1
|
Guo Q, Zhang G, Ren J, Li J, Wang Z, Ba H, Ye Z, Wang Y, Zheng J, Li C. Systemic factors associated with antler growth promote complete wound healing. NPJ Regen Med 2025; 10:4. [PMID: 39833274 PMCID: PMC11756403 DOI: 10.1038/s41536-025-00391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
Deer antlers are the only mammalian appendages that can fully regenerate from periosteum of pedicles (PP). This regeneration process starts from regenerative healing of wounds. Removal of PP abolishes antler regeneration, however, the regenerative cutaneous wound healing proceeds, indicating that some factors in the circulation contribute to this healing. In this study, we produced a wound in the scalp of deer either in antler regeneration period (ARP) (n = 3) or in non-ARP (n = 3). Results showed full regeneration took place only when the wound was created during ARP. Interestingly, topical application of systemic factors from ARP (n = 9) promoted regenerative wound healing in rats. Comparative proteomics analysis (n = 3) revealed that PRG4 and IGF-1 were high during ARP, and topical application of PRG4 + IGF-1 promoted restoration in rat FTE wounds. We believe that, ultimately, incorporating systemic factors into advanced wound care modalities could offer new opportunities for regenerative healing in the clinical setting.
Collapse
Affiliation(s)
- Qianqian Guo
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, Jilin, China
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Guokun Zhang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, Jilin, China
| | - Jing Ren
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, Jilin, China
| | - Jiping Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, Jilin, China
| | - Zhen Wang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, Jilin, China
| | - Hengxing Ba
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, Jilin, China
| | - Zihao Ye
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, Jilin, China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Junjun Zheng
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China.
| | - Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, Jilin, China.
| |
Collapse
|
2
|
Liang Q, Wang Y, Li Z. Comprehensive bioinformatics analysis identifies metabolic and immune-related diagnostic biomarkers shared between diabetes and COPD using multi-omics and machine learning. Front Endocrinol (Lausanne) 2025; 15:1475958. [PMID: 39845878 PMCID: PMC11750655 DOI: 10.3389/fendo.2024.1475958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Background Diabetes and chronic obstructive pulmonary disease (COPD) are prominent global health challenges, each imposing significant burdens on affected individuals, healthcare systems, and society. However, the specific molecular mechanisms supporting their interrelationship have not been fully defined. Methods We identified the differentially expressed genes (DEGs) of COPD and diabetes from multi-center patient cohorts, respectively. Through cross-analysis, we identified the shared DEGs of COPD and diabetes, and investigated alterations of signaling pathways using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA). By using weighted gene correlation network analysis (WGCNA), key gene modules for COPD and diabetes were identified, and various machine learning algorithms were employed to identify shared biomarkers. Using xCell, we investigated the relationship between shared biomarkers and immune infiltration in diabetes and COPD. Single-cell sequencing, clinical samples, and animal models were used to confirm the robustness of shared biomarkers. Results Cross-analysis identified 186 shared DEGs between diabetes and COPD patients. Functional enrichment results demonstrate that metabolic and immune-related pathways are common features altered in both diabetes and COPD patients. WGCNA identified 526 genes from key gene modules in COPD and diabetes. Multiple machine learning algorithms identified 4 shared biomarkers for COPD and diabetes, including CADPS, EDNRB, THBS4 and TMEM27. Finally, the 4 shared biomarkers were validated in single-cell sequencing data, clinical samples, and animal models, and their expression changes were consistent with the results of bioinformatic analysis. Conclusions Through comprehensive bioinformatics analysis, we revealed the potential connection between diabetes and COPD, providing a theoretical basis for exploring the common regulatory genes.
Collapse
Affiliation(s)
- Qianqian Liang
- Department of Integrated Pulmonology, Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yide Wang
- Department of Integrated Pulmonology, Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zheng Li
- Department of Integrated Pulmonology, Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang National Clinical Research Base of Traditional Chinese Medicine, The Affiliated Hospital of Xinjiang University of Traditional Chinese Medicine, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Respiratory Disease Research, The Affiliated Hospital of Xinjiang University of Traditional Chinese Medicine, Urumqi, Xinjiang, China
- Xinjiang Clinical Medical Research Center of Respiratory Obstructive Diseases, The Affiliated Hospital of Xinjiang University of Traditional Chinese Medicine, Urumqi, Xinjiang, China
| |
Collapse
|
3
|
Kutluoğlu GC, Vlig M, Elgersma A, Boekema BKHL, Daamen WF, Doberenz C, Manikowski D. Comparison of dermal and eschar fibroblasts in full skin equivalents. Wound Repair Regen 2025; 33:e70001. [PMID: 39943668 PMCID: PMC11822215 DOI: 10.1111/wrr.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/15/2024] [Accepted: 01/08/2025] [Indexed: 02/16/2025]
Abstract
Full-thickness burn wounds pose significant problems, demanding specialised therapies to avoid complications and promote recovery. Eschar tissue, which forms in response to severe burns, contains viable fibroblasts, which migrate from the surrounding tissue in response to burn injury and exhibit a myofibroblast phenotype. The goal of this study was to characterise eschar-derived fibroblasts and examine their use for engineered in vitro full skin equivalents in comparison to normal dermal fibroblasts, which were harvested from non-injured skin. Microarray analysis indicated that eschar fibroblasts differ from dermal fibroblasts in various biological processes including inflammation, extracellular matrix formation, cell migration and differentiation. Skin equivalents with eschar fibroblasts showed similarities to those generated using normal dermal fibroblasts in terms of epidermis and dermis formation. However, in contrast to dermal fibroblast-based full skin equivalents, eschar fibroblast-based equivalents exhibited macroscopic contractile behaviour. In addition, eschar fibroblasts-based equivalents demonstrated higher alpha-smooth muscle actin expression on mRNA and protein levels. In conclusion, our findings suggest that eschar fibroblasts-based full skin equivalents hold promise as a platform to study burn wound environments as eschar fibroblasts are clinically more relevant fibroblasts and able to mimic certain aspects of the challenging wound environment in vitro.
Collapse
Affiliation(s)
- Gizem Coşar Kutluoğlu
- Innovation, Development and Regulatory AffairsMedSkin Solutions Dr. SuwelackBillerbeckGermany
- Department of Medical BioSciences, Radboud Institute for Medical InnovationRadboud University Medical CenterNijmegenThe Netherlands
| | - Marcel Vlig
- Burn Research LabAlliance of Dutch Burn Care (ADBC)BeverwijkThe Netherlands
| | - Anouk Elgersma
- Burn Research LabAlliance of Dutch Burn Care (ADBC)BeverwijkThe Netherlands
| | - Bouke K. H. L. Boekema
- Burn Research LabAlliance of Dutch Burn Care (ADBC)BeverwijkThe Netherlands
- Plastic, Reconstructive and Hand SurgeryAmsterdam UMC Location Free UniversityAmsterdamThe Netherlands
| | - Willeke F. Daamen
- Department of Medical BioSciences, Radboud Institute for Medical InnovationRadboud University Medical CenterNijmegenThe Netherlands
| | - Claudia Doberenz
- Innovation, Development and Regulatory AffairsMedSkin Solutions Dr. SuwelackBillerbeckGermany
| | - Dominique Manikowski
- Innovation, Development and Regulatory AffairsMedSkin Solutions Dr. SuwelackBillerbeckGermany
| |
Collapse
|
4
|
Lothstein KE, Chen F, Mishra P, Smyth DJ, Wu W, Lemenze A, Kumamoto Y, Maizels RM, Gause WC. Helminth protein enhances wound healing by inhibiting fibrosis and promoting tissue regeneration. Life Sci Alliance 2024; 7:e202302249. [PMID: 39179288 PMCID: PMC11342954 DOI: 10.26508/lsa.202302249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
Skin wound healing due to full thickness wounds typically results in fibrosis and scarring, where parenchyma tissue is replaced with connective tissue. A major advance in wound healing research would be to instead promote tissue regeneration. Helminth parasites express excretory/secretory (ES) molecules, which can modulate mammalian host responses. One recently discovered ES protein, TGF-β mimic (TGM), binds the TGF-β receptor, though likely has other activities. Here, we demonstrate that topical administration of TGM under a Tegaderm bandage enhanced wound healing and tissue regeneration in an in vivo wound biopsy model. Increased restoration of normal tissue structure in the wound beds of TGM-treated mice was observed during mid- to late-stage wound healing. Both accelerated re-epithelialization and hair follicle regeneration were observed. Further analysis showed differential expansion of myeloid populations at different wound healing stages, suggesting recruitment and reprogramming of specific macrophage subsets. This study indicates a role for TGM as a potential therapeutic option for enhanced wound healing.
Collapse
Affiliation(s)
- Katherine E Lothstein
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Fei Chen
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Pankaj Mishra
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Danielle J Smyth
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Wenhui Wu
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Alexander Lemenze
- Center for Immunity and Inflammation, Department of Pathology, Immunology, and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Yosuke Kumamoto
- Center for Immunity and Inflammation, Department of Pathology, Immunology, and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - William C Gause
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
5
|
Li X, Du M, Liu Y, Wang M, Shen Y, Xing J, Zhang L, Zhao Y, Bou G, Bai D, Dugarjaviin M, Xia W. Proteome and metabolomic profile of Mongolian horse follicular fluid during follicle development. Sci Rep 2024; 14:19788. [PMID: 39187528 PMCID: PMC11347562 DOI: 10.1038/s41598-024-66686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 07/03/2024] [Indexed: 08/28/2024] Open
Abstract
During follicular development, changes in the composition of the follicular fluid are synchronized with the development of oocytes. Our aim was to screen the key factors affecting oocyte maturation and optimize the in vitro culture protocol by understanding the changes of proteins and metabolites in follicular fluid. Follicles are divided into three groups according to their diameter (small follicle fluid (SFF): 10 mm < d < 20 mm; medium follicle fluid (MFF): 20 mm < d < 30 mm; large follicle fluid (LFF): 30 mm < d). Proteins and metabolites from the follicular fluid were analyzed by mass spectrometry. The results showed that: in LFF vs MFF, 20 differential abundant protein (DAP) and 88 differential abundant metabolites (DAM) were screened out; In SFF vs MFF, 3 DAPs and 65 DAMs were screened out; In MFF vs SFF, 24 DAPs and 35 DAMs were screened out. The analysis of differential proteins and metabolites showed that glycerophosphate hydrolysis decreased during follicular development, and proteins played a major role in metabolism and binding. In addition, DAMs and DAPs are co-enriched in the "linoleic acid metabolism" pathway. Combinatorial analysis reveals the dynamic profile of follicular fluid during follicular development and provides fundation for further exploring the function of follicular fluid in Mongolian horse.
Collapse
Affiliation(s)
- Xinyu Li
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Ming Du
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yuanyi Liu
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Min Wang
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yingchao Shen
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Jingya Xing
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266000, China
| | - Lei Zhang
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yiping Zhao
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Gerelchimeg Bou
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Dongyi Bai
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Manglai Dugarjaviin
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| | - Wei Xia
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071000, China.
| |
Collapse
|
6
|
Li WZ, Liu XX, Shi YJ, Wang XR, Li L, Tai ML, Yi F. Unveiling the mechanism of high sugar diet induced advanced glycosylation end products damage skin structure via extracellular matrix-receptor interaction pathway. J Cosmet Dermatol 2024; 23:2496-2508. [PMID: 38501159 DOI: 10.1111/jocd.16295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/09/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND AGEs accumulate in the skin as a result of a high-sugar diet and play an important role in the skin aging process. OBJECTIVES The aim of this study was to characterize the mechanism underlying the effect of a high-sugar diet on skin aging damage at a holistic level. METHODS We established a high-sugar diet mouse model to compare and analyze differences in physiological indexes. The effect of a high-sugar diet on skin aging damage was analyzed by means of a transcriptome study and staining of pathological sections. Furthermore, the differences in the protein expression of AGEs and ECM components between the HSD and control groups were further verified by immunohistochemistry. RESULTS The skin in the HSD group mice tended toward a red, yellow, dark, and deep color. In addition, the epidermis was irregular with anomalous phenomena, the epidermis was thinned, and the dermis lost its normal structure and showed vacuolated changes. Transcriptomics results revealed significant downregulation of the ECM-receptor interaction pathway, significant upregulation of the expression of AGEs and significant downregulation of the expression levels of COLI, FN1, LM5, and TNC, among others ECM proteins and ECM receptors. CONCLUSIONS High-sugar diets cause skin aging damage by inducing the accumulation of AGEs, disrupting the expression of ECM proteins and their receptors, and downregulating the ECM-receptor interaction pathway, which affects cellular behavioral functions such as cell proliferation, migration, and adhesion, as well as normal skin tissue structure.
Collapse
Affiliation(s)
- Wan-Zhao Li
- R&D Center, Infinitus (China) Company Ltd, Guangzhou, China
| | - Xiao-Xing Liu
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Yu-Jing Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Rui Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Mei-Ling Tai
- R&D Center, Infinitus (China) Company Ltd, Guangzhou, China
| | - Fan Yi
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
7
|
Nevarez-Mejia J, Pickering H, Sosa RA, Valenzuela NM, Fishbein GA, Baldwin WM, Fairchild RL, Reed EF. Spatial multiomics of arterial regions from cardiac allograft vasculopathy rejected grafts reveal novel insights into the pathogenesis of chronic antibody-mediated rejection. Am J Transplant 2024; 24:1146-1160. [PMID: 38219867 PMCID: PMC11239797 DOI: 10.1016/j.ajt.2024.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Cardiac allograft vasculopathy (CAV) causes late graft failure and mortality after heart transplantation. Donor-specific antibodies (DSAs) lead to chronic endothelial cell injury, inflammation, and arterial intimal thickening. In this study, GeoMx digital spatial profiling was used to analyze arterial areas of interest (AOIs) from CAV+DSA+ rejected cardiac allografts (N = 3; 22 AOIs total). AOIs were categorized based on CAV neointimal thickening and underwent whole transcriptome and protein profiling. By comparing our transcriptomic data with that of healthy control vessels of rapid autopsy myocardial tissue, we pinpointed specific pathways and transcripts indicative of heightened inflammatory profiles in CAV lesions. Moreover, we identified protein and transcriptomic signatures distinguishing CAV lesions exhibiting low and high neointimal lesions. AOIs with low neointima showed increased markers for activated inflammatory infiltrates, endothelial cell activation transcripts, and gene modules involved in metalloproteinase activation and TP53 regulation of caspases. Inflammatory and apoptotic proteins correlated with inflammatory modules in low neointima AOIs. High neointima AOIs exhibited elevated TGFβ-regulated transcripts and modules enriched for platelet activation/aggregation. Proteins associated with growth factors/survival correlated with modules enriched for proliferation/repair in high neointima AOIs. Our findings reveal novel insight into immunological mechanisms mediating CAV pathogenesis.
Collapse
Affiliation(s)
- Jessica Nevarez-Mejia
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Harry Pickering
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Rebecca A Sosa
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Gregory A Fishbein
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - William M Baldwin
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert L Fairchild
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA.
| |
Collapse
|
8
|
Zarén P, Gawlik KI. Thrombospondin-4 deletion does not exacerbate muscular dystrophy in β-sarcoglycan-deficient and laminin α2 chain-deficient mice. Sci Rep 2024; 14:14757. [PMID: 38926599 PMCID: PMC11208443 DOI: 10.1038/s41598-024-65473-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Muscular dystrophy is a group of genetic disorders that lead to muscle wasting and loss of muscle function. Identifying genetic modifiers that alleviate symptoms or enhance the severity of a primary disease helps to understand mechanisms behind disease pathology and facilitates discovery of molecular targets for therapy. Several muscular dystrophies are caused by genetic defects in the components of the dystrophin-glycoprotein adhesion complex (DGC). Thrombospondin-4 overexpression has been shown to mitigate dystrophic disease in mouse models for Duchenne muscular dystrophy (dystrophin deficiency) and limb-girdle muscular dystrophy type 2F (LGMD2F, δ-sarcoglycan deficiency), while deletion of the thrombospondin-4 gene exacerbated the diseases. Hence, thrombospondin-4 has been considered a candidate molecule for therapy of muscular dystrophies involving the DGC. We have investigated whether thrombospondin-4 could act as a genetic modifier for other DGC-associated diseases: limb-girdle muscular dystrophy type 2E (LGMD2E, β-sarcoglycan deficiency) and laminin α2 chain-deficient muscular dystrophy (LAMA2-RD). Deletion of the thrombospondin-4 gene in mouse models for LGMD2E and LAMA2-RD, respectively, did not result in worsening of the dystrophic phenotype. Loss of thrombospondin-4 did not enhance sarcolemma damage and did not impair trafficking of transmembrane receptors integrin α7β1 and dystroglycan in double knockout muscles. Our results suggest that thrombospondin-4 might not be a relevant therapeutic target for all muscular dystrophies involving the DGC. This data also demonstrates that molecular pathology between very similar diseases like LGMD2E and 2F can differ significantly.
Collapse
Affiliation(s)
- Paula Zarén
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, BMC C12, 221 84, Lund, Sweden
| | - Kinga I Gawlik
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, BMC C12, 221 84, Lund, Sweden.
| |
Collapse
|
9
|
Josvai M, Polyak E, Kalluri M, Robertson S, Crone WC, Suzuki M. An engineered in vitro model of the human myotendinous junction. Acta Biomater 2024; 180:279-294. [PMID: 38604466 PMCID: PMC11088524 DOI: 10.1016/j.actbio.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
The myotendinous junction (MTJ) is a vulnerable region at the interface of skeletal muscle and tendon that forms an integrated mechanical unit. This study presents a technique for the spatially restrictive co-culture of human embryonic stem cell (hESC)-derived skeletal myocytes and primary tenocytes for two-dimensional modeling of the MTJ. Micropatterned lanes of extracellular matrix and a 2-well culture chamber define the initial regions of occupation. On day 1, both lines occupy less than 20 % of the initially vacant interstitial zone, referred to henceforth as the junction. Myocyte-tenocyte interdigitations are observed by day 7. Immunocytochemistry reveals enhanced organization and alignment of patterned myocyte and tenocyte features, as well as differential expression of multiple MTJ markers. On day 24, electrically stimulated junction myocytes demonstrate negative contractile strains, while positive tensile strains are exhibited by mechanically passive tenocytes at the junction. Unpatterned tenocytes distal to the junction experience significantly decreased strains in comparison to cells at the interface. Unpatterned myocytes have impaired organization and uncoordinated contractile behavior. These findings suggest that this platform is capable of inducing myocyte-tenocyte junction formation and mechanical coupling similar to the native MTJ, showing transduction of force across the cell-cell interface. STATEMENT OF SIGNIFICANCE: The myotendinous junction (MTJ) is an integrated structure that transduces force across the muscle-tendon boundary, making the region vulnerable to strain injury. Despite the clinical relevance, previous in vitro models of the MTJ lack the structure and mechanical accuracy of the native tissue and have difficulty transmitting force across the cell-cell interface. This study demonstrates an in vitro model of the MTJ, using spatially restrictive cues to inform human myocyte-tenocyte interactions and architecture. The model expressed MTJ markers and developed anisotropic myocyte-tenocyte integrations that resemble the native tissue and allow for force transduction from contracting myocytes to passive tenocyte regions. As such, this study presents a system capable of investigating development, injury, and pathology in the human MTJ.
Collapse
Affiliation(s)
- Mitchell Josvai
- Department of Biomedical Engineering, University of Wisconsin-Madison, Engineering Centers Building, 2126, 1550 Engineering Dr, Madison WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N Orchard St, Madison, WI 53715, USA
| | - Erzsebet Polyak
- Department of Comparative Biosciences, University of Wisconsin-Madison, Veterinary Medicine Bldg, 2015 Linden Dr, Madison, WI 53706, USA
| | - Meghana Kalluri
- Department of Biomedical Engineering, University of Wisconsin-Madison, Engineering Centers Building, 2126, 1550 Engineering Dr, Madison WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N Orchard St, Madison, WI 53715, USA
| | - Samantha Robertson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Veterinary Medicine Bldg, 2015 Linden Dr, Madison, WI 53706, USA
| | - Wendy C Crone
- Department of Biomedical Engineering, University of Wisconsin-Madison, Engineering Centers Building, 2126, 1550 Engineering Dr, Madison WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N Orchard St, Madison, WI 53715, USA; The Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705, USA; Department of Nuclear Engineering and Engineering Physics, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706, USA; Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Avenue, Madison, WI 53706, USA.
| | - Masatoshi Suzuki
- Department of Biomedical Engineering, University of Wisconsin-Madison, Engineering Centers Building, 2126, 1550 Engineering Dr, Madison WI 53706, USA; Department of Comparative Biosciences, University of Wisconsin-Madison, Veterinary Medicine Bldg, 2015 Linden Dr, Madison, WI 53706, USA; The Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705, USA.
| |
Collapse
|
10
|
Genaro K, Luo ZD. Pathophysiological roles of thrombospondin-4 in disease development. Semin Cell Dev Biol 2024; 155:66-73. [PMID: 37391348 PMCID: PMC10753034 DOI: 10.1016/j.semcdb.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Thrombospondin-4 (TSP-4) belongs to the extracellular matrix glycoprotein family of thrombospondins (TSPs). The multidomain, pentameric structure of TSP-4 allows its interactions with numerous extracellular matrix components, proteins and signaling molecules that enable its modulation to various physiological and pathological processes. Characterization of TSP-4 expression under development and pathogenesis of disorders has yielded important insights into mechanisms underlying the unique role of TSP-4 in mediating various processes including cell-cell, cell-extracellular matrix interactions, cell migration, proliferation, tissue remodeling, angiogenesis, and synaptogenesis. Maladaptation of these processes in response to pathological insults and stress can accelerate the development of disorders including skeletal dysplasia, osteoporosis, degenerative joint disease, cardiovascular diseases, tumor progression/metastasis and neurological disorders. Overall, the diverse functions of TSP-4 suggest that it may be a potential marker or therapeutic target for prognosis, diagnosis, and treatment of various pathological conditions upon further investigations. This review article highlights recent findings on the role of TSP-4 in both physiological and pathological conditions with a focus on what sets it apart from other TSPs.
Collapse
Affiliation(s)
- Karina Genaro
- Department of Anesthesiology & Perioperative Care, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Z David Luo
- Department of Anesthesiology & Perioperative Care, School of Medicine, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
11
|
Zhang C, Li H, Jiang M, Zhang Q, Chen J, Jia J, Zhang Z, Yu H, Zhang J, Zhang J. Hypoxic microenvironment promotes dermal fibroblast migration and proliferation via a BNIP3-autophagy pathway. FEBS J 2024; 291:358-375. [PMID: 37873601 DOI: 10.1111/febs.16985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 08/18/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Upon injury, nearby cells, including fibroblasts at the wound edge, are often found in a hypoxic microenvironment. Nevertheless, the influence of hypoxia on skin fibroblasts is poorly understood. Using previously established mouse full-thickness wounds, we show that Bcl-2 and adenovirus E1B 19-kDa interacting protein 3 (BNIP3) expression was significantly elevated at the wound edge, and hypoxia treatment enhanced BNIP3 expression in fibroblasts. Interestingly, BNIP3 promoted the migration and proliferation, as well as the activation of autophagy, in fibroblasts under hypoxia. The hypoxia-induced autophagy was found to induce the migration and proliferation of fibroblasts, a process that could be reversed by knocking down the autophagy-related gene for autophagy protein 5, ATG5. Furthermore, hypoxia-inducible factor 1 subunit alpha (HIF-1α) was significantly upregulated in fibroblasts under hypoxia treatment, and HIF-1α knockdown attenuated the hypoxia-induced expression of BNIP3 and the migration and proliferation of fibroblasts. Altogether, our results establish the hypoxia-BNIP3-autophagy signaling axis as a newly identified regulatory mechanism of skin fibroblast migration and proliferation upon wounding. Autophagy intervening might thus represent a promising therapeutic strategy for patients with chronic refractory wounds.
Collapse
Affiliation(s)
- Can Zhang
- Department of Plastic Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hongmei Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Min Jiang
- Department of Plastic Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jigang Chen
- Department of Burn and Plastic Surgery, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jiezhi Jia
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ze Zhang
- Department of Plastic Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Huiqing Yu
- Department of Geriatric Oncology, Chongqing University Cancer Hospital, Chongqing, China
- Department of Palliative Care, Chongqing University Cancer Hospital, Chongqing, China
- Department of Clinical Nutrition, Chongqing University Cancer Hospital, Chongqing, China
| | - Jiaping Zhang
- Department of Plastic Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junhui Zhang
- Department of Geriatric Oncology, Chongqing University Cancer Hospital, Chongqing, China
- Department of Palliative Care, Chongqing University Cancer Hospital, Chongqing, China
- Department of Clinical Nutrition, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
12
|
McCabe MC, Okamura DM, Erickson CB, Perry BW, Brewer CM, Nguyen ED, Saviola AJ, Majesky MW, Hansen KC. ECM-Focused Proteomic Analysis of Ear Punch Regeneration in Acomys Cahirinus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561940. [PMID: 37873317 PMCID: PMC10592745 DOI: 10.1101/2023.10.11.561940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In mammals, significant injury is generally followed by the formation of a fibrotic scar which provides structural integrity but fails to functionally restore damaged tissue. Spiny mice of the genus Acomys represent the first example of full skin autotomy in mammals. Acomys cahirinus has evolved extremely weak skin as a strategy to avoid predation and is able to repeatedly regenerate healthy tissue without scar after severe skin injury or full-thickness ear punches. Extracellular matrix (ECM) composition is a critical regulator of wound repair and scar formation and previous studies have suggested that alterations in its expression may be responsible for the differences in regenerative capacity observed between Mus musculus and A. cahirinus , yet analysis of this critical tissue component has been limited in previous studies by its insolubility and resistance to extraction. Here, we utilize a 2-step ECM-optimized extraction to perform proteomic analysis of tissue composition during wound repair after full-thickness ear punches in A. cahirinus and M. musculus from weeks 1 to 4 post-injury. We observe changes in a wide range of ECM proteins which have been previously implicated in wound regeneration and scar formation, including collagens, coagulation and provisional matrix proteins, and matricryptic signaling peptides. We additionally report differences in crosslinking enzyme activity and ECM protein solubility between Mus and Acomys. Furthermore, we observed rapid and sustained increases in CD206, a marker of pro-regenerative M2 macrophages, in Acomys, whereas little or no increase in CD206 was detected in Mus. Together, these findings contribute to a comprehensive understanding of tissue cues which drive the regenerative capacity of Acomys and identify a number of potential targets for future pro-regenerative therapies.
Collapse
|
13
|
Mack KL, Talbott HE, Griffin MF, Parker JBL, Guardino NJ, Spielman AF, Davitt MF, Mascharak S, Downer M, Morgan A, Valencia C, Akras D, Berger MJ, Wan DC, Fraser HB, Longaker MT. Allele-specific expression reveals genetic drivers of tissue regeneration in mice. Cell Stem Cell 2023; 30:1368-1381.e6. [PMID: 37714154 PMCID: PMC10592051 DOI: 10.1016/j.stem.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 06/16/2023] [Accepted: 08/22/2023] [Indexed: 09/17/2023]
Abstract
In adult mammals, skin wounds typically heal by scarring rather than through regeneration. In contrast, "super-healer" Murphy Roths Large (MRL) mice have the unusual ability to regenerate ear punch wounds; however, the molecular basis for this regeneration remains elusive. Here, in hybrid crosses between MRL and non-regenerating mice, we used allele-specific gene expression to identify cis-regulatory variation associated with ear regeneration. Analyzing three major cell populations (immune, fibroblast, and endothelial), we found that genes with cis-regulatory differences specifically in fibroblasts were associated with wound-healing pathways and also co-localized with quantitative trait loci for ear wound-healing. Ectopic treatment with one of these proteins, complement factor H (CFH), accelerated wound repair and induced regeneration in typically fibrotic wounds. Through single-cell RNA sequencing (RNA-seq), we observed that CFH treatment dramatically reduced immune cell recruitment to wounds, suggesting a potential mechanism for CFH's effect. Overall, our results provide insights into the molecular drivers of regeneration with potential clinical implications.
Collapse
Affiliation(s)
- Katya L Mack
- Stanford University, Department of Biology, Stanford, CA, USA
| | - Heather E Talbott
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
| | - Michelle F Griffin
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Jennifer B L Parker
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
| | - Nicholas J Guardino
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Amanda F Spielman
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Michael F Davitt
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Shamik Mascharak
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
| | - Mauricio Downer
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Annah Morgan
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Caleb Valencia
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Deena Akras
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Mark J Berger
- Stanford University, Department of Computer Science, Stanford, CA 94305, USA
| | - Derrick C Wan
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA
| | - Hunter B Fraser
- Stanford University, Department of Biology, Stanford, CA, USA.
| | - Michael T Longaker
- Stanford School of Medicine, Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford, CA, USA; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA.
| |
Collapse
|
14
|
Raja E, Clarin MTRDC, Yanagisawa H. Matricellular Proteins in the Homeostasis, Regeneration, and Aging of Skin. Int J Mol Sci 2023; 24:14274. [PMID: 37762584 PMCID: PMC10531864 DOI: 10.3390/ijms241814274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Matricellular proteins are secreted extracellular proteins that bear no primary structural functions but play crucial roles in tissue remodeling during development, homeostasis, and aging. Despite their low expression after birth, matricellular proteins within skin compartments support the structural function of many extracellular matrix proteins, such as collagens. In this review, we summarize the function of matricellular proteins in skin stem cell niches that influence stem cells' fate and self-renewal ability. In the epidermal stem cell niche, fibulin 7 promotes epidermal stem cells' heterogeneity and fitness into old age, and the transforming growth factor-β-induced protein ig-h3 (TGFBI)-enhances epidermal stem cell growth and wound healing. In the hair follicle stem cell niche, matricellular proteins such as periostin, tenascin C, SPARC, fibulin 1, CCN2, and R-Spondin 2 and 3 modulate stem cell activity during the hair cycle and may stabilize arrector pili muscle attachment to the hair follicle during piloerections (goosebumps). In skin wound healing, matricellular proteins are upregulated, and their functions have been examined in various gain-and-loss-of-function studies. However, much remains unknown concerning whether these proteins modulate skin stem cell behavior, plasticity, or cell-cell communications during wound healing and aging, leaving a new avenue for future studies.
Collapse
Affiliation(s)
- Erna Raja
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
| | - Maria Thea Rane Dela Cruz Clarin
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
- Ph.D. Program in Humanics, School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan; (E.R.); (M.T.R.D.C.C.)
| |
Collapse
|
15
|
Rapp AE, Zaucke F. Cartilage extracellular matrix-derived matrikines in osteoarthritis. Am J Physiol Cell Physiol 2023; 324:C377-C394. [PMID: 36571440 DOI: 10.1152/ajpcell.00464.2022] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Osteoarthritis (OA) is among the most frequent diseases of the musculoskeletal system. Degradation of cartilage extracellular matrix (ECM) is a hallmark of OA. During the degradation process, intact/full-length proteins and proteolytic fragments are released which then might induce different downstream responses via diverse receptors, therefore leading to different biological consequences. Collagen type II and the proteoglycan aggrecan are the most abundant components of the cartilage ECM. However, over the last decades, a large number of minor components have been identified and for some of those, a role in the manifold processes associated with OA has already been demonstrated. To date, there is still no therapy able to halt or cure OA. A better understanding of the matrikine landscape occurring with or even preceding obvious degenerative changes in joint tissues is needed and might help to identify molecules that could serve as biomarkers, druggable targets, or even be blueprints for disease modifying drug OA drugs. For this narrative review, we screened PubMed for relevant literature in the English language and summarized the current knowledge regarding the function of selected ECM molecules and the derived matrikines in the context of cartilage and OA.
Collapse
Affiliation(s)
- Anna E Rapp
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
16
|
Mäemets-Allas K, Klaas M, Cárdenas-León CG, Arak T, Kankuri E, Jaks V. Stimulation with THBS4 activates pathways that regulate proliferation, migration and inflammation in primary human keratinocytes. Biochem Biophys Res Commun 2023; 642:97-106. [PMID: 36566568 DOI: 10.1016/j.bbrc.2022.12.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
As in other mammalian tissues, the extracellular matrix (ECM) of skin functions as mechanical support and regulative environment that guides the behavior of the cells. ECM is a gel-like structure that is primarily composed of structural and nonstructural proteins. While the content of structural proteins is stable, the level of nonstructural ECM proteins, such as thrombospondin-4 (THBS4), is dynamically regulated. In a previous work we demonstrated that THBS4 stimulated cutaneous wound healing. In this work we discovered that in addition to proliferation, THBS4 stimulated the migration of primary keratinocytes in 3D. By using a proteotransciptomic approach we found that stimulation of keratinocytes with THBS4 regulated the activity of signaling pathways linked to proliferation, migration, inflammation and differentiation. Interestingly, some of the regulated genes (eg IL37, TSLP) have been associated with the pathogenesis of atopic dermatitis (AD). We concluded that THBS4 is a promising candidate for novel wound healing therapies and suggest that there is a potential convergence of pathways that stimulate cutaneous wound healing with those active in the pathogenesis of inflammatory skin diseases.
Collapse
Affiliation(s)
- Kristina Mäemets-Allas
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Mariliis Klaas
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | | | - Terje Arak
- Tartu University Hospital, Surgery Clinic, Puusepa 8, 50406, Tartu, Estonia
| | - Esko Kankuri
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, 51010, Tartu, Estonia; Tartu University Hospital, Dermatology Clinic, Raja 31, 50417, Tartu, Estonia.
| |
Collapse
|
17
|
Cárdenas-León CG, Mäemets-Allas K, Klaas M, Lagus H, Kankuri E, Jaks V. Matricellular proteins in cutaneous wound healing. Front Cell Dev Biol 2022; 10:1073320. [PMID: 36506087 PMCID: PMC9730256 DOI: 10.3389/fcell.2022.1073320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cutaneous wound healing is a complex process that encompasses alterations in all aspects of the skin including the extracellular matrix (ECM). ECM consist of large structural proteins such as collagens and elastin as well as smaller proteins with mainly regulative properties called matricellular proteins. Matricellular proteins bind to structural proteins and their functions include but are not limited to interaction with cell surface receptors, cytokines, or protease and evoking a cellular response. The signaling initiated by matricellular proteins modulates differentiation and proliferation of cells having an impact on the tissue regeneration. In this review we give an overview of the matricellular proteins that have been found to be involved in cutaneous wound healing and summarize the information known to date about their functions in this process.
Collapse
Affiliation(s)
| | - Kristina Mäemets-Allas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mariliis Klaas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia,Dermatology Clinic, Tartu University Clinics, Tartu, Estonia,*Correspondence: Viljar Jaks,
| |
Collapse
|
18
|
Zhang Z, Chen H, Shen W, Deng J, Bai C, Xiao Y, Lyu L. Localized delivery of curcumin by thermosensitive hydrogels for promoting wound healing. J Cosmet Dermatol 2022; 21:5081-5091. [PMID: 35384267 DOI: 10.1111/jocd.14967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Curcumin can promote wound healing, but its drug delivery medium needs to be improved further. OBJECTIVES A curcumin-loaded thermosensitive hydrogel was prepared, its characterization was evaluated, and its promoting effect on wound healing was observed. METHODS Curcumin-loaded thermosensitive hydrogels were prepared with different percentages of poloxamer 188 and poloxamer 407. A small tube inversion assay was used to observe the sol-gel transition temperature, and a rotational rheometer was used to detect the sol viscosity, sol-gel phase transition temperature and phase transition time. The microstructure of the gel was observed by scanning electron microscopy, and Fourier infrared spectroscopy was used to evaluate whether curcumin was successfully loaded. Finally, its promoting effect on wound healing was observed in vivo and in vitro. RESULTS Poloxamer 407 24% and poloxamer 188 1% were selected to prepare curcumin-loaded thermosensitive hydrogels. After 60 ± 15 s at 32 °C, the sol-gel transition process was completed, with certain elastic behavior and solid-like rheological properties. Scanning electron microscopy showed that the pores of the curcumin-P407/P188 thermosensitive hydrogel were interconnected, with an average pore size ranging from 5 to 10 μm. Hydrogels showed a higher swelling ratio. Fourier transform infrared spectroscopy showed that curcumin had been incorporated into the hydrogel. Live/dead cell assays suggested that the hydrogel was not toxic to fibroblasts. Curcumin-loaded thermosensitive hydrogels can promote an increase in S-phase fibroblasts and improve wound healing. CONCLUSIONS Curcumin-loaded P407/P188 thermosensitive hydrogel improves wound healing. More in-depth research is needed in the future.
Collapse
Affiliation(s)
- Zhigang Zhang
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, Yunnan, China
| | - Huiya Chen
- Department of Dermatology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wanlu Shen
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, Yunnan, China
| | - Juqing Deng
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, Yunnan, China
| | - Chunling Bai
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, Yunnan, China
| | - Yun Xiao
- Department of Dermatology, The Third Affiliated Hospital, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Lechun Lyu
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
19
|
Cárdenas-León CG, Klaas M, Mäemets-Allas K, Arak T, Eller M, Jaks V. Olfactomedin 4 regulates migration and proliferation of immortalized non-transformed keratinocytes through modulation of the cell cycle machinery and actin cytoskeleton remodelling. Exp Cell Res 2022; 415:113111. [PMID: 35337817 DOI: 10.1016/j.yexcr.2022.113111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 12/22/2022]
Abstract
Olfactomedin 4 (OLFM4), a multifunctional matricellular protein, is involved in regulation of angiogenesis, innate immunity, inflammation, tumorigenesis and metastasis formation via modulation of important cellular processes like adhesion, proliferation, differentiation as well as apoptosis. In our previous work we demonstrated the upregulation of OLFM4 during liver regeneration and cutaneous wound healing. Here we studied the outcomes of OLFM4 downregulation in human immortalized keratinocytes - the HaCaT cells. The suppression of OLFM4 inhibited migration but enhanced the proliferation of these cells. By using proteomic, and phosphoproteomic analysis, we found that OLFM4 downregulation induced changes in the levels of 184 proteins and 348 phosphosites. An integrated pathway analysis suggested that the increased phosphorylation of CDK7 at Ser164 and Thr170 may serve as the key event in the activation of CDK2 and consequent activation of cell cycle progression. Furthermore, the decrease in GIT1 and WAVE2 protein levels were connected to the disorganization of the actin cytoskeleton, reduction of lamellipodia formation at the leading edge of HaCaT cells, and decrease in their migration capacity.
Collapse
Affiliation(s)
| | - Mariliis Klaas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Kristina Mäemets-Allas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Terje Arak
- Tartu University Hospital, Surgery Clinic, Puusepa 8, 50406, Tartu, Estonia
| | - Mart Eller
- Tartu University Hospital, Surgery Clinic, Puusepa 8, 50406, Tartu, Estonia
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Estonia; Dermatology Clinic, Tartu University Clinics, Tartu, Estonia.
| |
Collapse
|
20
|
Klaas M, Mäemets-Allas K, Heinmäe E, Lagus H, Arak T, Eller M, Kingo K, Kankuri E, Jaks V. Olfactomedin-4 improves cutaneous wound healing by promoting skin cell proliferation and migration through POU5F1/OCT4 and ESR1 signalling cascades. Cell Mol Life Sci 2022; 79:157. [PMID: 35218417 PMCID: PMC8882121 DOI: 10.1007/s00018-022-04202-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/11/2022]
Abstract
Olfactomedin-4 (OLFM4) is an olfactomedin-domain-containing glycoprotein, which regulates cell adhesion, proliferation, gastrointestinal inflammation, innate immunity and cancer metastasis. In the present study we investigated its role in skin regeneration. We found that OLFM4 expression is transiently upregulated in the proliferative phase of cutaneous wound healing in humans as well as in mice. Moreover, a significant increase in OLFM4 expression was detected in the skin of lesional psoriasis, a chronic inflammatory disease characterized by keratinocyte hyperproliferation. In vitro experiments demonstrated that OLFM4 selectively stimulated keratinocyte proliferation and increased both keratinocyte and fibroblast migration. Using proteotranscriptomic pathway analysis we revealed that transcription factors POU5F1/OCT4 and ESR1 acted as hubs for OLFM4-induced signalling in keratinocytes. In vivo experiments utilizing mouse splinted full-thickness cutaneous wound healing model showed that application of recombinant OLFM4 protein can significantly improve wound healing efficacy. Taken together, our results suggest that OLFM4 acts as a transiently upregulated inflammatory signal that promotes wound healing by regulating both dermal and epidermal cell compartments of the skin.
Collapse
Affiliation(s)
- Mariliis Klaas
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Kristina Mäemets-Allas
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Elizabeth Heinmäe
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Terje Arak
- Surgery Clinic, Tartu University Hospital, Puusepa 8, 50406, Tartu, Estonia
| | - Mart Eller
- Surgery Clinic, Tartu University Hospital, Puusepa 8, 50406, Tartu, Estonia
| | - Külli Kingo
- Dermatology Clinic, Tartu University Hospital, Raja 31, 50417, Tartu, Estonia
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, 51010, Tartu, Estonia. .,Dermatology Clinic, Tartu University Hospital, Raja 31, 50417, Tartu, Estonia.
| |
Collapse
|