. The emerging roles and mechanism of N6-methyladenosine (m 6A) modifications in urologic tumours progression. Front Pharmacol 2023; 14:1192495. [PMID: 37284313 PMCID: PMC10239868 DOI: 10.3389/fphar.2023.1192495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Prostate cancer (PCa), bladder cancer (BC), and renal cell cancer (RCC) are the most common urologic tumours in males. N6-methyladenosine (m6A), adenosine N6 methylation, is the most prevalent RNA modification in mammals. Increasing evidence suggests that m6A plays a crucial role in cancer development. In this review, we comprehensively analyzed the influence of m6A methylation on Prostate cancer, bladder cancer, and renal cell cancer and the relationship between the expression of relevant regulatory factors and their development and occurrence, which provides new insights and approaches for the early clinical diagnosis and targeted therapy of urologic malignancies.
Collapse
|
17
|
Wu Y, Zhang S, Chen C, Pang J. Dysregulation and implications of N6-methyladenosine modification in renal cell carcinoma. Curr Urol 2023; 17:45-51. [PMID: 37692138 PMCID: PMC10487297 DOI: 10.1097/cu9.0000000000000135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022] Open
Abstract
Increasing evidence indicates that N6-methyladenosine (m6A) methylation modification serves important functions in biological metabolism. Dysregulation of m6A regulators is related to the progression of different malignancies, including renal cell carcinoma (RCC). Recent studies have reported preliminary findings on the influence of m6A regulator dysregulation on RCC tumorigenesis and development. However, no comprehensive review that integrates and analyzes the roles of m6A modification in RCC has been published to date. In this review, we focus on the dysregulation of m6A regulators as it relates to RCC tumorigenesis and development, as well as possible applications of m6A modification in RCC diagnosis and therapeutics.
Collapse
Affiliation(s)
| | | | | | - Jun Pang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
18
|
Chen Z, Ruan W, Guo C, Chen K, Li L, Tian J, Hu Z, Peng D, Zeng X. Non-SMC condensin I complex subunit H participates in anti-programmed cell death-1 resistance of clear cell renal cell carcinomas. Cell Prolif 2023:e13400. [PMID: 36642844 DOI: 10.1111/cpr.13400] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 01/17/2023] Open
Abstract
Non-SMC condensin I complex subunit H (NCAPH) is reported to play an important role and be a poor prognostic factor in various cancers. However, the function and regulatory mechanism of NCAPH in clear cell renal cell carcinoma (ccRCC) remain unknown. The roles of NCAPH on ccRCC growth were detected in vitro and in vivo assays. The regulatory mechanism of NCAPH was explored by immunoprecipitation assay, ubiquitination assay, ChIP assay, RIP assay, luciferase reporter assay and RNA pull-down assay. The role of NCAPH in immunoregulation also was explored by flow cytometry, T cell-mediated tumour cell killing assay and immune-competent mouse model. In this research, we displayed that NCAPH was upregulated in ccRCC and patients with elevated NCAPH expression had an undesirable prognosis. Functionally, NCAPH depletion restrained ccRCC growth in vitro and in vivo. The elevated NCAPH was attributed to FOXP3-mediated transcription, FUS-mediated transcription splicing and METTL3-mediated m6A modification. Moreover, YTHDC1 promoted NCAPH mRNA nuclear export, and IGF2BP3 enhanced NCAPH mRNA stability in an m6A-dependent manner. NCAPH increased PD-L1 expression by inhibiting the degradation of β-catenin in ccRCC cells, which further facilitated aerobic glycolysis and immune tolerance of ccRCC. Collectively, our findings display the vital function of NCAPH in ccRCC and uncover that NCAPH may be regarded as a potential therapeutic target to reverse the immune tolerance of ccRCC.
Collapse
Affiliation(s)
- Zhi Chen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weiqiang Ruan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunhao Guo
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Le Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihua Tian
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dan Peng
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xing Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
19
|
Ni WJ, Lu H, Ma NN, Hou BB, Zeng J, Zhou H, Shao W, Meng XM. RNA N 6 -methyladenosine modifications and potential targeted therapeutic strategies in kidney disease. Br J Pharmacol 2023; 180:5-24. [PMID: 36196023 DOI: 10.1111/bph.15968] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
Epigenetic modifications have received increasing attention and have been shown to be extensively involved in kidney development and disease progression. Among them, the most common RNA modification, N6 -methyladenosine (m6 A), has been shown to dynamically and reversibly exert its functions in multiple ways, including splicing, export, decay and translation initiation efficiency to regulate mRNA fate. Moreover, m6 A has also been reported to exert biological effects by destabilizing base pairing to modulate various functions of RNAs. Most importantly, an increasing number of kidney diseases, such as renal cell carcinoma, acute kidney injury and chronic kidney disease, have been found to be associated with aberrant m6 A patterns. In this review, we comprehensively review the critical roles of m6 A in kidney diseases and discuss the possibilities and relevance of m6 A-targeted epigenetic therapy, with an integrated comprehensive description of the detailed alterations in specific loci that contribute to cellular processes that are associated with kidney diseases.
Collapse
Affiliation(s)
- Wei-Jian Ni
- Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China.,Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001, China
| | - Hao Lu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Nan-Nan Ma
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Bing-Bing Hou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Jing Zeng
- Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001, China
| | - Hong Zhou
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Wei Shao
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| |
Collapse
|
20
|
Liu Z, Zou H, Dang Q, Xu H, Liu L, Zhang Y, Lv J, Li H, Zhou Z, Han X. Biological and pharmacological roles of m 6A modifications in cancer drug resistance. Mol Cancer 2022; 21:220. [PMID: 36517820 PMCID: PMC9749187 DOI: 10.1186/s12943-022-01680-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer drug resistance represents the main obstacle in cancer treatment. Drug-resistant cancers exhibit complex molecular mechanisms to hit back therapy under pharmacological pressure. As a reversible epigenetic modification, N6-methyladenosine (m6A) RNA modification was regarded to be the most common epigenetic RNA modification. RNA methyltransferases (writers), demethylases (erasers), and m6A-binding proteins (readers) are frequently disordered in several tumors, thus regulating the expression of oncoproteins, enhancing tumorigenesis, cancer proliferation, development, and metastasis. The review elucidated the underlying role of m6A in therapy resistance. Alteration of the m6A modification affected drug efficacy by restructuring multidrug efflux transporters, drug-metabolizing enzymes, and anticancer drug targets. Furthermore, the variation resulted in resistance by regulating DNA damage repair, downstream adaptive response (apoptosis, autophagy, and oncogenic bypass signaling), cell stemness, tumor immune microenvironment, and exosomal non-coding RNA. It is highlighted that several small molecules targeting m6A regulators have shown significant potential for overcoming drug resistance in different cancer categories. Further inhibitors and activators of RNA m6A-modified proteins are expected to provide novel anticancer drugs, delivering the therapeutic potential for addressing the challenge of resistance in clinical resistance.
Collapse
Affiliation(s)
- Zaoqu Liu
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.207374.50000 0001 2189 3846Interventional Institute of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.412633.10000 0004 1799 0733Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052 Henan China
| | - Haijiao Zou
- grid.412633.10000 0004 1799 0733Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Qin Dang
- grid.412633.10000 0004 1799 0733Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Hui Xu
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Long Liu
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yuyuan Zhang
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jinxiang Lv
- grid.412633.10000 0004 1799 0733Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Huanyun Li
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Zhaokai Zhou
- grid.412633.10000 0004 1799 0733Department of Pediatric Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Xinwei Han
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.207374.50000 0001 2189 3846Interventional Institute of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.412633.10000 0004 1799 0733Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052 Henan China
| |
Collapse
|
21
|
Ding R, Wei H, Jiang X, Wei L, Deng M, Yuan H. Prognosis and pain dissection of novel signatures in kidney renal clear cell carcinoma based on fatty acid metabolism-related genes. Front Oncol 2022; 12:1094657. [PMID: 36568252 PMCID: PMC9780486 DOI: 10.3389/fonc.2022.1094657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Renal cell carcinoma (RCC) is a malignant tumor that is characterized by the accumulation of intracellular lipid droplets. The prognostic value of fatty acid metabolism-related genes (FMGs) in RCC remains unclear. Alongside this insight, we collected data from three RCC cohorts, namely, The Cancer Genome Atlas (TCGA), E-MTAB-1980, and GSE22541 cohorts, and identified a total of 309 FMGs that could be associated with RCC prognosis. First, we determined the copy number variation and expression levels of these FMGs, and identified 52 overall survival (OS)-related FMGs of the TCGA-KIRC and the E-MTAB-1980 cohort data. Next, 10 of these genes-FASN, ACOT9, MID1IP1, CYP2C9, ABCD1, CPT2, CRAT, TP53INP2, FAAH2, and PTPRG-were identified as pivotal OS-related FMGs based on least absolute shrinkage and selection operator and Cox regression analyses. The expression of some of these genes was confirmed in patients with RCC by immunohistochemical analyses. Kaplan-Meier analysis showed that the identified FMGs were effective in predicting the prognosis of RCC. Moreover, an optimal nomogram was constructed based on FMG-based risk scores and clinical factors, and its robustness was verified by time-dependent receiver operating characteristic analysis, calibration curve analysis, and decision curve analysis. We have also described the biological processes and the tumor immune microenvironment based on FMG-based risk score classification. Given the close association between fatty acid metabolism and cancer-related pain, our 10-FMG signature may also serve as a potential therapeutic target with dual effects on ccRCC prognosis and cancer pain and, therefore, warrants further investigation.
Collapse
Affiliation(s)
- Ruifeng Ding
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Huawei Wei
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xin Jiang
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Liangtian Wei
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Mengqiu Deng
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China,*Correspondence: Hongbin Yuan,
| |
Collapse
|
22
|
Construction and Characterization of n6-Methyladenosine-Related lncRNA Prognostic Signature and Immune Cell Infiltration in Kidney Renal Clear Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:7495183. [PMID: 36213821 PMCID: PMC9536954 DOI: 10.1155/2022/7495183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022]
Abstract
Background. Kidney renal clear cell carcinoma (KIRC) lacks effective prognostic biomarkers and the role and mechanism of N6-methyladenosine (m6A) modification of long noncoding RNAs (lncRNAs) in KIRC remain unclear. Methods. We extracted standard mRNA-sequencing and clinical data from the TCGA database. The prognostic risk model was obtained by Lasso regression and Cox regression. We randomly divided the samples into training and test sets, each taking half of the cases. Based on Lasso regression and Cox regression for training set, the prognostic risk signature was constructed; risk scores were calculated with the R package “glmnet.” Based on the median value of the prognostic risk score, risk scores were calculated for each patient and we divided all KIRC samples into high-risk and low-risk groups. Then, high- and low-risk subtypes were established and their prognosis, clinical features, and immune infiltration microenvironment were evaluated in test set and the entire sampled data set. The reliability of the prognostic model was confirmed by receiver operating characteristic curve analysis. Results. We found 28 prognostic m6A-related lncRNAs and established a m6A-related lncRNAs prognostic signature.
The signature showed a better predictive ability than other clinical indicators, including tumor node metastasis classification (TNM), histological, and pathological stages. In the high-risk group, M0 macrophages, CD8+ T cells, and regulatory T cells had significantly higher scores. Contrarily, in the low-risk group, activated dendritic cells, M1 macrophages, mast resting cells, and monocytes had significantly higher scores. In the high-risk group, LSECtin was overexpressed. In the low-risk group, PD-L1 was overexpressed. Moreover, high-risk patients may benefit more from AZ628. Conclusions. In conclusion, prognosis prediction of patients with KIRC and new insights for immunotherapy are provided by the m6A-related lncRNA prognostic signature.
Collapse
|
23
|
Li W, Hao Y, Zhang X, Xu S, Pang D. Targeting RNA N 6-methyladenosine modification: a precise weapon in overcoming tumor immune escape. Mol Cancer 2022; 21:176. [PMID: 36071523 PMCID: PMC9454167 DOI: 10.1186/s12943-022-01652-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/03/2022] [Indexed: 12/25/2022] Open
Abstract
Immunotherapy, especially immune checkpoint inhibitors (ICIs), has revolutionized the treatment of many types of cancer, particularly advanced-stage cancers. Nevertheless, although a subset of patients experiences dramatic and long-term disease regression in response to ICIs, most patients do not benefit from these treatments. Some may even experience cancer progression. Immune escape by tumor cells may be a key reason for this low response rate. N6-methyladenosine (m6A) is the most common type of RNA methylation and has been recognized as a critical regulator of tumors and the immune system. Therefore, m6A modification and related regulators are promising targets for improving the efficacy of tumor immunotherapy. However, the association between m6A modification and tumor immune escape (TIE) has not been comprehensively summarized. Therefore, this review summarizes the existing knowledge regarding m6A modifications involved in TIE and their potential mechanisms of action. Moreover, we provide an overview of currently available agents targeting m6A regulators that have been tested for their elevated effects on TIE. This review establishes the association between m6A modifications and TIE and provides new insights and strategies for maximizing the efficacy of immunotherapy by specifically targeting m6A modifications involved in TIE.
Collapse
Affiliation(s)
- Wei Li
- Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Yi Hao
- Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Xingda Zhang
- Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Shouping Xu
- Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang, China.
| | - Da Pang
- Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang, China. .,Heilongjiang Academy of Medical Sciences, 157 Baojian Road, Harbin, 150086, Heilongjiang, China.
| |
Collapse
|
24
|
Jia J, Wu S, Jia Z, Wang C, Ju C, Sheng J, He F, Zhou M, He J. Novel insights into m 6A modification of coding and non-coding RNAs in tumor biology: From molecular mechanisms to therapeutic significance. Int J Biol Sci 2022; 18:4432-4451. [PMID: 35864970 PMCID: PMC9295064 DOI: 10.7150/ijbs.73093] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/12/2022] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence has revealed that m6A modification, the predominant RNA modification in eukaryotes, adds a novel layer of regulation to the gene expression. Dynamic and reversible m6A modification implements sophisticated and crucial functions in RNA metabolism, including generation, splicing, stability, and translation in messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs). Furthermore, m6A modification plays a determining role in producing various m6A-labeling RNA outcomes, thereby affecting several functional processes, including tumorigenesis and progression. Herein, we highlighted current advances in m6A modification and the regulatory mechanisms underlying mRNAs and ncRNAs in distinct cancer stages. Meanwhile, we also focused on the therapeutic significance of m6A regulators in clinical cancer treatment.
Collapse
Affiliation(s)
- Jinlin Jia
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Suwen Wu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Zimo Jia
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang 050017, China
| | - Chang Wang
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chenxi Ju
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jinxiu Sheng
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Fucheng He
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mingxia Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jing He
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
25
|
Zeng X, Chen K, Li L, Tian J, Ruan W, Hu Z, Peng D, Chen Z. Epigenetic activation of RBM15 promotes clear cell renal cell carcinoma growth, metastasis and macrophage infiltration by regulating the m6A modification of CXCL11. Free Radic Biol Med 2022; 184:135-147. [PMID: 35381326 DOI: 10.1016/j.freeradbiomed.2022.03.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/09/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common kidney malignancy that is characterized by poor prognosis. RNA-binding motif protein 15 (RBM15) has been identified as an oncogene in multiple tumors. Nevertheless, the function and mechanism of RBM15 in ccRCC are not clear. In this study, RBM15 was found to be upregulated in ccRCC cells and tissues. RBM15 enhanced the proliferation, clone formation, migration, invasion and epithelial-interstitial transition of ccRCC cells. Enhanced RBM15 was caused by the abundant histone 3 acetylation modification of the RBM15 promoter induced by EP300/CBP. RBM15 enhanced the stability of CXCL11 mRNA in an m6A-dependent manner. Moreover, RBM15 was found to promote macrophage infiltration and M2 polarization by promoting the secretion of CXCL11 in ccRCC cells in vitro and in vivo. Our findings highlight the function of RBM15 in ccRCC and reveal a novel identified EP300/CBP-RBM15-CXCL11 signaling axis, which promotes ccRCC progression and provides new insight into ccRCC therapy.
Collapse
Affiliation(s)
- Xing Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Le Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jihua Tian
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Weiqiang Ruan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dan Peng
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhi Chen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
26
|
Chen W, Tang D, Lin J, Huang X, Lin S, Shen G, Dai Y. Exosomal circSHKBP1 participates in non-small cell lung cancer progression through PKM2-mediated glycolysis. Mol Ther Oncolytics 2022; 24:470-485. [PMID: 35229026 PMCID: PMC8844869 DOI: 10.1016/j.omto.2022.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/24/2022] [Indexed: 11/04/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) has a high morbidity and mortality, and it is imperative to explore the latent pathogenesis mechanism of NSCLC progression to find potential prognostic biomarkers and therapeutic targets. The present study aimed to explore the biological function of circSHKBP1 in NSCLC. circSHKBP1 was found to be upregulated in NSCLC tissues and cell lines and was enriched in exosomes derived from NSCLC cells. Exosomal circSHKBP1 enhanced the proliferation, migration, invasion, and stemness of NSCLC cells. miRNA-1294 was identified as a target for circSHKBP1, and circSHKBP1 upregulated PKM2 expression by sponging miR-1294. Exosomal circSHKBP1 regulated glycolysis through PKM2 in a HIF-1α-dependent manner in NSCLC cells and promoted M2 polarization and macrophage recruitment. Moreover, exosomal circSHKBP1 promoted NSCLC cell growth, metastasis, and M2 infiltration in vivo. Thus, exosomal circSHKBP1 participated in the progression of NSCLC via the miR-1294/PKM2 axis. circSHKBP1 may be potential biomarker for the diagnosis and treatment of NSCLC.
Collapse
|