1
|
Gao T, Liu Y, Li J, Zhang Y, Wu B. Function of manchette and intra-manchette transport in spermatogenesis and male fertility. Cell Commun Signal 2025; 23:250. [PMID: 40442757 PMCID: PMC12123824 DOI: 10.1186/s12964-025-02213-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/22/2025] [Indexed: 06/02/2025] Open
Abstract
The manchette is a transient skirt-like structure consisting of microtubules (MTs) and filamentous actin (F-actin) surrounding the elongating sperm head during spermiogenesis. It is pivotal in sperm head shaping controlled by the acrosome-acroplaxome-manchette complex, acrosome formation, and flagellar assembly by microtubular-based protein delivery. Defects in the manchette frequently lead to teratozoospermia concomitant with oligozoospermia and asthenozoospermia, but the pathogenic mechanism underlying manchette function and its role in male infertility remain poorly understood. In this review, we systematically described the assembly and disassembly of the manchette, intra-manchette transport (IMT) and its regulatory model, the function and mechanism of manchette and IMT in regulating sperm head shaping and flagellar assembly during spermatogenesis; summarized the research progress of manchette-related genes related to male infertility; and listed the manchette-related proteins in knockout mouse models and clinical cases, which provide the theoretical basis for an in-depth understanding of the molecular mechanism of manchette involved in spermatogenesis and male fertility for understanding the potentially developing treatments for infertility and reproductive disorders.
Collapse
Affiliation(s)
- Tingting Gao
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yang Liu
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Li
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yvxia Zhang
- The First People's Hospital of Kunshan, Suzhou, China
| | - Bin Wu
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
2
|
Stricker PEF, de Oliveira NB, Mogharbel BF, Irioda AC, da Rosa NN, Lührs L, Saçaki CS, Munhoz da Rocha I, Alves LR, Poubel SB, Cardoso da Silva J, Carvalho PC, Fischer JSDG, de Carvalho KAT. Proteomic Characterization of Extracellular Vesicles from Human Neural Precursor Cells: A Promising Advanced Therapy for Neurodegenerative Diseases. Int J Nanomedicine 2025; 20:6675-6699. [PMID: 40444011 PMCID: PMC12121667 DOI: 10.2147/ijn.s502031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 05/01/2025] [Indexed: 06/02/2025] Open
Abstract
Background The therapeutic effect of stem cells is attributed to their direct maturation into somatic cells and their paracrine effects, which influence the extracellular environment. One such component released is extracellular vesicles containing proteins and genetic materials with immunomodulatory functions and facilitating cell-to-cell communication. Purpose The study's main objective was to characterize extracellular vesicles (EVs) from Human Neural Precursor Cells (hNPCs). Methods Wharton's Jelly mesenchymal stem cells (WJ-MSCs) were isolated by explant technique and characterized by flow cytometry and trilineage differentiation. The hNPCs obtained from neurospheres were produced by seeding WJ-MSCs on a natural functional biopolymer matrix. EVs derived from WJ-MSCs and hNPCs were isolated by precipitation methodology and characterized by flow cytometry, nanoparticle tracking analysis (NTA), scanning electron microscopy (TEM), and proteomic. Results hNPCs expressed proteins and genes characteristic of neural precursor cells. The EVs were characterized by flow cytometry and showed varied expression for the markers CD63, CD9, and CD81, indicating different subpopulations based on their origin of formation. NTA and TEM of the EVs exhibited characteristic size, shape, and structural integrity consistent with the criteria established by the International Society for Extracellular Vesicles (ISEV). EV-hNPCs function enrichment analysis of the proteomic results showed that these vesicles presented abundant proteins directly involved in neuronal biological processes such as plasticity, transduction, postsynaptic density, and overall brain development. Discussion The results indicate that EVs derived from hNPCs maintain key neural precursor characteristics and exhibit marker variability, suggesting distinct subpopulations. Their structural integrity aligns with ISEV standards, supporting their potential as reliable biological entities. The proteomic analysis highlights their role in neuronal functions, reinforcing their applicability in neurodegenerative research and therapeutic strategies. Conclusion The EVs were successfully isolated from hNPCs with abundant proteins involved in neuronal processes, making them attractive for acellular therapies to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Priscila Elias Ferreira Stricker
- Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Curitiba, PR, Brazil
| | - Nathalia Barth de Oliveira
- Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Curitiba, PR, Brazil
| | - Bassam Felipe Mogharbel
- Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Curitiba, PR, Brazil
| | - Ana Carolina Irioda
- Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Curitiba, PR, Brazil
| | - Nádia Nascimento da Rosa
- Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Curitiba, PR, Brazil
| | - Larissa Lührs
- Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Curitiba, PR, Brazil
| | - Claudia Sayuri Saçaki
- Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Curitiba, PR, Brazil
| | - Isadora Munhoz da Rocha
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ, Curitiba, PR, Brazil
| | - Lysangela Ronalte Alves
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, FIOCRUZ, Curitiba, PR, Brazil
| | - Saloe Bispo Poubel
- Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Curitiba, PR, Brazil
| | - Julia Cardoso da Silva
- Computational Mass Spectrometry Group, Carlos Chagas Institute, FIOCRUZ, Curitiba, PR, Brazil
| | - Paulo Costa Carvalho
- Computational Mass Spectrometry Group, Carlos Chagas Institute, FIOCRUZ, Curitiba, PR, Brazil
| | | | - Katherine Athayde Teixeira de Carvalho
- Pelé Pequeno Príncipe Research Institute, Child and Adolescent Health Research & Pequeno Príncipe Faculties, Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Curitiba, PR, Brazil
| |
Collapse
|
3
|
Liu H, Zhang H, Qin G, Song T, Liu X, Wen Z, Liu M, Wang X, Fu X, Gao J. Loss of Cep135 causes oligoasthenoteratozoospermia and male infertility in mice. Cell Mol Life Sci 2025; 82:117. [PMID: 40095067 PMCID: PMC11914644 DOI: 10.1007/s00018-025-05616-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/10/2025] [Accepted: 02/04/2025] [Indexed: 03/19/2025]
Abstract
Centrosomal proteins (Cep), as crucial scaffolding molecules, play a pivotal role in the biogenesis of centrioles and the regulation of the cell cycle. To date, mutation in Cep135 has been reported to be closely associated with multiple morphological abnormalities of the flagella (MMAF) in humans. However, the specific mechanism of Cep135 in spermatogenesis and its detailed role in male infertility remains largely unexplored. In this study, we present compelling evidence that Cep135 functions as a pathogenic gene responsible for oligoasthenoteratozoospermia (OAT) and male infertility in mice. By selectively deleting Cep135 in premeiotic germ cells using Stra8-Cre mice crossed with Cep135flox/flox mice, we observed that Cep135 knockdown produced abnormal sperm morphology, germ cell apoptosis and consequentlybecame complete infertility, but did not impact premeiosis. Scanning and transmission electron microscopy revealed defects in acrosome, flagellum, and head-to-tail connections during spermatogenesis. Proteomic analysis further indicated that CEP135 deletion led to a significant reduction in proteins mainly associated with acrosome formation, sperm heads, sperm flagellum and microtubule assembly. Additionally, CEP135 interacts with spermatogenic proteins SPATA6 and AKAP3, regulating their expression and stability. Deficiency in CEP135 or its interacting proteins resulted in ciliary shortening. In conclusion, our study profoundly unveils the central role of Cep135 in spermatogenesis and male fertility. This discovery not only deepens our comprehension of spermatogenesis but also furnishes a solid theoretical foundation and experimental evidence that can guide the formulation of therapeutic and preventive strategies for male infertility.
Collapse
Affiliation(s)
- Hui Liu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China
| | - Haozheng Zhang
- Children's Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Guanghao Qin
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Tingting Song
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Xin Liu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Zongzhuang Wen
- Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Min Liu
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, China.
- School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.
| | - Xianmei Wang
- Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Xiaolong Fu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China.
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Jiangang Gao
- Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
4
|
Wang T, Yang M, Shi X, Tian S, Li Y, Xie W, Zou Z, Leng D, Zhang M, Zheng C, Feng C, Zeng B, Fan X, Qiu H, Li J, Zhao G, Yuan Z, Li D, Jie H. Multiomics analysis provides insights into musk secretion in muskrat and musk deer. Gigascience 2025; 14:giaf006. [PMID: 40036429 PMCID: PMC11878540 DOI: 10.1093/gigascience/giaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/10/2024] [Accepted: 01/09/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Musk, secreted by the musk gland of adult male musk-secreting mammals, holds significant pharmaceutical and cosmetic potential. However, understanding the molecular mechanisms of musk secretion remains limited, largely due to the lack of comprehensive multiomics analyses and available platforms for relevant species, such as muskrat (Ondatra zibethicus Linnaeus) and Chinese forest musk deer (Moschus berezovskii Flerov). RESULTS We generated chromosome-level genome assemblies for the 2 species of muskrat (Ondatra zibethicus Linnaeus) and musk deer (Moschus berezovskii Flerov), along with 168 transcriptomes from various muskrat tissues. Comparative analysis with 11 other vertebrate genomes revealed genes and amino acid sites with signs of adaptive convergent evolution, primarily linked to lipid metabolism, cell cycle regulation, protein binding, and immunity. Single-cell RNA sequencing in muskrat musk glands identified increased acinar/glandular epithelial cells during secretion, highlighting the role of lipometabolism in gland development and evolution. Additionally, we developed MuskDB (http://muskdb.cn/home/), a freely accessible multiomics database platform for musk-secreting mammals. CONCLUSIONS The study concludes that the evolution of musk secretion in muskrats and musk deer is likely driven by lipid metabolism and cell specialization. This underscores the complexity of the musk gland and calls for further investigation into musk secretion-specific genetic variants.
Collapse
Affiliation(s)
- Tao Wang
- School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China
| | - Maosen Yang
- Jinfo Mountain Forestry Ecosystem of Chongqing Observation and Research Station, Chongqing Institute of Medicinal plant cultivation, Chongqing University of Chinese Medicine, Chongqing 402760, China
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xin Shi
- Sichuan Institute of Musk Deer Breeding, Sichuan Institute for Drug Control, Chengdu 611845, China
| | - Shilin Tian
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yan Li
- Chengdu Research Base of Giant Panda Breeding, Chengdu 611081, China
| | - Wenqian Xie
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhengting Zou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dong Leng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ming Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengli Zheng
- Sichuan Institute of Musk Deer Breeding, Sichuan Institute for Drug Control, Chengdu 611845, China
| | - Chungang Feng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaolan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Huimin Qiu
- College of Agriculture, Kunming University, Kunming 650214, China
| | - Jing Li
- College of Agriculture, Kunming University, Kunming 650214, China
| | - Guijun Zhao
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Zhengrong Yuan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Hang Jie
- Jinfo Mountain Forestry Ecosystem of Chongqing Observation and Research Station, Chongqing Institute of Medicinal plant cultivation, Chongqing University of Chinese Medicine, Chongqing 402760, China
| |
Collapse
|
5
|
Abstract
The centrosome, consisting of centrioles and the associated pericentriolar material, is the main microtubule-organizing centre (MTOC) in animal cells. During most of interphase, the two centrosomes of a cell are joined together by centrosome cohesion into one MTOC. The most dominant element of centrosome cohesion is the centrosome linker, an interdigitating, fibrous network formed by the protein C-Nap1 anchoring a number of coiled-coil proteins including rootletin to the proximal end of centrioles. Alternatively, centrosomes can be kept together by the action of the minus end directed kinesin motor protein KIFC3 that works on interdigitating microtubules organized by both centrosomes and probably by the actin network. Although cells connect the two interphase centrosomes by several mechanisms into one MTOC, the general importance of centrosome cohesion, particularly for an organism, is still largely unclear. In this article, we review the functions of the centrosome linker and discuss how centrosome cohesion defects can lead to diseases.
Collapse
Affiliation(s)
- Hairuo Dang
- Zentrum für Molekulare Biologie der Universität Heidelberg, Deutsches Krebsforschungszentrum-ZMBH Allianz, and,Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg 69120, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg, Deutsches Krebsforschungszentrum-ZMBH Allianz, and
| |
Collapse
|
6
|
Dang H, Martin‐Villalba A, Schiebel E. Centrosome linker protein C-Nap1 maintains stem cells in mouse testes. EMBO Rep 2022; 23:e53805. [PMID: 35599622 PMCID: PMC9253759 DOI: 10.15252/embr.202153805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 11/27/2022] Open
Abstract
The centrosome linker component C-Nap1 (encoded by CEP250) anchors filaments to centrioles that provide centrosome cohesion by connecting the two centrosomes of an interphase cell into a single microtubule organizing unit. The role of the centrosome linker during development of an animal remains enigmatic. Here, we show that male CEP250-/- mice are sterile because sperm production is abolished. Premature centrosome separation means that germ stem cells in CEP250-/- mice fail to establish an E-cadherin polarity mark and are unable to maintain the older mother centrosome on the basal site of the seminiferous tubules. This failure prompts premature stem cell differentiation in expense of germ stem cell expansion. The concomitant induction of apoptosis triggers the complete depletion of germ stem cells and consequently infertility. Our study reveals a role for centrosome cohesion in asymmetric cell division, stem cell maintenance, and fertility.
Collapse
Affiliation(s)
- Hairuo Dang
- Zentrum für Molekulare Biologie der Universität HeidelbergDeutsches Krebsforschungszentrum‐ZMBH AllianzUniversität HeidelbergHeidelbergGermany
- Heidelberg Biosciences International Graduate School (HBIGS)Universität HeidelbergHeidelbergGermany
| | - Ana Martin‐Villalba
- Deutsches Krebsforschungszentrum‐ZMBH AllianzUniversität HeidelbergHeidelbergGermany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität HeidelbergDeutsches Krebsforschungszentrum‐ZMBH AllianzUniversität HeidelbergHeidelbergGermany
| |
Collapse
|