1
|
Desai M, Gulati K, Agrawal M, Ghumra S, Sahoo PK. Stress granules: Guardians of cellular health and triggers of disease. Neural Regen Res 2026; 21:588-597. [PMID: 39995077 DOI: 10.4103/nrr.nrr-d-24-01196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/15/2025] [Indexed: 02/26/2025] Open
Abstract
Stress granules are membraneless organelles that serve as a protective cellular response to external stressors by sequestering non-translating messenger RNAs (mRNAs) and regulating protein synthesis. Stress granules formation mechanism is conserved across species, from yeast to mammals, and they play a critical role in minimizing cellular damage during stress. Composed of heterogeneous ribonucleoprotein complexes, stress granules are enriched not only in mRNAs but also in noncoding RNAs and various proteins, including translation initiation factors and RNA-binding proteins. Genetic mutations affecting stress granule assembly and disassembly can lead to abnormal stress granule accumulation, contributing to the progression of several diseases. Recent research indicates that stress granule dynamics are pivotal in determining their physiological and pathological functions, with acute stress granule formation offering protection and chronic stress granule accumulation being detrimental. This review focuses on the multifaceted roles of stress granules under diverse physiological conditions, such as regulation of mRNA transport, mRNA translation, apoptosis, germ cell development, phase separation processes that govern stress granule formation, and their emerging implications in pathophysiological scenarios, such as viral infections, cancer, neurodevelopmental disorders, neurodegeneration, and neuronal trauma.
Collapse
Affiliation(s)
- Meghal Desai
- Department of Biological Sciences, Rutgers University - Newark, Newark, NJ, USA
| | - Keya Gulati
- College of Science and Liberal Arts, New Jersey Institute of Technology, Newark, NJ, USA
| | - Manasi Agrawal
- Department of Biological Sciences, Rutgers University - Newark, Newark, NJ, USA
| | - Shruti Ghumra
- Department of Biological Sciences, Rutgers University - Newark, Newark, NJ, USA
| | - Pabitra K Sahoo
- Department of Biological Sciences, Rutgers University - Newark, Newark, NJ, USA
| |
Collapse
|
2
|
Chen Y, Deng H, Zhang N. Autophagy-targeting modulation to promote peripheral nerve regeneration. Neural Regen Res 2025; 20:1864-1882. [PMID: 39254547 PMCID: PMC11691477 DOI: 10.4103/nrr.nrr-d-23-01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/22/2024] [Accepted: 03/29/2024] [Indexed: 09/11/2024] Open
Abstract
Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms. Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration. However, recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration, particularly in the context of traumatic injuries. Consequently, autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration. Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths, thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation. These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration. A range of autophagy-inducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries. This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration, summarizing the potential drugs and interventions that can be harnessed to promote this process. We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies.
Collapse
Affiliation(s)
- Yan Chen
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Reproductive Endocrinology and Reproductive Regulation, Sichuan University, Chengdu, Sichuan Province, China
| | - Hongxia Deng
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Reproductive Endocrinology and Reproductive Regulation, Sichuan University, Chengdu, Sichuan Province, China
| | - Nannan Zhang
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
3
|
Lopez-Nieto M, Sun Z, Relton E, Safakli R, Freibaum BD, Taylor JP, Ruggieri A, Smyrnias I, Locker N. Activation of the mitochondrial unfolded protein response regulates the dynamic formation of stress granules. J Cell Sci 2025; 138:jcs263548. [PMID: 39463355 DOI: 10.1242/jcs.263548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
To rapidly adapt to harmful changes to their environment, cells activate the integrated stress response (ISR). This results in an adaptive transcriptional and translational rewiring, and the formation of biomolecular condensates named stress granules (SGs), to resolve stress. In addition to this first line of defence, the mitochondrial unfolded protein response (UPRmt) activates a specific transcriptional programme to maintain mitochondrial homeostasis. We present evidence that the SG formation and UPRmt pathways are intertwined and communicate. UPRmt induction results in eIF2α phosphorylation and the initial and transient formation of SGs, which subsequently disassemble. The induction of GADD34 (also known as PPP1R15A) during late UPRmt protects cells from prolonged stress by impairing further assembly of SGs. Furthermore, mitochondrial functions and cellular survival are enhanced during UPRmt activation when SGs are absent, suggesting that UPRmt-induced SGs have an adverse effect on mitochondrial homeostasis. These findings point to a novel crosstalk between SGs and the UPRmt that might contribute to restoring mitochondrial functions under stressful conditions.
Collapse
Affiliation(s)
- Marta Lopez-Nieto
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7HX, UK
- The Pirbright Institute, Pirbright GU24 0NF, UK
| | - Zhaozhi Sun
- Heidelberg University, Medical Faculty, Centre for Integrative Infectious Disease Research (CIID), Department of Infectious Diseases, Molecular Virology, Heidelberg 69120, Germany
| | - Emily Relton
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7HX, UK
- The Pirbright Institute, Pirbright GU24 0NF, UK
| | - Rahme Safakli
- Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guildford GU2 7HX, UK
| | - Brian D Freibaum
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alessia Ruggieri
- Heidelberg University, Medical Faculty, Centre for Integrative Infectious Disease Research (CIID), Department of Infectious Diseases, Molecular Virology, Heidelberg 69120, Germany
| | - Ioannis Smyrnias
- Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guildford GU2 7HX, UK
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7HX, UK
- The Pirbright Institute, Pirbright GU24 0NF, UK
| |
Collapse
|
4
|
He X, Wang QX, Wei D, Lin Y, Zhang X, Wu Y, Qian X, Lin Z, Xiao B, Wu Q, Wang Z, Zhou F, Wei Z, Wang J, Gong R, Zhang R, Zhang Q, Ding K, Gao S, Kang T. Lysosomal EGFR acts as a Rheb-GEF independent of its kinase activity to activate mTORC1. Cell Res 2025:10.1038/s41422-025-01110-x. [PMID: 40259053 DOI: 10.1038/s41422-025-01110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/19/2025] [Indexed: 04/23/2025] Open
Abstract
Oncogenic mutations in EGFR often result in EGF-independent constitutive activation and aberrant trafficking and are associated with several human malignancies, including non-small cell lung cancer. A major consequence of EGFR mutations is the activation of the mechanistic target of rapamycin complex 1 (mTORC1), which requires EGFR kinase activity and downstream PI3K/AKT signaling, resulting in increased cell proliferation. However, recent studies have elucidated kinase-independent roles of EGFR in cell survival and cancer progression. Here, we report a cis mTORC1 activation function of EGFR that is independent of its kinase activity. Our results reveal that lysosomal localization of EGFR is critical to mTORC1 activation, where EGFR physically binds Rheb, acting as a guanine exchange factor (GEF) for Rheb, with its Glu804 serving as a potential glutamic finger. Genetic knock-in of EGFR-E804K in cells reduces the level of GTP-bound Rheb, and significantly suppresses mTORC1 activation, cell proliferation and tumor growth. Different tyrosine kinase inhibitors exhibit distinct effects on EGFR-induced mTORC1 activation, with afatinib, which additionally blocks EGFR's GEF activity, causing a much greater suppression of mTORC1 activation and cell growth, and erlotinib, which targets only kinase activity, resulting in only a slight decrease. Moreover, a novel small molecule, BIEGi-1, was designed to target both the Rheb-GEF and kinase activities of EGFR, and shows a strong inhibitory effect on the viability of cells harboring EGFR mutants. These findings unveil a fundamental event in cell growth and suggest a promising strategy against cancers with EGFR mutations.
Collapse
Affiliation(s)
- Xiaobo He
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Qiu-Xia Wang
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Denghui Wei
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China.
| | - Yujie Lin
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Xia Zhang
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Yuanzhong Wu
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Xuexia Qian
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhihao Lin
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Beibei Xiao
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Qinxue Wu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Fengtao Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Zhihao Wei
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
- Department of Oncology Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jingxuan Wang
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Run Gong
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Ruhua Zhang
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Qingling Zhang
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China.
| | - Song Gao
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China.
- Integrated Traditional Chinese and Western Medicine Research Center, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Tiebang Kang
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Bahrami N, Abdi M. Knockout of histone deacetylase 8 gene in breast cancer cells may alter the expression pattern of the signaling molecules. Adv Med Sci 2025; 70:27-32. [PMID: 39437892 DOI: 10.1016/j.advms.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/26/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE Breast cancer (BC) is the most common cancer diagnosed in the world and it is also the main leading cause of cancer deaths in women. Change in epigenetic mechanisms promotes BC initiation and progression. Histone deacetylase 8 (HDAC8) was found to act as a potential oncogene in different malignancies. For better understanding of the HDAC8 function in BC development, we investigated the effect of HDAC8 deletion on the expression of genes involved in signaling pathways. MATERIALS AND METHODS In this study, CRISPR technology was used to knockout the HDAC8 gene in MDA-MB-468, MDA-MB-231 and MCF-7 cell lines. For this purpose, two gRNAs were designed and cloned into the PX459 vector. The gRNA-containing vectors were transfected into the BC cell lines and then the effect of this deletion on the expression of genes involved in signaling pathway was determined using quantitative real-time PCR (qRT-PCR). RESULTS Analysis of qRT-PCR results showed a reduction in the expression of studied genes in BC cell lines after deletion of the HDAC8 gene compared to untreated controls. Although this decline was not significant for FGF2 and FGFR1 genes, however the mTOR, IGF1R, INSR, VEGFA and VEGFR2 genes showed statistically significant reduction in the studied BC cell lines. In addition, the down-regulation of PDGFC and PDGFRA genes were only significant in the TNBC cell lines. CONCLUSION Overall, our study showed that HDAC8 can exert its oncogenic effects by altering the expression level of molecules involved in some signaling pathways, and inhibiting HDAC8 can revert these effects.
Collapse
Affiliation(s)
- Nahid Bahrami
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Abdi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
6
|
Marin-Castañeda LA, Pacheco Aispuro G, Gonzalez-Garibay G, Martínez Zamora CA, Romo-Parra H, Rubio-Osornio M, Rubio C. Interplay of epilepsy and long-term potentiation: implications for memory. Front Neurosci 2025; 18:1451740. [PMID: 39867454 PMCID: PMC11760605 DOI: 10.3389/fnins.2024.1451740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/20/2024] [Indexed: 01/28/2025] Open
Abstract
The interplay between long-term potentiation (LTP) and epilepsy represents a crucial facet in understanding synaptic plasticity and memory within neuroscience. LTP, a phenomenon characterized by a sustained increase in synaptic strength, is pivotal in learning and memory processes, particularly in the hippocampus. This review delves into the intricate relationship between LTP and epilepsy, exploring how alterations in synaptic plasticity mechanisms akin to those seen in LTP contribute to the hyperexcitable state of epilepsy. This state is conceptualized as a dysregulation between LTP and LTD (Long-term depression), leading to pathologically enhanced synaptic efficacy. Additionally, the role of neuroinflammation in both LTP and epilepsy is examined, highlighting how inflammatory mediators can influence synaptic plasticity. The dual role of neuroinflammatory pathways, enhancing or inhibiting LTP, is a focal area of ongoing research. The significance of various signaling pathways, including the MAPK, mTOR, and WNT/β-catenin pathways, in the modulation of synaptic plasticity and their relevance in both LTP and epilepsy. These pathways are instrumental in memory formation, consolidation, and epileptogenesis, illustrating a complex interaction between cellular mechanisms in the nervous system. Lastly, the role of calcium signaling in the relationship between LTP and epilepsy is scrutinized. Aberrant calcium signaling in epilepsy leads to an enhanced, yet pathologically altered, LTP. This dysregulation disrupts normal neural pathways, potentially leading to cognitive dysfunction, particularly in memory encoding and retrieval. The review emphasizes the need for targeted interventions in epilepsy that address cognitive functions alongside seizure control.
Collapse
Affiliation(s)
- Luis A. Marin-Castañeda
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
| | | | - Guillermo Gonzalez-Garibay
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
- Anahuac University, Mexico City, Mexico
| | - Carlos Alejandro Martínez Zamora
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
- School of Medicine, Saint Luke, Mexico City, Mexico
| | - Hector Romo-Parra
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
- Universidad Iberoamericana, Mexico City, Mexico
| | - Moisés Rubio-Osornio
- Department of Neurochemistry, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
| | - Carmen Rubio
- Department of Neurophysiology, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
| |
Collapse
|
7
|
Jeon S, Jeon Y, Lim JY, Kim Y, Cha B, Kim W. Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets. Signal Transduct Target Ther 2025; 10:4. [PMID: 39757214 DOI: 10.1038/s41392-024-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cells orchestrate their processes through complex interactions, precisely organizing biomolecules in space and time. Recent discoveries have highlighted the crucial role of biomolecular condensates-membrane-less assemblies formed through the condensation of proteins, nucleic acids, and other molecules-in driving efficient and dynamic cellular processes. These condensates are integral to various physiological functions, such as gene expression and intracellular signal transduction, enabling rapid and finely tuned cellular responses. Their ability to regulate cellular signaling pathways is particularly significant, as it requires a careful balance between flexibility and precision. Disruption of this balance can lead to pathological conditions, including neurodegenerative diseases, cancer, and viral infections. Consequently, biomolecular condensates have emerged as promising therapeutic targets, with the potential to offer novel approaches to disease treatment. In this review, we present the recent insights into the regulatory mechanisms by which biomolecular condensates influence intracellular signaling pathways, their roles in health and disease, and potential strategies for modulating condensate dynamics as a therapeutic approach. Understanding these emerging principles may provide valuable directions for developing effective treatments targeting the aberrant behavior of biomolecular condensates in various diseases.
Collapse
Affiliation(s)
- Soyoung Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Yeram Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Ji-Youn Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Yujeong Kim
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Boksik Cha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.
| | - Wantae Kim
- Department of Life Science, University of Seoul, Seoul, South Korea.
| |
Collapse
|
8
|
Werthmann GC, Herz J. Apoer2/Lrp8: the undercover cop of synaptic homeostasis. Neural Regen Res 2024; 19:2563-2564. [PMID: 38808982 PMCID: PMC11168519 DOI: 10.4103/nrr.nrr-d-23-02002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 05/30/2024] Open
Affiliation(s)
- Gordon C. Werthmann
- Department of Molecular Genetics and Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Joachim Herz
- Department of Molecular Genetics and Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
- Department of Neuroscience; Department of Neurology; University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| |
Collapse
|
9
|
Galhuber M, Thedieck K. ODE-based models of signaling networks in autophagy. CURRENT OPINION IN SYSTEMS BIOLOGY 2024; 39:100519. [DOI: 10.1016/j.coisb.2024.100519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Wang P, Sarkar S, Zhang M, Xiao T, Kong F, Zhang Z, Balasubramanian D, Jayaram N, Datta S, He R, Wu P, Chao P, Zhang Y, Washburn M, Florens LA, Nagarkar-Jaiswal S, Jaiswal M, Mohan M. DYRK1A interacts with the tuberous sclerosis complex and promotes mTORC1 activity. eLife 2024; 12:RP88318. [PMID: 39436397 PMCID: PMC11495841 DOI: 10.7554/elife.88318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
DYRK1A, a ubiquitously expressed kinase, is linked to the dominant intellectual developmental disorder, microcephaly, and Down syndrome in humans. It regulates numerous cellular processes such as cell cycle, vesicle trafficking, and microtubule assembly. DYRK1A is a critical regulator of organ growth; however, how it regulates organ growth is not fully understood. Here, we show that the knockdown of DYRK1A in mammalian cells results in reduced cell size, which depends on mTORC1. Using proteomic approaches, we found that DYRK1A interacts with the tuberous sclerosis complex (TSC) proteins, namely TSC1 and TSC2, which negatively regulate mTORC1 activation. Furthermore, we show that DYRK1A phosphorylates TSC2 at T1462, a modification known to inhibit TSC activity and promote mTORC1 activity. We also found that the reduced cell growth upon knockdown of DYRK1A can be rescued by overexpression of RHEB, an activator of mTORC1. Our findings suggest that DYRK1A inhibits TSC complex activity through inhibitory phosphorylation on TSC2, thereby promoting mTORC1 activity. Furthermore, using the Drosophila neuromuscular junction as a model, we show that the mnb, the fly homologs of DYRK1A, is rescued by RHEB overexpression, suggesting a conserved role of DYRK1A in TORC1 regulation.
Collapse
Affiliation(s)
- Pinhua Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
| | | | - Menghuan Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
| | - Tingting Xiao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
| | - Fenhua Kong
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
| | - Zhe Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
| | | | - Nandan Jayaram
- CSIR–Centre for Cellular and Molecular BiologyHyderabadIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | | | - Ruyu He
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
| | - Ping Wu
- National Facility for Protein Science in Shanghai, Zhangjiang LabShanghaiChina
| | - Peng Chao
- National Facility for Protein Science in Shanghai, Zhangjiang LabShanghaiChina
| | - Ying Zhang
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Michael Washburn
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Cancer Biology, The University of Kansas Medical CenterKansas CityUnited States
| | | | - Sonal Nagarkar-Jaiswal
- CSIR–Centre for Cellular and Molecular BiologyHyderabadIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | | | - Man Mohan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and TechnologyKunmingChina
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
11
|
Medina-Vera I, Avila-Nava A, León-López L, Gutiérrez-Solis AL, Talamantes-Gómez JM, Márquez-Mota CC. Plant-based proteins: clinical and technological importance. Food Sci Biotechnol 2024; 33:2461-2475. [PMID: 39144188 PMCID: PMC11319542 DOI: 10.1007/s10068-024-01600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 08/16/2024] Open
Abstract
Healthy and sustainable diets have seen a surge in popularity in recent years, driven by a desire to consume foods that not only help health but also have a favorable influence on the environment, such as plant-based proteins. This has created controversy because plant-based proteins may not always contain all the amino acids required by the organism. However, protein extraction methods have been developed due to technological advancements to boost their nutritional worth. Furthermore, certain chemicals, such as bioactive peptides, have been identified and linked to favorable health effects. As a result, the current analysis focuses on the primary plant-based protein sources, their chemical composition, and the molecular mechanism activated by the amino acid types of present. It also discusses plant protein extraction techniques, bioactive substances derived from these sources, product development using plant protein, and the therapeutic benefits of these plant-based proteins in clinical research.
Collapse
Affiliation(s)
- Isabel Medina-Vera
- Departamento de Metodología de la Investigación, Instituto Nacional de Pediatría (INP), Mexico City, Mexico
| | - Azalia Avila-Nava
- Hospital Regional de Alta Especialidad de la Península de Yucatán, Mérida, Mexico
| | - Liliana León-López
- Programa de Posgrado Integral en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, C.P. 80000 Culiacán, Sinaloa Mexico
| | | | - José Moisés Talamantes-Gómez
- Departamento de Nutrición Animal y Bioquímica, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Claudia C. Márquez-Mota
- Departamento de Nutrición Animal y Bioquímica, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
12
|
He Y, Liu Y, Gong J, Yang F, Sun C, Yan X, Duan N, Hua Y, Zeng T, Fu Z, Liang Y, Li W, Huang X, Tang J, Yin Y. tRF-27 competitively Binds to G3BPs and Activates MTORC1 to Enhance HER2 Positive Breast Cancer Trastuzumab Tolerance. Int J Biol Sci 2024; 20:3923-3941. [PMID: 39113695 PMCID: PMC11302882 DOI: 10.7150/ijbs.87415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 06/19/2024] [Indexed: 08/10/2024] Open
Abstract
About 20% of breast cancer patients are positive for HER2. The efficacy of current treatments is limited by primary and secondary resistance to trastuzumab. tRNA-derived fragments (tRFs) have shown crucial regulatory roles in various cancers. This study aimed to evaluate the role of tRF-27 in regulating the resistance of HER2-positive breast cancer against trastuzumab. tRF-27 was highly expressed in trastuzumab-resistant cells, and its expression level could predict the resistance to trastuzumab. High expression of tRF-27 promoted the growth and proliferation of trastuzumab-exposed cells. RNA-pulldown assay and mass spectrometry were performed to identify Ras GTPase-activating protein-binding proteins 1 and 2 (G3BPs) (two proteins targeted by tRF-27); RNA-immunoprecipitation (RIP) to confirm their bindings; co-immunoprecipitation (co-IP) and RNA-pulldown assay to determine the binding domains between G3BPs and tRF-27.tRF-27 bound to the nuclear transport factor 2 like domain(NTF2 domain) of G3BPs through a specific sequence. tRF-27 relied on G3BPs and NTF2 domain to increase trastuzumab tolerance. tRF-27 competed with lysosomal associated membrane protein 1(LAMP1) for NTF2 domain, thereby inhibiting lysosomal localization of G3BPs and tuberous sclerosis complex (TSC). Overexpression of tRF-27 inhibited phosphorylation of TSCs and promoted the activation of mechanistic target of rapamycin complex 1(MTORC1) to enhance cell proliferation and entice the resistance of HER2-positive breast cancer against trastuzumab.
Collapse
Affiliation(s)
- Yaozhou He
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Yincheng Liu
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Jue Gong
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Fan Yang
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Chunxiao Sun
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Xueqi Yan
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Ningjun Duan
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Yijia Hua
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Tianyu Zeng
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Ziyi Fu
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Yan Liang
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Wei Li
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Xiang Huang
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Jinhai Tang
- Department of General Surgery, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| | - Yongmei Yin
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China
| |
Collapse
|
13
|
Chen Y, Tan X, Zhang W, Li Y, Deng X, Zeng J, Huang L, Ma X. Natural products targeting macroautophagy signaling in hepatocellular carcinoma therapy: Recent evidence and perspectives. Phytother Res 2024; 38:1623-1650. [PMID: 38302697 DOI: 10.1002/ptr.8103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/07/2023] [Accepted: 12/16/2023] [Indexed: 02/03/2024]
Abstract
Hepatocellular carcinoma (HCC), presently the second leading cause of global cancer-related mortality, continues to pose significant challenges in the realm of medical oncology, impacting both clinical drug selection and mechanistic research. Recent investigations have unveiled autophagy-related signaling as a promising avenue for HCC treatment. A growing body of research has highlighted the pivotal role of autophagy-modulating natural products in inhibiting HCC progression. In this context, we provide a concise overview of the fundamental autophagy mechanism and delineate the involvement of autophagic signaling pathways in HCC development. Additionally, we review pertinent studies demonstrating how natural products regulate autophagy to mitigate HCC. Our findings indicate that natural products exhibit cytotoxic effects through the induction of excessive autophagy, simultaneously impeding HCC cell proliferation by autophagy inhibition, thereby depriving HCC cells of essential energy. These effects have been associated with various signaling pathways, including PI3K/AKT, MAPK, AMPK, Wnt/β-catenin, Beclin-1, and ferroautophagy. These results underscore the considerable therapeutic potential of natural products in HCC treatment. However, it is important to note that the present study did not establish definitive thresholds for autophagy induction or inhibition by natural products. Further research in this domain is imperative to gain comprehensive insights into the dual role of autophagy, equipping us with a better understanding of this double-edged sword in HCC management.
Collapse
Affiliation(s)
- Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lihua Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Lee J, Nguyen S, Bhattacharya S. Optic nerve regeneration: Potential treatment approaches. Curr Opin Pharmacol 2024; 74:102428. [PMID: 38171063 PMCID: PMC10922496 DOI: 10.1016/j.coph.2023.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
The optic nerve, predominantly constituted by the axons of retinal ganglion cells (RGCs), lacks the ability to regenerate and re-establish function after injury. RGCs are crucial for visual function, and thus, RGC death contributes to the development of numerous progressive neurodegenerative optic neuropathies including glaucoma, ischemic optic neuropathy, and optic neuritis. Regenerating optic nerve axons poses numerous challenges due to factors such as the intricate and inhibitory conditions that exist within their environment, intrinsic breaks to regeneration, and the geometric tortuosity that offers physical hindrance to axon growth. However, recent research advancements offer hope for clinically meaningful regeneration for those who suffer from optic nerve damage. In this review, we highlight the current treatment approaches for optic nerve axon regeneration.
Collapse
Affiliation(s)
- Jessica Lee
- Bascom Palmer Eye Institute, Miller School of Medicine at University of Miami, Miami, FL, USA; College of Medicine, Northeast Ohio Medical University (NEOMED), Rootstown, OH, USA
| | - Sherilyn Nguyen
- Bascom Palmer Eye Institute, Miller School of Medicine at University of Miami, Miami, FL, USA; College of Osteopathic Medicine, Nova Southeastern University, Tampa, FL, USA
| | - Sanjoy Bhattacharya
- Bascom Palmer Eye Institute, Miller School of Medicine at University of Miami, Miami, FL, USA.
| |
Collapse
|
15
|
Proikas-Cezanne T, Haas ML, Pastor-Maldonado CJ, Schüssele DS. Human WIPI β-propeller function in autophagy and neurodegeneration. FEBS Lett 2024; 598:127-139. [PMID: 38058212 DOI: 10.1002/1873-3468.14782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
The four human WIPI β-propellers, WIPI1 through WIPI4, belong to the ancient PROPPIN family and fulfill scaffold functions in the control of autophagy. In this context, WIPI β-propellers function as PI3P effectors during autophagosome formation and loss of WIPI function negatively impacts autophagy and contributes to neurodegeneration. Of particular interest are mutations in WDR45, the human gene that encodes WIPI4. Sporadic WDR45 mutations are the cause of a rare human neurodegenerative disease called BPAN, hallmarked by high brain iron accumulation. Here, we discuss the current understanding of the functions of human WIPI β-propellers and address unanswered questions with a particular focus on the role of WIPI4 in autophagy and BPAN.
Collapse
Affiliation(s)
- Tassula Proikas-Cezanne
- Interfaculty Institute of Cell Biology, Department of Biology, Faculty of Science, Eberhard Karls University Tübingen, Germany
| | - Maximilian L Haas
- Interfaculty Institute of Cell Biology, Department of Biology, Faculty of Science, Eberhard Karls University Tübingen, Germany
| | - Carmen J Pastor-Maldonado
- Interfaculty Institute of Cell Biology, Department of Biology, Faculty of Science, Eberhard Karls University Tübingen, Germany
| | - David S Schüssele
- Interfaculty Institute of Cell Biology, Department of Biology, Faculty of Science, Eberhard Karls University Tübingen, Germany
| |
Collapse
|
16
|
Feicht J, Jansen RP. The high-density lipoprotein binding protein HDLBP is an unusual RNA-binding protein with multiple roles in cancer and disease. RNA Biol 2024; 21:1-10. [PMID: 38477883 PMCID: PMC10939154 DOI: 10.1080/15476286.2024.2313881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 03/14/2024] Open
Abstract
The high-density lipoprotein binding protein (HDLBP) is the human member of an evolutionarily conserved family of RNA-binding proteins, the vigilin protein family. These proteins are characterized by 14 or 15 RNA-interacting KH (heterologous nuclear ribonucleoprotein K homology) domains. While mainly present at the cytoplasmic face of the endoplasmic reticulum, HDLBP and its homologs are also found in the cytosol and nucleus. HDLBP is involved in various processes, including translation, chromosome segregation, cholesterol transport and carcinogenesis. Especially, its association with the latter two has attracted specific interest in the HDLBP's molecular role. In this review, we give an overview of some of the functions of the protein as well as introduce its impact on different kinds of cancer, its connection to lipid metabolism and its role in viral infection. We also aim at addressing the possible use of HDLBP as a drug target or biomarker and discuss its future implications.
Collapse
Affiliation(s)
- Jonathan Feicht
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Ralf-Peter Jansen
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
17
|
Qu W, Zhou X, Jiang X, Xie X, Xu K, Gu X, Na R, Piao M, Xi X, Sun N, Wang X, Peng X, Xu J, Tian J, Zhang J, Guo J, Zhang M, Zhang Y, Pan Z, Wang K, Yu B, Sun B, Li S, Tian J. Long Noncoding RNA Gpr137b-ps Promotes Advanced Atherosclerosis via the Regulation of Autophagy in Macrophages. Arterioscler Thromb Vasc Biol 2023; 43:e468-e489. [PMID: 37767704 DOI: 10.1161/atvbaha.123.319037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Current therapies cannot completely reverse advanced atherosclerosis. High levels of amino acids, induced by Western diet, stimulate mTORC1 (mammalian target of rapamycin complex 1)-autophagy defects in macrophages, accelerating atherosclerotic plaque progression. In addition, autophagy-lysosomal dysfunction contributes to plaque necrotic core enlargement and lipid accumulation. Therefore, it is essential to investigate the novel mechanism and molecules to reverse amino acid-mTORC1-autophagy signaling dysfunction in macrophages of patients with advanced atherosclerosis. METHODS We observed that Gpr137b-ps (G-protein-coupled receptor 137B, pseudogene) was upregulated in advanced atherosclerotic plaques. The effect of Gpr137b-ps on the progression of atherosclerosis was studied by generating advanced plaques in ApoE-/- mice with cardiac-specific knockout of Gpr137b-ps. Bone marrow-derived macrophages and mouse mononuclear macrophage cell line RAW264.7 cells were subjected to starvation or amino acid stimulation to study amino acid-mTORC1-autophagy signaling. Using both gain- and loss-of-function approaches, we explored the mechanism of Gpr137b-ps-regulated autophagy. RESULTS Our results demonstrated that Gpr137b-ps deficiency led to enhanced autophagy in macrophages and reduced atherosclerotic lesions, characterized by fewer necrotic cores and less lipid accumulation. Knockdown of Gpr137b-ps increased autophagy and prevented amino acid-induced mTORC1 signaling activation. As the downstream binding protein of Gpr137b-ps, HSC70 (heat shock cognate 70) rescued the impaired autophagy induced by Gpr137b-ps. Furthermore, Gpr137b-ps interfered with the HSC70 binding to G3BP (Ras GTPase-activating protein-binding protein), which tethers the TSC (tuberous sclerosis complex) complex to lysosomes and suppresses mTORC1 signaling. In addition to verifying that the NTF2 (nuclear transport factor 2) domain of G3BP binds to HSC70 by in vitro protein synthesis, we further demonstrated that HSC70 binds to the NTF2 domain of G3BP through its W90-F92 motif by using computational modeling. CONCLUSIONS These findings reveal that Gpr137b-ps plays an essential role in the regulation of macrophage autophagy, which is crucial for the progression of advanced atherosclerosis. Gpr137b-ps impairs the interaction of HSC70 with G3BP to regulate amino acid-mTORC1-autophagy signaling, and these results provide a new potential therapeutic direction for the treatment of advanced atherosclerosis.
Collapse
Affiliation(s)
- Wenbo Qu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, China (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian)
- The Key Laboratory of Myocardial Ischemia, Ministry of Education (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian), Harbin Medical University, China
| | - Xin Zhou
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, China (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian)
- The Key Laboratory of Myocardial Ischemia, Ministry of Education (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian), Harbin Medical University, China
| | - Xinjian Jiang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, China (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian)
- The Key Laboratory of Myocardial Ischemia, Ministry of Education (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian), Harbin Medical University, China
| | - Xianwei Xie
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China (X. Xie)
| | - Kaijian Xu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, China (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian)
- The Key Laboratory of Myocardial Ischemia, Ministry of Education (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian), Harbin Medical University, China
| | - Xia Gu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, China (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian)
- The Key Laboratory of Myocardial Ischemia, Ministry of Education (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian), Harbin Medical University, China
| | - Ruisi Na
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Heilongjiang, China (R.N.)
| | - Minghui Piao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, China (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian)
- The Key Laboratory of Myocardial Ischemia, Ministry of Education (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian), Harbin Medical University, China
| | - Xiangwen Xi
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, China (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian)
- The Key Laboratory of Myocardial Ischemia, Ministry of Education (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian), Harbin Medical University, China
| | - Na Sun
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, China (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian)
- The Key Laboratory of Myocardial Ischemia, Ministry of Education (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian), Harbin Medical University, China
| | - Xueyu Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, China (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian)
- The Key Laboratory of Myocardial Ischemia, Ministry of Education (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian), Harbin Medical University, China
| | - Xiang Peng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, China (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian)
- The Key Laboratory of Myocardial Ischemia, Ministry of Education (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian), Harbin Medical University, China
| | - Junyan Xu
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China (J.X.)
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Cardiovascular Diseases Institute of the First Affiliated Hospital, Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China (J.X., J.G.)
| | - Jiangtian Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, China (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian)
- The Key Laboratory of Myocardial Ischemia, Ministry of Education (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian), Harbin Medical University, China
| | - Jian Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology (J.Z.)
| | - Junli Guo
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Cardiovascular Diseases Institute of the First Affiliated Hospital, Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China (J.X., J.G.)
| | - Maomao Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, China (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian)
- The Key Laboratory of Myocardial Ischemia, Ministry of Education (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian), Harbin Medical University, China
| | - Yao Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, China (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian)
- The Key Laboratory of Myocardial Ischemia, Ministry of Education (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian), Harbin Medical University, China
| | - Zhenwei Pan
- College of Pharmacy (Z.P., B.S.), Harbin Medical University, China
| | - Kun Wang
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, China (K.W.)
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, China (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian)
- The Key Laboratory of Myocardial Ischemia, Ministry of Education (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian), Harbin Medical University, China
| | - Bin Sun
- College of Pharmacy (Z.P., B.S.), Harbin Medical University, China
| | - Shuijie Li
- Department of Biopharmaceutical Sciences, College of Pharmacy (S.L.), Harbin Medical University, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases Harbin Medical University, China (S.L.)
- Department of Biopharmaceutical Sciences, College of Pharmacy Harbin Medical University, China (S.L.)
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, China (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian)
- The Key Laboratory of Myocardial Ischemia, Ministry of Education (W.Q., X.Z., X.J., K.X., X.G., M.P., X. Xi, N.S., X.W., X.P., Jiangtian Tian, M.Z., Y.Z., B.Y., Jinwei Tian), Harbin Medical University, China
| |
Collapse
|
18
|
Sri Hari A, Banerji R, Liang LP, Fulton RE, Huynh CQ, Fabisiak T, McElroy PB, Roede JR, Patel M. Increasing glutathione levels by a novel posttranslational mechanism inhibits neuronal hyperexcitability. Redox Biol 2023; 67:102895. [PMID: 37769522 PMCID: PMC10539966 DOI: 10.1016/j.redox.2023.102895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
Glutathione (GSH) depletion, and impaired redox homeostasis have been observed in experimental animal models and patients with epilepsy. Pleiotropic strategies that elevate GSH levels via transcriptional regulation have been shown to significantly decrease oxidative stress and seizure frequency, increase seizure threshold, and rescue certain cognitive deficits. Whether elevation of GSH per se alters neuronal hyperexcitability remains unanswered. We previously showed that thiols such as dimercaprol (DMP) elevate GSH via post-translational activation of glutamate cysteine ligase (GCL), the rate limiting GSH biosynthetic enzyme. Here, we asked if elevation of cellular GSH by DMP altered neuronal hyperexcitability in-vitro and in-vivo. Treatment of primary neuronal-glial cerebrocortical cultures with DMP elevated GSH and inhibited a voltage-gated potassium channel blocker (4-aminopyridine, 4AP) induced neuronal hyperexcitability. DMP increased GSH in wildtype (WT) zebrafish larvae and significantly attenuated convulsant pentylenetetrazol (PTZ)-induced acute 'seizure-like' swim behavior. DMP treatment increased GSH and inhibited convulsive, spontaneous 'seizure-like' swim behavior in the Dravet Syndrome (DS) zebrafish larvae (scn1Lab). Furthermore, DMP treatment significantly decreased spontaneous electrographic seizures and associated seizure parameters in scn1Lab zebrafish larvae. We investigated the role of the redox-sensitive mammalian target of rapamycin (mTOR) pathway due to the presence of several cysteine-rich proteins and their involvement in regulating neuronal excitability. Treatment of primary neuronal-glial cerebrocortical cultures with 4AP or l-buthionine-(S,R)-sulfoximine (BSO), an irreversible inhibitor of GSH biosynthesis, significantly increased mTOR complex I (mTORC1) activity which was rescued by pre-treatment with DMP. Furthermore, BSO-mediated GSH depletion oxidatively modified the tuberous sclerosis protein complex (TSC) consisting of hamartin (TSC1), tuberin (TSC2), and TBC1 domain family member 7 (TBC1D7) which are critical negative regulators of mTORC1. In summary, our results suggest that DMP-mediated GSH elevation by a novel post-translational mechanism can inhibit neuronal hyperexcitability both in-vitro and in-vivo and a plausible link is the redox sensitive mTORC1 pathway.
Collapse
Affiliation(s)
- Ashwini Sri Hari
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Rajeswari Banerji
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ruth E Fulton
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Christopher Quoc Huynh
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Timothy Fabisiak
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Pallavi Bhuyan McElroy
- The Janssen Pharmaceutical Companies of Johnson & Johnson, Greater Philadelphia Area, Horsham, PA, 19044, USA
| | - James R Roede
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
19
|
Heinz JL, Swagemakers SMA, von Hofsten J, Helleberg M, Thomsen MM, De Keukeleere K, de Boer JH, Ilginis T, Verjans GMGM, van Hagen PM, van der Spek PJ, Mogensen TH. Whole exome sequencing of patients with varicella-zoster virus and herpes simplex virus induced acute retinal necrosis reveals rare disease-associated genetic variants. Front Mol Neurosci 2023; 16:1253040. [PMID: 38025266 PMCID: PMC10630912 DOI: 10.3389/fnmol.2023.1253040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Herpes simplex virus (HSV) and varicella-zoster virus (VZV) are neurotropic human alphaherpesviruses endemic worldwide. Upon primary infection, both viruses establish lifelong latency in neurons and reactivate intermittently to cause a variety of mild to severe diseases. Acute retinal necrosis (ARN) is a rare, sight-threatening eye disease induced by ocular VZV or HSV infection. The virus and host factors involved in ARN pathogenesis remain incompletely described. We hypothesize an underlying genetic defect in at least part of ARN cases. Methods We collected blood from 17 patients with HSV-or VZV-induced ARN, isolated DNA and performed Whole Exome Sequencing by Illumina followed by analysis in Varseq with criteria of CADD score > 15 and frequency in GnomAD < 0.1% combined with biological filters. Gene modifications relative to healthy control genomes were filtered according to high quality and read-depth, low frequency, high deleteriousness predictions and biological relevance. Results We identified a total of 50 potentially disease-causing genetic variants, including missense, frameshift and splice site variants and on in-frame deletion in 16 of the 17 patients. The vast majority of these genes are involved in innate immunity, followed by adaptive immunity, autophagy, and apoptosis; in several instances variants within a given gene or pathway was identified in several patients. Discussion We propose that the identified variants may contribute to insufficient viral control and increased necrosis ocular disease presentation in the patients and serve as a knowledge base and starting point for the development of improved diagnostic, prophylactic, and therapeutic applications.
Collapse
Affiliation(s)
- Johanna L. Heinz
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Sigrid M. A. Swagemakers
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Joanna von Hofsten
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Ophthalmology, Halland Hospital Halmstad, Halmstad, Sweden
| | - Marie Helleberg
- Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Center of Excellence for Health, Immunity and Infections, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Michelle M. Thomsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Kerstin De Keukeleere
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Joke H. de Boer
- Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Tomas Ilginis
- Department of Ophthalmology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Georges M. G. M. Verjans
- HerpeslabNL, Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Peter M. van Hagen
- Department of Internal Medicine and Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Peter J. van der Spek
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Trine H. Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
20
|
Tang J, Zheng F, Liu X, Li Y, Guo Z, Lin X, Zhou J, Zhang Y, Yu G, Hu H, Shao W, Wu S, Li H. Cobalt induces neurodegeneration through FTO-triggered autophagy impairment by targeting TSC1 in an m 6A-YTHDF2-dependent manner. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131354. [PMID: 37054644 DOI: 10.1016/j.jhazmat.2023.131354] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/01/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
Cobalt is the most widely used heavy metal pollutant in medicine and industry. Excessive cobalt exposure can adversely affect human health. Neurodegenerative symptoms have been observed in cobalt-exposed populations; however, the underlying mechanisms remain largely unknown. In this study, we demonstrate that the N6-methyladenosine (m6A) demethylase fat mass and obesity-associated gene (FTO) mediates cobalt-induced neurodegeneration by impairing autophagic flux. Cobalt-induced neurodegeneration was exacerbated through FTO genetic knockdown or repression of demethylase activity, but was alleviated by FTO overexpression. Mechanistically, we showed that FTO regulates TSC1/2-mTOR signaling pathway by targeting TSC1 mRNA stability in an m6A-YTHDF2 manner, which resulted in autophagosome accumulation. Furthermore, FTO decreases lysosome-associated membrane protein-2 (LAMP2) to inhibit the integration of autophagosomes and lysosomes, leading to autophagic flux damage. In vivo experiments further identified that central nervous system (CNS)-Fto-specific knockout resulted in serious neurobehavioral and pathological damage as well as TSC1-related autophagy impairment in cobalt-exposed mice. Interestingly, FTO-regulated autophagy impairment has been confirmed in patients with hip replacement. Collectively, our results provide novel insights into m6A-modulated autophagy through FTO-YTHDF2 targeted TSC1 mRNA stability, revealing cobalt is a novel epigenetic hazard that induces neurodegeneration. These findings suggest the potential therapeutic targets for hip replacement in patients with neurodegenerative damage.
Collapse
Affiliation(s)
- Jianping Tang
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Fuli Zheng
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xu Liu
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yanjun Li
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhenkun Guo
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xinpei Lin
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Jinfu Zhou
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yu Zhang
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Guangxia Yu
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Hong Hu
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Wenya Shao
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Siying Wu
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Huangyuan Li
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
21
|
Si Z, Zheng Y, Zhao J. The Role of Retinal Pigment Epithelial Cells in Age-Related Macular Degeneration: Phagocytosis and Autophagy. Biomolecules 2023; 13:901. [PMID: 37371481 DOI: 10.3390/biom13060901] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Age-related macular degeneration (AMD) causes vision loss in the elderly population. Dry AMD leads to the formation of Drusen, while wet AMD is characterized by cell proliferation and choroidal angiogenesis. The retinal pigment epithelium (RPE) plays a key role in AMD pathogenesis. In particular, helioreceptor renewal depends on outer segment phagocytosis of RPE cells, while RPE autophagy can protect cells from oxidative stress damage. However, when the oxidative stress burden is too high and homeostasis is disturbed, the phagocytosis and autophagy functions of RPE become damaged, leading to AMD development and progression. Hence, characterizing the roles of RPE cell phagocytosis and autophagy in the pathogenesis of AMD can inform the development of potential therapeutic targets to prevent irreversible RPE and photoreceptor cell death, thus protecting against AMD.
Collapse
Affiliation(s)
- Zhibo Si
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Yajuan Zheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Jing Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
22
|
Zhu QY, He ZM, Cao WM, Li B. The role of TSC2 in breast cancer: a literature review. Front Oncol 2023; 13:1188371. [PMID: 37251941 PMCID: PMC10213421 DOI: 10.3389/fonc.2023.1188371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
TSC2 is a tumor suppressor gene as well as a disease-causing gene for autosomal dominant disorder tuberous sclerosis complex (TSC). Research has found that some tumor tissues have lower TSC2 expression levels than normal tissues. Furthermore, low expression of TSC2 is associated with poor prognosis in breast cancer. TSC2 acts as a convergence point of a complex network of signaling pathways and receives signals from the PI3K, AMPK, MAPK, and WNT pathways. It also regulates cellular metabolism and autophagy through inhibition of a mechanistic target of rapamycin complex, which are processes relevant to the progression, treatment, and prognosis of breast cancer. In-depth study of TSC2 functions provides significant guidance for clinical applications in breast cancer, including improving the treatment efficacy, overcoming drug resistance, and predicting prognosis. In this review, protein structure and biological functions of TSC2 were described and recent advances in TSC2 research in different molecular subtypes of breast cancer were summarized.
Collapse
Affiliation(s)
- Qiao-Yan Zhu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Zhe-Min He
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Wen-Ming Cao
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
| | - Bei Li
- Department of Geriatric, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
23
|
Li WY, Yang F, Li X, Wang LW, Wang Y. Stress granules inhibit endoplasmic reticulum stress-mediated apoptosis during hypoxia-induced injury in acute liver failure. World J Gastroenterol 2023; 29:1315-1329. [PMID: 36925453 PMCID: PMC10011964 DOI: 10.3748/wjg.v29.i8.1315] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/22/2022] [Accepted: 02/16/2023] [Indexed: 02/28/2023] Open
Abstract
BACKGROUND Stress granules (SGs) could be formed under different stimulation to inhibit cell injury.
AIM To investigate whether SGs could protect hepatocytes from hypoxia-induced damage during acute liver failure (ALF) by reducing endoplasmic reticulum stress (ERS) mediated apoptosis.
METHODS The agonist of SGs, arsenite (Ars) was used to intervene hypoxia-induced hepatocyte injury cellular model and ALF mice models. Further, the siRNA of activating transcription factor 4 (ATF4) and SGs inhibitor anisomycin was then used to intervene in cell models.
RESULTS With the increase of hypoxia time from 4 h to 12 h, the levels of HIF-1α, ERS and apoptosis gradually increased, and the expression of SGs marker G3BP1 and TIA-1 was increased and then decreased. Compared with the hypoxia cell model group and ALF mice model, the levels of HIF-1α, apoptosis and ERS were increased in the Ars intervention group. After siRNA-ATF4 intervention, the level of SGs in cells increased, and the levels of HIF-1α, ERS and apoptosis decreased. Compared with the siRNA-ATF4 group, the levels of G3BP1 in the siRNA-ATF4+anisomycin group were decreased, and the levels of HIF-1α, ERS and apoptosis were increased. Moreover, compared with the ALF group, the degree of liver injury and liver function, the levels of HIF-1α, ERS and apoptosis in the Ars intervention group were decreased, the level of SGs was increased.
CONCLUSION SGs could protect hepatocytes from hypoxia-induced damage during ALF by reducing ERS-mediated apoptosis.
Collapse
Affiliation(s)
- Wen-Yuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Fan Yang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Xun Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Lu-Wen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
24
|
Zhao X, Wang S, Wang S, Xie J, Cui D. mTOR signaling: A pivotal player in Treg cell dysfunction in systemic lupus erythematosus. Clin Immunol 2022; 245:109153. [DOI: 10.1016/j.clim.2022.109153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/03/2022]
|
25
|
Gutierrez-Beltran E, Crespo JL. Compartmentalization, a key mechanism controlling the multitasking role of the SnRK1 complex. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7055-7067. [PMID: 35861169 PMCID: PMC9664234 DOI: 10.1093/jxb/erac315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
SNF1-related protein kinase 1 (SnRK1), the plant ortholog of mammalian AMP-activated protein kinase/fungal (yeast) Sucrose Non-Fermenting 1 (AMPK/SNF1), plays a central role in metabolic responses to reduced energy levels in response to nutritional and environmental stresses. SnRK1 functions as a heterotrimeric complex composed of a catalytic α- and regulatory β- and βγ-subunits. SnRK1 is a multitasking protein involved in regulating various cellular functions, including growth, autophagy, stress response, stomatal development, pollen maturation, hormone signaling, and gene expression. However, little is known about the mechanism whereby SnRK1 ensures differential execution of downstream functions. Compartmentalization has been recently proposed as a new key mechanism for regulating SnRK1 signaling in response to stimuli. In this review, we discuss the multitasking role of SnRK1 signaling associated with different subcellular compartments.
Collapse
Affiliation(s)
| | - Jose L Crespo
- Instituto de Bioquimica Vegetal y Fotosintesis, Consejo Superior de Investigaciones Cientificas (CSIC)-Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
26
|
Jin G, Zhang Z, Wan J, Wu X, Liu X, Zhang W. G3BP2: Structure and Function. Pharmacol Res 2022; 186:106548. [DOI: 10.1016/j.phrs.2022.106548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
27
|
Wang Y, Fung NSK, Lam WC, Lo ACY. mTOR Signalling Pathway: A Potential Therapeutic Target for Ocular Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11071304. [PMID: 35883796 PMCID: PMC9311918 DOI: 10.3390/antiox11071304] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Recent advances in the research of the mammalian target of the rapamycin (mTOR) signalling pathway demonstrated that mTOR is a robust therapeutic target for ocular degenerative diseases, including age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma. Although the exact mechanisms of individual ocular degenerative diseases are unclear, they share several common pathological processes, increased and prolonged oxidative stress in particular, which leads to functional and morphological impairment in photoreceptors, retinal ganglion cells (RGCs), or retinal pigment epithelium (RPE). mTOR not only modulates oxidative stress but is also affected by reactive oxygen species (ROS) activation. It is essential to understand the complicated relationship between the mTOR pathway and oxidative stress before its application in the treatment of retinal degeneration. Indeed, the substantial role of mTOR-mediated autophagy in the pathogenies of ocular degenerative diseases should be noted. In reviewing the latest studies, this article summarised the application of rapamycin, an mTOR signalling pathway inhibitor, in different retinal disease models, providing insight into the mechanism of rapamycin in the treatment of retinal neurodegeneration under oxidative stress. Besides basic research, this review also summarised and updated the results of the latest clinical trials of rapamycin in ocular neurodegenerative diseases. In combining the current basic and clinical research results, we provided a more complete picture of mTOR as a potential therapeutic target for ocular neurodegenerative diseases.
Collapse
|
28
|
Tu-Sekine B, Kim SF. The Inositol Phosphate System-A Coordinator of Metabolic Adaptability. Int J Mol Sci 2022; 23:6747. [PMID: 35743190 PMCID: PMC9223660 DOI: 10.3390/ijms23126747] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
All cells rely on nutrients to supply energy and carbon building blocks to support cellular processes. Over time, eukaryotes have developed increasingly complex systems to integrate information about available nutrients with the internal state of energy stores to activate the necessary processes to meet the immediate and ongoing needs of the cell. One such system is the network of soluble and membrane-associated inositol phosphates that coordinate the cellular responses to nutrient uptake and utilization from growth factor signaling to energy homeostasis. In this review, we discuss the coordinated interactions of the inositol polyphosphates, inositol pyrophosphates, and phosphoinositides in major metabolic signaling pathways to illustrate the central importance of the inositol phosphate signaling network in nutrient responses.
Collapse
Affiliation(s)
- Becky Tu-Sekine
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, MD 21224, USA;
| | - Sangwon F. Kim
- Department of Medicine and Neuroscience, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| |
Collapse
|
29
|
PI(18:1/18:1) is a SCD1-derived lipokine that limits stress signaling. Nat Commun 2022; 13:2982. [PMID: 35624087 PMCID: PMC9142606 DOI: 10.1038/s41467-022-30374-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/27/2022] [Indexed: 02/07/2023] Open
Abstract
Cytotoxic stress activates stress-activated kinases, initiates adaptive mechanisms, including the unfolded protein response (UPR) and autophagy, and induces programmed cell death. Fatty acid unsaturation, controlled by stearoyl-CoA desaturase (SCD)1, prevents cytotoxic stress but the mechanisms are diffuse. Here, we show that 1,2-dioleoyl-sn-glycero-3-phospho-(1’-myo-inositol) [PI(18:1/18:1)] is a SCD1-derived signaling lipid, which inhibits p38 mitogen-activated protein kinase activation, counteracts UPR, endoplasmic reticulum-associated protein degradation, and apoptosis, regulates autophagy, and maintains cell morphology and proliferation. SCD1 expression and the cellular PI(18:1/18:1) proportion decrease during the onset of cell death, thereby repressing protein phosphatase 2 A and enhancing stress signaling. This counter-regulation applies to mechanistically diverse death-inducing conditions and is found in multiple human and mouse cell lines and tissues of Scd1-defective mice. PI(18:1/18:1) ratios reflect stress tolerance in tumorigenesis, chemoresistance, infection, high-fat diet, and immune aging. Together, PI(18:1/18:1) is a lipokine that links fatty acid unsaturation with stress responses, and its depletion evokes stress signaling. Fatty acid unsaturation by stearoyl-CoA desaturase 1 (SCD1) protects against cellular stress through unclear mechanisms. Here the authors show 1,2-dioleoyl-sn-glycero-3-phospho-(1’-myo-inositol) is an SCD1-derived signaling lipid that regulates stress-adaption, protects against cell death and promotes proliferation.
Collapse
|
30
|
Li X, Zhang Y, Su L, Cai L, Zhang C, Zhang J, Sun J, Chai M, Cai M, Wu Q, Zhang C, Yan X, Wang L, Huang X. FGF21 alleviates pulmonary hypertension by inhibiting mTORC1/EIF4EBP1 pathway via H19. J Cell Mol Med 2022; 26:3005-3021. [PMID: 35437883 PMCID: PMC9097832 DOI: 10.1111/jcmm.17318] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022] Open
Abstract
Long non‐coding RNAs (lncRNAs) play a significant role in pulmonary hypertension (PH). Our preliminary data showed that hypoxia‐induced PH is attenuated by fibroblast growth factor 21 (FGF21) administration. Therefore, we further investigated the regulatory role of long non‐coding RNAs in PH treated with FGF21. RNA sequencing analysis and real‐time PCR identified a significantly up‐regulation of the H19 after FGF21 administration. Moreover, gain‐ and loss‐of‐function assays demonstrated that FGF21 suppressed hypoxia‐induced proliferation of pulmonary artery smooth muscle cells partially through upregulation of H19. In addition, FGF21 deficiency markedly exacerbated hypoxia‐induced increases of pulmonary artery pressure and pulmonary vascular remodelling. In addition, AAV‐mediated H19 overexpression reversed the malignant phenotype of FGF21 knockout mice under hypoxia expose. Further investigation uncovered that H19 also acted as an orchestra conductor that inhibited the function of mechanistic target of rapamycin complex 1 (mTORC1) by disrupting the interaction of mTORC1 with eukaryotic translation initiation factor 4E–binding protein 1 (EIF4EBP1). Our work highlights the important role of H19 in PH treated with FGF21 and suggests a mechanism involving mTORC1/EIF4EBP1 inhibition, which may provide a fundamental for clinical application of FGF21 in PH.
Collapse
Affiliation(s)
- Xiuchun Li
- Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, P.R. China
| | - Yaxin Zhang
- Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, P.R. China
| | - Lihuang Su
- Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, P.R. China
| | - Luqiong Cai
- Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, P.R. China
| | - Chi Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, P.R. China
| | - Jianhao Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, P.R. China
| | - Junwei Sun
- Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, P.R. China
| | - Mengyu Chai
- Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, P.R. China
| | - Mengsi Cai
- Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, P.R. China
| | - Qian Wu
- Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, P.R. China
| | - Chi Zhang
- Chinese-American Research Institute for Diabetic Complications at Department of Pharmacy, Wenzhou Medical University, Wenzhou, P.R. China
| | - Xiaoqing Yan
- Chinese-American Research Institute for Diabetic Complications at Department of Pharmacy, Wenzhou Medical University, Wenzhou, P.R. China
| | - Liangxing Wang
- Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, P.R. China
| | - Xiaoying Huang
- Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, P.R. China
| |
Collapse
|