1
|
Patel MM, Gerakopoulos V, Lettenmaier B, Petsouki E, Zimmerman KA, Sayer JA, Tsiokas L. SOX9-dependent fibrosis drives renal function in nephronophthisis. EMBO Mol Med 2025:10.1038/s44321-025-00233-3. [PMID: 40211043 DOI: 10.1038/s44321-025-00233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 04/12/2025] Open
Abstract
Fibrosis is a key feature of a broad spectrum of cystic kidney diseases, especially autosomal recessive kidney disorders such as nephronophthisis (NPHP). However, its contribution to kidney function decline and the underlying molecular mechanism(s) remains unclear. Here, we show that kidney-specific deletion of Fbxw7, the recognition receptor of the SCFFBW7 E3 ubiquitin ligase, results in a juvenile-adult NPHP-like pathology characterized by slow-progressing corticomedullary cysts, tubular degeneration, severe fibrosis, and gradual loss of kidney function. Expression levels of SOX9, a known substrate of FBW7, and WNT4, a potent pro-fibrotic factor and downstream effector of SOX9, were elevated upon loss of FBW7. Heterozygous deletion of Sox9 in compound mutant mice led to the normalization of WNT4 levels, reduced fibrosis, and preservation of kidney function without significant effects on cystic dilatation and tubular degeneration. These data suggest that FBW7-SOX9-WNT4-induced fibrosis drives kidney function decline in NPHP and, possibly, other forms of autosomal recessive kidney disorders.
Collapse
Affiliation(s)
| | - Vasileios Gerakopoulos
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Bryan Lettenmaier
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eleni Petsouki
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kurt A Zimmerman
- Department of Internal Medicine, Division of Nephrology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - John A Sayer
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, UK
| | - Leonidas Tsiokas
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
2
|
Xing YL, Panovska D, Park JW, Grossauer S, Koeck K, Bui B, Nasajpour E, Nirschl JJ, Feng ZP, Cheung P, Habib P, Wei R, Wang J, Thomason W, Xiu J, Beck A, Weber K, Harter PN, Lim M, Mahaney K, Prolo LM, Grant GA, Ji X, Walsh KM, Mulcahy Levy JM, Hambardzumyan D, Petritsch CK. BRAF/MEK Inhibition Induces Cell State Transitions Boosting Immune Checkpoint Sensitivity in BRAFV600E -mutant Glioma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.02.03.526065. [PMID: 39416185 PMCID: PMC11482820 DOI: 10.1101/2023.02.03.526065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Resistance to BRAF plus MEK inhibition (BRAFi+MEKi) in BRAFV600E-mutant gliomas drives rebound, progression, and high mortality, yet it remains poorly understood. This study addresses the urgent need to develop treatments for BRAFi+MEKi-resistant glioma in novel mouse models and patient-derived materials. BRAFi+MEKi reveals glioma plasticity by heightening cell state transitions along glial differentiation trajectories, giving rise to astrocyte- and immunomodulatory oligodendrocyte (OL)-like states. PD-L1 upregulation in OL-like cells links cell state transitions to tumor evasion, possibly orchestrated by Galectin-3. BRAFi+MEKi induces interferon response signatures, tumor infiltration, and suppression of T cells. Combining BRAFi+MEKi with immune checkpoint inhibition enhances survival in a T cell-dependent manner, reinvigorates T cells, and outperforms individual or sequential therapies in mice. Elevated PD-L1 expression in BRAF-mutant versus BRAF-wildtype glioblastoma supports the rationale for PD-1 inhibition in patients. These findings underscore the potential of targeting glioma plasticity and highlight combination strategies to overcome therapy resistance in BRAFV600E-mutant HGG.
Collapse
|
3
|
Yang M, Xiang H, Luo G. Targeting Protein Kinase, Membrane-Associated Tyrosine/Threonine 1 (PKMYT1) for Precision Cancer Therapy: From Discovery to Clinical Trial. J Med Chem 2024; 67:17997-18016. [PMID: 39383322 DOI: 10.1021/acs.jmedchem.4c01619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
\Protein kinase membrane-associated tyrosine/threonine 1 (PKMYT1), an overlooked member of the WEE family responsible for regulating cell cycle transition, has recently emerged as a compelling therapeutic target for precision cancer therapy due to its established synthetic lethal relationship with CCNE1 (cyclin E1) amplification. Since the first-in-class selective PKMYT1 inhibitor, RP-6306, entered clinical trials in 2021, the field has experienced renewed interest underscored by the growing number of inhibitor patents and the exploration of additional gene alterations, such as KRAS/p53 mutations, FBXW7 mutation, and PPP2R1A mutation, as novel synthetic lethal partners. This perspective summarizes, for the first time, the PKMYT1 structure, function, and inhibitors in both the literature and patent applications reported to date. Compounds are described focusing on their design and optimization process, structural features, and biological activity with the aim to promoting further drug discovery efforts targeting PKMYT1 as a potential precision therapy.
Collapse
Affiliation(s)
- Ming Yang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Hua Xiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Guoshun Luo
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
4
|
Bellon M, Yeh CH, Bai XT, Nicot C. The HTLV-I oncoprotein Tax inactivates the tumor suppressor FBXW7. J Virol 2024; 98:e0040524. [PMID: 38874362 PMCID: PMC11264933 DOI: 10.1128/jvi.00405-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-I) is the etiological agent of adult T-cell leukemia (ATL). Mutational analysis has demonstrated that the tumor suppressor, F-box and WD repeat domain containing 7 (FBXW7/FBW7/CDC4), is mutated in primary ATL patients. However, even in the absence of genetic mutations, FBXW7 substrates are stabilized in ATL cells, suggesting additional mechanisms can prevent FBXW7 functions. Here, we report that the viral oncoprotein Tax represses FBXW7 activity, resulting in the stabilization of activated Notch intracellular domain, c-MYC, Cyclin E, and myeloid cell leukemia sequence 1 (BCL2-related) (Mcl-1). Mechanistically, we demonstrate that Tax directly binds to FBXW7 in the nucleus, effectively outcompeting other targets for binding to FBXW7, resulting in decreased ubiquitination and degradation of FBXW7 substrates. In support of the nuclear role of Tax, a non-degradable form of the nuclear factor kappa B subunit 2 (NFκB2/p100) was found to delocalize Tax to the cytoplasm, thereby preventing Tax interactions with FBXW7 and Tax-mediated inhibition of FBXW7. Finally, we characterize a Tax mutant that is unable to interact with FBXW7, unable to block FBXW7 tumor suppressor functions, and unable to effectively transform fibroblasts. These results demonstrate that HTLV-I Tax can inhibit FBXW7 functions without genetic mutations to promote an oncogenic state. These results suggest that Tax-mediated inhibition of FBXW7 is likely critical during the early stages of the cellular transformation process. IMPORTANCE F-box and WD repeat domain containing 7 (FBXW7), a critical tumor suppressor of human cancers, is frequently mutated or epigenetically suppressed. Loss of FBXW7 functions is associated with stabilization and increased expression of oncogenic factors such as Cyclin E, c-Myc, Mcl-1, mTOR, Jun, and Notch. In this study, we demonstrate that the human retrovirus human T-cell leukemia virus type 1 oncoprotein Tax directly interacts with FBXW7, effectively outcompeting other targets for binding to FBXW7, resulting in decreased ubiquitination and degradation of FBXW7 cellular substrates. We further demonstrate that a Tax mutant unable to interact with and inactivate FBXW7 loses its ability to transform primary fibroblasts. Collectively, our results describe a novel mechanism used by a human tumor virus to promote cellular transformation.
Collapse
Affiliation(s)
- Marcia Bellon
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Chien-hung Yeh
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xue Tao Bai
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
5
|
Jeon SJ, Chung KC. The SCF-FBW7β E3 ligase mediates ubiquitination and degradation of the serine/threonine protein kinase PINK1. J Biol Chem 2024; 300:107198. [PMID: 38508312 PMCID: PMC11026729 DOI: 10.1016/j.jbc.2024.107198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Understanding the mechanisms that govern the stability of functionally crucial proteins is essential for various cellular processes, development, and overall cell viability. Disturbances in protein homeostasis are linked to the pathogenesis of neurodegenerative diseases. PTEN-induced kinase 1 (PINK1), a protein kinase, plays a significant role in mitochondrial quality control and cellular stress response, and its mutated forms lead to early-onset Parkinson's disease. Despite its importance, the specific mechanisms regulating PINK1 protein stability have remained unclear. This study reveals a cytoplasmic interaction between PINK1 and F-box and WD repeat domain-containing 7β (FBW7β) in mammalian cells. FBW7β, a component of the Skp1-Cullin-1-F-box protein complex-type ubiquitin ligase, is instrumental in recognizing substrates. Our findings demonstrate that FBW7β regulates PINK1 stability through the Skp1-Cullin-1-F-box protein complex and the proteasome pathway. It facilitates the K48-linked polyubiquitination of PINK1, marking it for degradation. When FBW7 is absent, PINK1 accumulates, leading to heightened mitophagy triggered by carbonyl cyanide 3-chlorophenylhydrazone treatment. Moreover, exposure to the toxic compound staurosporine accelerates PINK1 degradation via FBW7β, correlating with increased cell death. This study unravels the intricate mechanisms controlling PINK1 protein stability and sheds light on the novel role of FBW7β. These findings deepen our understanding of PINK1-related pathologies and potentially pave the way for therapeutic interventions.
Collapse
Affiliation(s)
- Seo Jeong Jeon
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
6
|
Di Fiore R, Suleiman S, Drago-Ferrante R, Subbannayya Y, Suleiman S, Vasileva-Slaveva M, Yordanov A, Pentimalli F, Giordano A, Calleja-Agius J. The Role of FBXW7 in Gynecologic Malignancies. Cells 2023; 12:1415. [PMID: 37408248 DOI: 10.3390/cells12101415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
The F-Box and WD Repeat Domain Containing 7 (FBXW7) protein has been shown to regulate cellular growth and act as a tumor suppressor. This protein, also known as FBW7, hCDC4, SEL10 or hAGO, is encoded by the gene FBXW7. It is a crucial component of the Skp1-Cullin1-F-box (SCF) complex, which is a ubiquitin ligase. This complex aids in the degradation of many oncoproteins, such as cyclin E, c-JUN, c-MYC, NOTCH, and MCL1, via the ubiquitin-proteasome system (UPS). The FBXW7 gene is commonly mutated or deleted in numerous types of cancer, including gynecologic cancers (GCs). Such FBXW7 mutations are linked to a poor prognosis due to increased treatment resistance. Hence, detection of the FBXW7 mutation may possibly be an appropriate diagnostic and prognostic biomarker that plays a central role in determining suitable individualized management. Recent studies also suggest that, under specific circumstances, FBXW7 may act as an oncogene. There is mounting evidence indicating that the aberrant expression of FBXW7 is involved in the development of GCs. The aim of this review is to give an update on the role of FBXW7 as a potential biomarker and also as a therapeutic target for novel treatments, particularly in the management of GCs.
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta
| | | | - Yashwanth Subbannayya
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Sarah Suleiman
- Whipps Cross Hospital, Barts Health NHS Trust, Leytonstone, London E11 1NR, UK
| | - Mariela Vasileva-Slaveva
- Department of Breast Surgery, "Dr. Shterev" Hospital, 1330 Sofia, Bulgaria
- Research Institute, Medical University Pleven, 5800 Pleven, Bulgaria
- Bulgarian Breast and Gynecological Cancer Association, 1784 Sofia, Bulgaria
| | - Angel Yordanov
- Department of Gynecological Oncology, Medical University Pleven, 5800 Pleven, Bulgaria
| | - Francesca Pentimalli
- Department of Medicine and Surgery, LUM University "Giuseppe DeGennaro", 70010 Casamassima, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta
| |
Collapse
|
7
|
Liu Y, Chen H, Bao H, Zhang J, Wu R, Zhu L. Comprehensive characterization of FBXW7 mutational and clinicopathological profiles in human colorectal cancers. Front Oncol 2023; 13:1154432. [PMID: 37064111 PMCID: PMC10091464 DOI: 10.3389/fonc.2023.1154432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundFBXW7 is recognized as a critical tumor suppressor gene and a component of the ubiquitin-proteasome system, mediating the degradation of multiple oncogenic proteins, including c-MYC, Cyclin E, c-Jun, Notch, p53. Around 16% of colorectal cancer (CRC) patients carried FBXW7 somatic mutations, while a comprehensive characterization of FBXW7 somatic mutations in CRC is still lacking.MethodsColorectal cancer patients with tumor samples and matching white blood cell samples in the past five years were screened and DNA sequenced. DNA sequencing data of MSK MetTropism cohort and RNA sequencing data of TCGA COAD cohort were analyzed.ResultsWe discovered that the FBXW7 mutations were associated with higher tumor mutation burden (TMB), higher microsatellite instability (MSI) score, and lower chromosomal instability (CIN) score. Patients with FBXW7 mutations showed better overall survival (HR: 0.67; 95%CI: 0.55-0.80, P < 0.001). However, patients with FBXW7 R465C mutation displayed worse overall survival in multi-variate cox analysis when compared with patients carrying other FBXW7 mutations (HR: 1.6; 95%CI: 1.13-3.1, P = 0.015), and with all other patients (HR: 1.87; 95%CI: 0.99-2.5, P = 0.053). Moreover, in MSI patients, the FBXW7 mutated group showed higher M1 macrophage, CD8+ T cell, and regulatory T cell (Tregs) infiltration rates, and significant enrichment of multiple immune-related gene sets, including interferon-gamma response, interferon-alpha response, IL6 JAK STAT3 signaling, p53 pathway.ConclusionThis analysis comprehensively identified FBXW7 alterations in colorectal cancer patients and uncovered the molecular, clinicopathological, and immune-related patterns of FBXW7-altered CRC patients.
Collapse
Affiliation(s)
- Yiping Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Hanlin Chen
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Hua Bao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Jinfeng Zhang
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Runda Wu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Runda Wu, ; Lingjun Zhu,
| | - Lingjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Runda Wu, ; Lingjun Zhu,
| |
Collapse
|
8
|
Kang HS, Park HY, Lim H, Son IT, Kim MJ, Kim NY, Kim MJ, Nam ES, Cho SJ, Kwon MJ. Different miRNAs Related to FBXW7 Mutations or High Mitotic Indices Contribute to Rectal Neuroendocrine Tumors: A Pilot Study. Int J Mol Sci 2023; 24:ijms24076329. [PMID: 37047300 PMCID: PMC10093831 DOI: 10.3390/ijms24076329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Recent studies suggest that miRNA may be involved in the development of rectal neuroendocrine tumors (NETs). We explored the frequency of clinicopathologically relevant mutations and miRNA expression in rectal NETs to examine molecular profiles related to prognosis and behavior. Twenty-four eligible specimens with endoscopically excised rectal NETs were selected. Next-generation sequencing and an miRNA expression assay were used to evaluate the expression profile relevant to common genetic mutations in rectal NETs. Kyoto Encyclopedia of Genes and Genomes analysis predicted that the possible target signaling pathways were correlated with dysregulated miRNAs. Nineteen rectal NETs harbored more than one mutation in the 24 cancer-related genes. Seven miRNAs (hsa-miR-769-5p, hsa-miR-221-3p, hsa-miR-34a-5p, hsa-miR-181c-5p, hsa-miR-1246, hsa-miR-324-5p, and hsa-miR-361-3p) were significantly down-regulated in tumors harboring the FBWX7 mutation. Unsupervised hierarchical clustering analysis showed that up-regulation of these seven miRNAs may result in high mitotic indices, indicating the role of miRNAs in tumor progression. Among the down-regulated miRNAs, hsa-miR-769-5p was strongly correlated with extracellular matrix–receptor interaction and lysine degradation. Among the clinicopathological factors, up-regulated hsa-miR-3934-5p was linked to an increased mitotic count. No change in miRNA expression was associated with a tumor size >1 cm, lymphovascular invasion, or Ki-67 index. In summary, we identified different miRNA signatures involved in FBXW7 mutations or high mitotic indices in rectal NETs, which may play a critical role in tumor behavior.
Collapse
Affiliation(s)
- Ho Suk Kang
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| | - Ha Young Park
- Department of Pathology, Busan Paik Hospital, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Hyun Lim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| | - Il Tae Son
- Department of Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| | - Min-Jeong Kim
- Department of Radiology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| | - Nan Young Kim
- Hallym Institute of Translational Genomics and Bioinformatics, Hallym University Medical Center, Anyang 14068, Republic of Korea
| | - Min Jeong Kim
- Department of Surgery, Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea
| | - Eun Sook Nam
- Department of Pathology, Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea
| | - Seong Jin Cho
- Department of Pathology, Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea
| | - Mi Jung Kwon
- Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea
- Correspondence:
| |
Collapse
|
9
|
Apte S, Bhutda S, Ghosh S, Sharma K, Barton TE, Dibyachintan S, Sahay O, Roy S, Sinha AR, Adicherla H, Rakshit J, Tang S, Datey A, Santra S, Joseph J, Sasidharan S, Hammerschmidt S, Chakravortty D, Oggioni MR, Santra MK, Neill DR, Banerjee A. An innate pathogen sensing strategy involving ubiquitination of bacterial surface proteins. SCIENCE ADVANCES 2023; 9:eade1851. [PMID: 36947610 PMCID: PMC10032600 DOI: 10.1126/sciadv.ade1851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Sensing of pathogens by ubiquitination is a critical arm of cellular immunity. However, universal ubiquitination targets on microbes remain unidentified. Here, using in vitro, ex vivo, and in vivo studies, we identify the first protein-based ubiquitination substrates on phylogenetically diverse bacteria by unveiling a strategy that uses recognition of degron-like motifs. Such motifs form a new class of intra-cytosolic pathogen-associated molecular patterns (PAMPs). Their incorporation enabled recognition of nonubiquitin targets by host ubiquitin ligases. We find that SCFFBW7 E3 ligase, supported by the regulatory kinase, glycogen synthase kinase 3β, is crucial for effective pathogen detection and clearance. This provides a mechanistic explanation for enhanced risk of infections in patients with chronic lymphocytic leukemia bearing mutations in F-box and WD repeat domain containing 7 protein. We conclude that exploitation of this generic pathogen sensing strategy allows conservation of host resources and boosts antimicrobial immunity.
Collapse
Affiliation(s)
- Shruti Apte
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Smita Bhutda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Sourav Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Kuldeep Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Thomas E. Barton
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, L69 7BE Liverpool, UK
| | - Soham Dibyachintan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Osheen Sahay
- Cancer Biology and Epigenetics Laboratory, National Centre for Cell Science, Ganeshkhind Road, Pune 411007, Maharashtra, India
| | - Suvapriya Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Akash Raj Sinha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Harikrishna Adicherla
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad 500007 Telangana, India
| | - Jyotirmoy Rakshit
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Shiying Tang
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Akshay Datey
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Shweta Santra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Jincy Joseph
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Sreeja Sasidharan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, D-17487 Greifswald, Germany
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Marco R. Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Manas Kumar Santra
- Cancer Biology and Epigenetics Laboratory, National Centre for Cell Science, Ganeshkhind Road, Pune 411007, Maharashtra, India
| | - Daniel R. Neill
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, L69 7BE Liverpool, UK
| | - Anirban Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| |
Collapse
|
10
|
Zhang J, An L, Zhao R, Shi R, Zhou X, Wei S, Zhang Q, Zhang T, Feng D, Yu Z, Wang H. KIF4A promotes genomic stability and progression of endometrial cancer through regulation of TPX2 protein degradation. Mol Carcinog 2023; 62:303-318. [PMID: 36468837 DOI: 10.1002/mc.23487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/07/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022]
Abstract
Kinesin family member 4A (KIF4A) belongs to the kinesin superfamily proteins, which are closely associated with mitophagy. Nonetheless, the role of KIF4A in endometrial cancer (EC) remains poorly characterized. The present study showed that KIF4A not only was upregulated but also predicted poor prognosis in patients with EC. KIF4A knockdown in EC cells resulted in attenuated proliferative capacity in vitro and in vivo. Transcriptome sequencing and gene function analysis revealed that KIF4A contributed to the maintenance of EC cells' genomic stability and that KIF4A knockdown induced the DNA damage response, cell cycle arrest, and apoptosis. Mechanistically, KIF4A interacted with TPX2 (a protein involved in DNA damage repair to cope with the replication pressure) to enhance its stability via inhibition of TPX2 ubiquitination and eventually ensured the genomic stability of EC cells during mitosis. Taken together, our results indicated that KIF4A functions as a tumor oncogene that facilitates EC progression via the maintenance of genomic stability. Therefore, targeting the KIF4A/TPX2 axis may provide new concepts and strategies for the treatment of patients with EC.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lanfen An
- Division of Life Science and Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Rong Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Shi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xing Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sitian Wei
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tangansu Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dilu Feng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhicheng Yu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Clinical Research Center of Cancer Immunotherapy, Wuhan, Hubei, China
| |
Collapse
|
11
|
Belmonte-Fernández A, Herrero-Ruíz J, Galindo-Moreno M, Limón-Mortés MC, Mora-Santos M, Sáez C, Japón MÁ, Tortolero M, Romero F. Cisplatin-induced cell death increases the degradation of the MRE11-RAD50-NBS1 complex through the autophagy/lysosomal pathway. Cell Death Differ 2023; 30:488-499. [PMID: 36477079 PMCID: PMC9950126 DOI: 10.1038/s41418-022-01100-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Cisplatin and other platinum-based anticancer agents are among the most widely used chemotherapy drugs in the treatment of different types of cancer. However, it is common to find patients who respond well to treatment at first but later relapse due to the appearance of resistance to cisplatin. Among the mechanisms responsible for this phenomenon is the increase in DNA damage repair. Here, we elucidate the effect of cisplatin on the MRN (MRE11-RAD50-NBS1) DNA damage sensor complex. We found that the tumor suppressor FBXW7 is a key factor in controlling the turnover of the MRN complex by inducing its degradation through lysosomes. Inhibition of lysosomal enzymes allowed the detection of the association of FBXW7-dependent ubiquitylated MRN with LC3 and the autophagy adaptor p62/SQSTM1 and the localization of MRN in lysosomes. Furthermore, cisplatin-induced cell death increased MRN degradation, suggesting that this complex is one of the targets that favor cell death. These findings open the possibility of using the induction of the degradation of the MRN complex after genotoxic damage as a potential therapeutic strategy to eliminate tumor cells.
Collapse
Affiliation(s)
| | - Joaquín Herrero-Ruíz
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, E-41012, Spain
| | - María Galindo-Moreno
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, E-41012, Spain
| | - M Cristina Limón-Mortés
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, E-41012, Spain
| | - Mar Mora-Santos
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, E-41012, Spain
| | - Carmen Sáez
- Instituto de Biomedicina de Sevilla (IBiS) and Departamento de Anatomía Patológica, Hospital Universitario Virgen del Rocío, Sevilla, E-41013, Spain
| | - Miguel Á Japón
- Instituto de Biomedicina de Sevilla (IBiS) and Departamento de Anatomía Patológica, Hospital Universitario Virgen del Rocío, Sevilla, E-41013, Spain
| | - Maria Tortolero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, E-41012, Spain
| | - Francisco Romero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, E-41012, Spain.
| |
Collapse
|
12
|
Słomka A, Kornek M, Cho WC. Small Extracellular Vesicles and Their Involvement in Cancer Resistance: An Up-to-Date Review. Cells 2022; 11:2913. [PMID: 36139487 PMCID: PMC9496799 DOI: 10.3390/cells11182913] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 09/15/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, tremendous progress has been made in understanding the roles of extracellular vesicles (EVs) in cancer. Thanks to advancements in molecular biology, it has been found that the fraction of EVs called exosomes or small EVs (sEVs) modulates the sensitivity of cancer cells to chemotherapeutic agents by delivering molecularly active non-coding RNAs (ncRNAs). An in-depth analysis shows that two main molecular mechanisms are involved in exosomal modified chemoresistance: (1) translational repression of anti-oncogenes by exosomal microRNAs (miRs) and (2) lack of translational repression of oncogenes by sponging of miRs through long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). At the cellular level, these processes increase the proliferation and survival of cancer cells and improve their ability to metastasize and resist apoptosis. In addition, studies in animal models have shown enhancing tumor size under the influence of exosomal ncRNAs. Ultimately, exosomal ncRNAs are responsible for clinically significant chemotherapy failures in patients with different types of cancer. Preliminary data have also revealed that exosomal ncRNAs can overcome chemotherapeutic agent resistance, but the results are thoroughly fragmented. This review presents how exosomes modulate the response of cancer cells to chemotherapeutic agents. Understanding how exosomes interfere with chemoresistance may become a milestone in developing new therapeutic options, but more data are still required.
Collapse
Affiliation(s)
- Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland
| | - Miroslaw Kornek
- Department of Internal Medicine I, University Hospital of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| |
Collapse
|
13
|
Multiple Mechanisms of NOTCH1 Activation in Chronic Lymphocytic Leukemia: NOTCH1 Mutations and Beyond. Cancers (Basel) 2022; 14:cancers14122997. [PMID: 35740661 PMCID: PMC9221163 DOI: 10.3390/cancers14122997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Mutations of the NOTCH1 gene are a validated prognostic marker in chronic lymphocytic leukemia and a potential predictive marker for anti-CD20-based therapies. At present, the most frequent pathological alteration of the NOTCH1 gene is due to somatic genetic mutations, which have a multifaceted functional impact. However, beside NOTCH1 mutations, other factors may lead to activation of the NOTCH1 pathway, and these include mutations of FBXW7, MED12, SPEN, SF3B1 as well as other B-cell pathways. Understanding the preferential strategies though which CLL cells hijack NOTCH1 signaling may present important clues for designing targeted treatment strategies for the management of CLL. Abstract The Notch signaling pathway plays a fundamental role for the terminal differentiation of multiple cell types, including B and T lymphocytes. The Notch receptors are transmembrane proteins that, upon ligand engagement, undergo multiple processing steps that ultimately release their intracytoplasmic portion. The activated protein ultimately operates as a nuclear transcriptional co-factor, whose stability is finely regulated. The Notch pathway has gained growing attention in chronic lymphocytic leukemia (CLL) because of the high rate of somatic mutations of the NOTCH1 gene. In CLL, NOTCH1 mutations represent a validated prognostic marker and a potential predictive marker for anti-CD20-based therapies, as pathological alterations of the Notch pathway can provide significant growth and survival advantage to neoplastic clone. However, beside NOTCH1 mutation, other events have been demonstrated to perturb the Notch pathway, namely somatic mutations of upstream, or even apparently unrelated, proteins such as FBXW7, MED12, SPEN, SF3B1, as well as physiological signals from other pathways such as the B-cell receptor. Here we review these mechanisms of activation of the NOTCH1 pathway in the context of CLL; the resulting picture highlights how multiple different mechanisms, that might occur under specific genomic, phenotypic and microenvironmental contexts, ultimately result in the same search for proliferative and survival advantages (through activation of MYC), as well as immune escape and therapy evasion (from anti-CD20 biological therapies). Understanding the preferential strategies through which CLL cells hijack NOTCH1 signaling may present important clues for designing targeted treatment strategies for the management of CLL.
Collapse
|
14
|
Mirzaei G, Petreaca RC. Distribution of copy number variations and rearrangement endpoints in human cancers with a review of literature. Mutat Res 2022; 824:111773. [PMID: 35091282 PMCID: PMC11301607 DOI: 10.1016/j.mrfmmm.2021.111773] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022]
Abstract
Copy number variations (CNVs) which include deletions, duplications, inversions, translocations, and other forms of chromosomal re-arrangements are common to human cancers. In this report we investigated the pattern of these variations with the goal of understanding whether there exist specific cancer signatures. We used re-arrangement endpoint data deposited on the Catalogue of Somatic Mutations in Cancers (COSMIC) for our analysis. Indeed, we find that human cancers are characterized by specific patterns of chromosome rearrangements endpoints which in turn result in cancer specific CNVs. A review of the literature reveals tissue specific mutations which either drive these CNVs or appear as a consequence of CNVs because they confer an advantage to the cancer cell. We also identify several rearrangement endpoints hotspots that were not previously reported. Our analysis suggests that in addition to local chromosomal architecture, CNVs are driven by the internal cellular or nuclear physiology of each cancer tissue.
Collapse
Affiliation(s)
- Golrokh Mirzaei
- Department of Computer Science and Engineering, The Ohio State University at Marion, Marion, OH, 43302, USA
| | - Ruben C Petreaca
- Department of Molecular Genetics, The Ohio State University at Marion, Marion, OH, 43302, USA; Cancer Biology Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|