1
|
Knudsen C, Moriya A, Nakato E, Gulati R, Akiyama T, Nakato H. Chondroitin sulfate regulates proliferation of Drosophila intestinal stem cells. PLoS Genet 2025; 21:e1011686. [PMID: 40343906 PMCID: PMC12063844 DOI: 10.1371/journal.pgen.1011686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 04/10/2025] [Indexed: 05/11/2025] Open
Abstract
The basement membrane (BM) plays critical roles in stem cell maintenance and activity control. Here we show that chondroitin sulfate (CS), a major component of the Drosophila midgut BM, is required for proper control of intestinal stem cells (ISCs). Loss of Chsy, a critical CS biosynthetic gene, resulted in elevated levels of ISC proliferation during homeostasis, leading to midgut hyperplasia. Regeneration assays demonstrated that Chsy mutant ISCs failed to properly downregulate mitotic activity at the end of regeneration. We also found that CS is essential for the barrier integrity to prevent leakage of the midgut epithelium. CS is known to be polymerized by the action of the complex of Chsy and another critical protein, Chondroitin polymerizing factor (Chpf). We found that Chpf mutants show increased ISC division during midgut homeostasis and regeneration, similar to Chsy mutants. As Chpf is induced by a tissue damage during regeneration, our data suggest that Chpf functions with Chsy to facilitate CS remodeling and stimulate tissue repair. We propose that the completion of the repair of CS-containing BM acts as a prerequisite to properly terminate the regeneration process.
Collapse
Affiliation(s)
- Collin Knudsen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ayano Moriya
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Eriko Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Rishi Gulati
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Takuya Akiyama
- Department of Biology, The Porter Cancer Research Center, Indiana State University, Terre Haute, Indiana, United States of America
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
2
|
Vijayakumar S, González-Sánchez ZI, Divya M, Amanullah M, Durán-Lara EF, Li M. Efficacy of chondroitin sulfate as an emerging biomaterial for cancer-targeted drug delivery: A short review. Int J Biol Macromol 2024; 283:137704. [PMID: 39549800 DOI: 10.1016/j.ijbiomac.2024.137704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
The global increase in cancer incidence over the past decade highlights the urgent need for more effective therapeutic strategies. Conventional cancer treatments face challenges such as drug resistance and off-target toxicity, which affect healthy tissues. Chondroitin sulfate (CHDS), a naturally occurring bioactive macromolecule, has gained attention because of its biocompatibility, biodegradability, and low toxicity, positioning it as an ideal candidate for cancer-targeted drug delivery systems. This review highlights the potential of CHDS as an emerging biomaterial in cancer therapy, focusing on its unique biological properties and applications in drug delivery platforms. Furthermore, we discuss the advantages of CHDS-based biomaterials in enhancing cancer treatment efficacy and minimizing side effects, in order to provide a comprehensive reference for future research on CHDS-based cancer therapeutics.
Collapse
Affiliation(s)
- Sekar Vijayakumar
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, PR China.
| | - Zaira I González-Sánchez
- Nanobiology Laboratory, Department of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, PUCMM, Autopista Duarte Km 1 ½, Santiago de los Caballeros, Dominican Republic; Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Mani Divya
- Advanced Laboratory of Bio-nanomaterials, BioMe Live Analytical Centre, Kannappa Tower, College Road, Karaikudi - 630 003, Tamilnadu, India
| | - Mohammed Amanullah
- Department of clinical Biochemistry, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Esteban F Durán-Lara
- Bio&NanoMaterialsLab Drug Delivery and Controlled Release, Universidad de Talca, Talca 3460000, Maule, Chile; Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Maule, Chile
| | - Mingchun Li
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, PR China.
| |
Collapse
|
3
|
Mantry S, Behera A, Pradhan S, Mohanty L, Kumari R, Singh A, Yadav MK. Polysaccharide-based chondroitin sulfate macromolecule loaded hydrogel/scaffolds in wound healing- A comprehensive review on possibilities, research gaps, and safety assessment. Int J Biol Macromol 2024; 279:135410. [PMID: 39245102 DOI: 10.1016/j.ijbiomac.2024.135410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Wound healing is an intricate multifactorial process that may alter the extent of scarring left by the wound. A substantial portion of the global population is impacted by non-healing wounds, imposing significant financial burdens on the healthcare system. The conventional dosage forms fail to improve the condition, especially in the presence of other morbidities. Thus, there is a pressing requirement for a type of wound dressing that can safeguard the wound site and facilitate skin regeneration, ultimately expediting the healing process. In this context, Chondroitin sulfate (CS), a sulfated glycosaminoglycan material, is capable of hydrating tissues and further promoting the healing. Thus, this comprehensive review article delves into the recent advancement of CS-based hydrogel/scaffolds for wound healing management. The article initially summarizes the various physicochemical characteristics and sources of CS, followed by a brief understanding of the importance of hydrogel and CS in tissue regeneration processes. This is the first instance of such a comprehensive summarization of CS-based hydrogel/scaffolds in wound healing, focusing more on the mechanistic wound healing process, furnishing the recent innovations and toxicity profile. This contemporary review provides a profound acquaintance of strategies for contemporary challenges and future direction in CS-based hydrogel/scaffolds for wound healing.
Collapse
Affiliation(s)
- Shubhrajit Mantry
- Department of Pharmaceutics, Department of Pharmacy, Sarala Birla University, Birla Knowledge City, Ranchi 835103, Jharkhand, India.
| | - Ashutosh Behera
- Department of Pharmaceutical Quality Assurance, Department of Pharmacy, Sarala Birla University, Birla Knowledge City, Ranchi 835103, Jharkhand, India; Department of Pharmaceutical Quality Assurance, Florence College of Pharmacy, IRBA, Ranchi, 835103, Jharkhand, India
| | - Shaktiprasad Pradhan
- Department of Pharmaceutical Chemistry, Koustuv Research Institute of Medical Science (KRIMS), Koustuv Technical Campus, Patia, Bhubaneswar, Odisha 751024, India
| | - Lalatendu Mohanty
- Department of Pharmacology, Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Tehri Garhwal, Uttarakhand 24916, India
| | - Ragni Kumari
- School of Pharmacy, LNCT University, Bhopal 462022, Madhya Pradesh, India
| | - Ankita Singh
- Department of Pharmacy, Faculty of Medical Science & Research (FMSR), Sai Nath University, Ranchi, Jharkhand 835219, India
| | - Mahesh Kumar Yadav
- Department of Pharmacy, Faculty of Medical Science & Research (FMSR), Sai Nath University, Ranchi, Jharkhand 835219, India
| |
Collapse
|
4
|
Stanley P. Genetics of glycosylation in mammalian development and disease. Nat Rev Genet 2024; 25:715-729. [PMID: 38724711 DOI: 10.1038/s41576-024-00725-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 09/19/2024]
Abstract
Glycosylation of proteins and lipids in mammals is essential for embryogenesis and the development of all tissues. Analyses of glycosylation mutants in cultured mammalian cells and model organisms have been key to defining glycosylation pathways and the biological functions of glycans. More recently, applications of genome sequencing have revealed the breadth of rare congenital disorders of glycosylation in humans and the influence of genetics on the synthesis of glycans relevant to infectious diseases, cancer progression and diseases of the immune system. This improved understanding of glycan synthesis and functions is paving the way for advances in the diagnosis and treatment of glycosylation-related diseases, including the development of glycoprotein therapeutics through glycosylation engineering.
Collapse
Affiliation(s)
- Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Ricard-Blum S, Vivès RR, Schaefer L, Götte M, Merline R, Passi A, Heldin P, Magalhães A, Reis CA, Skandalis SS, Karamanos NK, Perez S, Nikitovic D. A biological guide to glycosaminoglycans: current perspectives and pending questions. FEBS J 2024; 291:3331-3366. [PMID: 38500384 DOI: 10.1111/febs.17107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Mammalian glycosaminoglycans (GAGs), except hyaluronan (HA), are sulfated polysaccharides that are covalently attached to core proteins to form proteoglycans (PGs). This article summarizes key biological findings for the most widespread GAGs, namely HA, chondroitin sulfate/dermatan sulfate (CS/DS), keratan sulfate (KS), and heparan sulfate (HS). It focuses on the major processes that remain to be deciphered to get a comprehensive view of the mechanisms mediating GAG biological functions. They include the regulation of GAG biosynthesis and postsynthetic modifications in heparin (HP) and HS, the composition, heterogeneity, and function of the tetrasaccharide linkage region and its role in disease, the functional characterization of the new PGs recently identified by glycoproteomics, the selectivity of interactions mediated by GAG chains, the display of GAG chains and PGs at the cell surface and their impact on the availability and activity of soluble ligands, and on their move through the glycocalyx layer to reach their receptors, the human GAG profile in health and disease, the roles of GAGs and particular PGs (syndecans, decorin, and biglycan) involved in cancer, inflammation, and fibrosis, the possible use of GAGs and PGs as disease biomarkers, and the design of inhibitors targeting GAG biosynthetic enzymes and GAG-protein interactions to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Univ Lyon 1, ICBMS, UMR 5246 University Lyon 1 - CNRS, Villeurbanne cedex, France
| | | | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Germany
| | - Rosetta Merline
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | | | - Paraskevi Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Serge Perez
- Centre de Recherche sur les Macromolécules Végétales, University of Grenoble-Alpes, CNRS, France
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
6
|
Richter RP, Odum JD, Margaroli C, Cardenas JC, Zheng L, Tripathi K, Wang Z, Arnold K, Sanderson RD, Liu J, Richter JR. Trauma promotes heparan sulfate modifications and cleavage that disrupt homeostatic gene expression in microvascular endothelial cells. Front Cell Dev Biol 2024; 12:1390794. [PMID: 39114570 PMCID: PMC11303185 DOI: 10.3389/fcell.2024.1390794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction: Heparan sulfate (HS) in the vascular endothelial glycocalyx (eGC) is a critical regulator of blood vessel homeostasis. Trauma results in HS shedding from the eGC, but the impact of trauma on HS structural modifications that could influence mechanisms of vascular injury and repair has not been evaluated. Moreover, the effect of eGC HS shedding on endothelial cell (EC) homeostasis has not been fully elucidated. The objectives of this work were to characterize the impact of trauma on HS sulfation and determine the effect of eGC HS shedding on the transcriptional landscape of vascular ECs. Methods: Plasma was collected from 25 controls and 49 adults admitted to a level 1 trauma center at arrival and 24 h after hospitalization. Total levels of HS and angiopoietin-2, a marker of pathologic EC activation, were measured at each time point. Enzymatic activity of heparanase, the enzyme responsible for HS shedding, was determined in plasma from hospital arrival. Liquid chromatography-tandem mass spectrometry was used to characterize HS di-/tetrasaccharides in plasma. In vitro work was performed using flow conditioned primary human lung microvascular ECs treated with vehicle or heparinase III to simulate human heparanase activity. Bulk RNA sequencing was performed to determine differentially expressed gene-enriched pathways following heparinase III treatment. Results: We found that heparanase activity was increased in trauma plasma relative to controls, and HS levels at arrival were elevated in a manner proportional to injury severity. Di-/tetrasaccharide analysis revealed lower levels of 3-O-sulfated tetramers with a concomitant increase in ΔIIIS and ΔIIS disaccharides following trauma. Admission levels of total HS and specific HS sulfation motifs correlated with 24-h angiopoietin-2 levels, suggesting an association between HS shedding and persistent, pathological EC activation. In vitro pathway analysis demonstrated downregulation of genes that support cell junction integrity, EC polarity, and EC senescence while upregulating genes that promote cell differentiation and proliferation following HS shedding. Discussion: Taken together, our findings suggest that HS cleavage associated with eGC injury may disrupt homeostatic EC signaling and influence biosynthetic mechanisms governing eGC repair. These results require validation in larger, multicenter trauma populations coupled with in vivo EC-targeted transcriptomic and proteomic analyses.
Collapse
Affiliation(s)
- Robert P. Richter
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James D. Odum
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Camilla Margaroli
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jessica C. Cardenas
- Division of Gastrointestinal, Trauma, and Endocrine Surgery, Department of Surgery, University of Colorado, Aurora, CO, United States
| | - Lei Zheng
- Division of Trauma and Acute Care Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kaushlendra Tripathi
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zhangjie Wang
- Glycan Therapeutics Corp, Raleigh, NC, United States
| | - Katelyn Arnold
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ralph D. Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jillian R. Richter
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, United States
- Division of Trauma and Acute Care Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
7
|
Khan SA, Nidhi F, Leal AF, Celik B, Herreño-Pachón AM, Saikia S, Benincore-Flórez E, Ago Y, Tomatsu S. Glycosaminoglycans in mucopolysaccharidoses and other disorders. Adv Clin Chem 2024; 122:1-52. [PMID: 39111960 DOI: 10.1016/bs.acc.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Glycosaminoglycans (GAGs) are sulfated polysaccharides comprising repeating disaccharides, uronic acid (or galactose) and hexosamines, including chondroitin sulfate, dermatan sulfate, heparan sulfate, and keratan sulfate. Hyaluronan is an exception in the GAG family because it is a non-sulfated polysaccharide. Lysosomal enzymes are crucial for the stepwise degradation of GAGs to provide a normal function of tissues and extracellular matrix (ECM). The deficiency of one or more lysosomal enzyme(s) results in the accumulation of undegraded GAGs, causing cell, tissue, and organ dysfunction. Accumulation of GAGs in various tissues and ECM results in secretion into the circulation and then excretion in urine. GAGs are biomarkers of certain metabolic disorders, such as mucopolysaccharidoses (MPS) and mucolipidoses. GAGs are also elevated in patients with various conditions such as respiratory and renal disorders, fatty acid metabolism disorders, viral infections, vomiting disorders, liver disorders, epilepsy, hypoglycemia, myopathy, developmental disorders, hyperCKemia, heart disease, acidosis, and encephalopathy. MPS are a group of inherited metabolic diseases caused by the deficiency of enzymes required to degrade GAGs in the lysosome. Eight types of MPS are categorized based on lack or defect in one of twelve specific lysosomal enzymes and are described as MPS I through MPS X (excluding MPS V and VIII). Clinical features vary with the type of MPS and clinical severity of the disease. This chapter addresses the historical overview, synthesis, degradation, distribution, biological role, and method for measurement of GAGs.
Collapse
Affiliation(s)
- Shaukat A Khan
- Nemours Children's Health, Wilmington, DE, United States
| | - Fnu Nidhi
- Nemours Children's Health, Wilmington, DE, United States; University of Delaware, Newark, DE, United States
| | - Andrés Felipe Leal
- Nemours Children's Health, Wilmington, DE, United States; Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Betul Celik
- Nemours Children's Health, Wilmington, DE, United States; University of Delaware, Newark, DE, United States
| | | | - Sampurna Saikia
- Nemours Children's Health, Wilmington, DE, United States; University of Delaware, Newark, DE, United States
| | | | - Yasuhiko Ago
- Nemours Children's Health, Wilmington, DE, United States
| | - Shunji Tomatsu
- Nemours Children's Health, Wilmington, DE, United States; University of Delaware, Newark, DE, United States; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
8
|
Pang HL, Lu H, Liu P, Zhang YT, Zhang LT, Ren Q. A chondroitin sulfate purified from shark cartilage and bovine serum albumin interaction activity. Int J Biol Macromol 2024; 260:129499. [PMID: 38262829 DOI: 10.1016/j.ijbiomac.2024.129499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/31/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024]
Abstract
Chondroitin sulfate (CS) was extracted and purified from shark cartilage, and its interaction with bovine serum albumin (BSA) were studied. The content of chondroitin sulfate in shark cartilage was 29.97 % using the 1,9-dimethyl-methylene blue method. The molecular weight of CS was determined to be 62.464 kDa by high-performance gel permeation chromatography. UV and FT-IR spectroscopy identified the characteristics of CS and its functional group information. NMR spectroscopy and disaccharide derivatization revealed that CS was predominantly composed of disulfated disaccharides, specifically ΔDi4,6S. Fluorescence quenching experiments indicated that the interaction between CS and BSA exhibited static quenching, with a binding site number of 1. The binding process was primarily mediated by van der Waals forces and hydrogen bonds. Furthermore, synchronous and 3D fluorescence spectroscopy demonstrated that CS had minimal impact on the polarity and hydrophobicity of the microenvironment surrounding Tyr and Trp residues. UV-vis absorption and circular dichroism (CD) spectroscopy demonstrated the altered structure of BSA. The molecular docking analysis revealed that CS formed hydrogen bonds and salt bridges with BSA, predominantly binding to the IIA substructure domain of BSA. Investigating the interaction between CS and BSA holds the potential for enhancing its applications in drug delivery and tissue engineering endeavors.
Collapse
Affiliation(s)
- Hai-Long Pang
- Department of Pharmacy, Weifang Medical University, Weifang, Shandong, China; Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Han Lu
- Department of Pharmacy, Weifang Medical University, Weifang, Shandong, China; Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Peng Liu
- Rizhao Science and Technology Innovation Service Center, Rizhao, Shandong, China
| | - Yun-Tao Zhang
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China.
| | - Li-Tao Zhang
- Department of Biological Science, Jining Medical University, Rizhao, Shandong, China.
| | - Qiang Ren
- Department of Pharmacy, Jining Medical University, Rizhao, Shandong, China.
| |
Collapse
|
9
|
Miguez PA, Bash E, Musskopf ML, Tuin SA, Rivera-Concepcion A, Chapple ILC, Liu J. Control of tissue homeostasis by the extracellular matrix: Synthetic heparan sulfate as a promising therapeutic for periodontal health and bone regeneration. Periodontol 2000 2024; 94:510-531. [PMID: 37614159 PMCID: PMC10891305 DOI: 10.1111/prd.12515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/25/2023]
Abstract
Proteoglycans are core proteins associated with carbohydrate/sugar moieties that are highly variable in disaccharide composition, which dictates their function. These carbohydrates are named glycosaminoglycans, and they can be attached to proteoglycans or found free in tissues or on cell surfaces. Glycosaminoglycans such as hyaluronan, chondroitin sulfate, dermatan sulfate, keratan sulfate, and heparin/heparan sulfate have multiple functions including involvement in inflammation, immunity and connective tissue structure, and integrity. Heparan sulfate is a highly sulfated polysaccharide that is abundant in the periodontium including alveolar bone. Recent evidence supports the contention that heparan sulfate is an important player in modulating interactions between damage associated molecular patterns and inflammatory receptors expressed by various cell types. The structure of heparan sulfate is reported to dictate its function, thus, the utilization of a homogenous and structurally defined heparan sulfate polysaccharide for modulation of cell function offers therapeutic potential. Recently, a chemoenzymatic approach was developed to allow production of many structurally defined heparan sulfate carbohydrates. These oligosaccharides have been studied in various pathological inflammatory conditions to better understand their function and their potential application in promoting tissue homeostasis. We have observed that specific size and sulfation patterns can modulate inflammation and promote tissue maintenance including an anabolic effect in alveolar bone. Thus, new evidence provides a strong impetus to explore heparan sulfate as a potential novel therapeutic agent to treat periodontitis, support alveolar bone maintenance, and promote bone formation.
Collapse
Affiliation(s)
- PA Miguez
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - E Bash
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - ML Musskopf
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - SA Tuin
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - A Rivera-Concepcion
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - ILC Chapple
- Periodontal Research Group, School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, Birmingham’s NIHR BRC in Inflammation Research, University of Birmingham and Birmingham Community Health Foundation Trust, Birmingham UK Iain Chapple
| | - J Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Tsukahara T, Imamura S, Morohoshi T. A Review of Cyclic Phosphatidic Acid and Other Potential Therapeutic Targets for Treating Osteoarthritis. Biomedicines 2023; 11:2790. [PMID: 37893163 PMCID: PMC10603845 DOI: 10.3390/biomedicines11102790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Osteoarthritis (OA), a chronic degenerative joint disease, is the most common form of arthritis. OA occurs when the protective cartilage that cushions the ends of bones gradually breaks down. This leads to the rubbing of bones against each other, resulting in pain and stiffness. Cyclic phosphatidic acid (cPA) shows promise as a treatment for OA. In this article, we review the most recent findings regarding the biological functions of cPA signaling in mammalian systems, specifically in relation to OA. cPA is a naturally occurring phospholipid mediator with unique cyclic phosphate rings at the sn-2 and sn-3 positions in the glycerol backbone. cPA promotes various responses, including cell proliferation, migration, and survival. cPA possesses physiological activities that are distinct from those elicited by lysophosphatidic acid; however, its biochemical origin has rarely been studied. Although there is currently no cure for OA, advances in medical research may lead to new therapies or strategies in the future, and cPA has potential therapeutic applications.
Collapse
Affiliation(s)
- Tamotsu Tsukahara
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8521, Japan
| | | | | |
Collapse
|
11
|
Gonzalez-Ramiro H, Gil MA, Cuello C, Cambra JM, Gonzalez-Plaza A, Vazquez JM, Vazquez JL, Rodriguez-Martinez H, Lucas-Sanchez A, Parrilla I, Martinez CA, Martinez EA. The Use of a Brief Synchronization Treatment after Weaning, Combined with Superovulation, Has Moderate Effects on the Gene Expression of Surviving Pig Blastocysts. Animals (Basel) 2023; 13:ani13091568. [PMID: 37174605 PMCID: PMC10177444 DOI: 10.3390/ani13091568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
The combination of estrus synchronization and superovulation (SS) treatments causes alterations in ovarian and endometrial gene expression patterns, resulting in abnormal follicle and oocyte growth, fertilization, and embryo development. However, the impact of combined SS treatments on the transcriptome of the surviving embryos remains unidentified. In this study, we examined gene expression changes in day 6 blastocysts that survived a brief regimen of synchronization treatment combined with superovulation. The sows were included in one of three groups: SS7 group (n = 6), sows were administered Altrenogest (ALT) 7 days from the day of weaning and superovulated with eCG 24 h after the end of ALT treatment and hCG at the onset of estrus; SO group (n = 6), ALT nontreated sows were superovulated with eCG 24 h postweaning and hCG at the onset of estrus; control group (n = 6), weaned sows displaying natural estrus. Six days after insemination, the sows underwent a surgical intervention for embryo collection. Transcriptome analysis was performed on blastocyst-stage embryos with good morphology. Differentially expressed genes (DEGs) between groups were detected using one-way ANOVA with an un-adjusted p-value < 0.05 and a fold change </> 1.5. The effect of SO treatment on the number of altered pathways and DEGs within each pathway was minimal. Only four pathways were disrupted comprising only a total of four altered transcripts, which were not related to reproductive functions or embryonic development. On the other hand, the surviving blastocysts subjected to SS7 treatments exhibited moderate gene expression changes in terms of DEGs and fold changes, with seven pathways disrupted containing a total of 10 transcripts affected. In this case, the up-regulation of certain pathways, such as the metabolic pathway, with two up-regulated genes associated with reproductive functions, namely RDH10 and SPTLC2, may suggest suboptimal embryo quality, while the down-regulation of others, such as the glutathione metabolism pathway, with down-regulated genes related to cellular detoxification of reactive oxygen species, namely GSTK1 and GSTO1, could depress the embryos' response to oxidative stress, thereby impairing subsequent embryo development. The gene expression changes observed in the present study in SS7 embryos, along with previous reports indicating SS7 can negatively affect fertilization, embryo production, and reproductive tract gene expression, make its use in embryo transfer programs unrecommendable.
Collapse
Affiliation(s)
- Henar Gonzalez-Ramiro
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Campus de Ciencias de la Salud, 30120 Murcia, Spain
- Department of Research and Development, Grupo Agropor I+D+I, AIE, 30565 Murcia, Spain
| | - Maria A Gil
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Cristina Cuello
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Josep M Cambra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Alejandro Gonzalez-Plaza
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Juan M Vazquez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Jose L Vazquez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, 58185 Linköping, Sweden
| | | | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| | - Cristina A Martinez
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain
| | - Emilio A Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Campus de Ciencias de la Salud, 30120 Murcia, Spain
| |
Collapse
|
12
|
Saito S, Mizumoto S, Yonekura T, Yamashita R, Nakano K, Okubo T, Yamada S, Okamura T, Furuichi T. Mice lacking nucleotide sugar transporter SLC35A3 exhibit lethal chondrodysplasia with vertebral anomalies and impaired glycosaminoglycan biosynthesis. PLoS One 2023; 18:e0284292. [PMID: 37053259 PMCID: PMC10101523 DOI: 10.1371/journal.pone.0284292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
SLC35A3 is considered an uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) transporter in mammals and regulates the branching of N-glycans. A missense mutation in SLC35A3 causes complex vertebral malformation (CVM) in cattle. However, the biological functions of SLC35A3 have not been fully clarified. To address these issues, we have established Slc35a3-/-mice using CRISPR/Cas9 genome editing system. The generated mutant mice were perinatal lethal and exhibited chondrodysplasia recapitulating CVM-like vertebral anomalies. During embryogenesis, Slc35a3 mRNA was expressed in the presomitic mesoderm of wild-type mice, suggesting that SLC35A3 transports UDP-GlcNAc used for the sugar modification that is essential for somite formation. In the growth plate cartilage of Slc35a3-/-embryos, extracellular space was drastically reduced, and many flat proliferative chondrocytes were reshaped. Proliferation, apoptosis and differentiation were not affected in the chondrocytes of Slc35a3-/-mice, suggesting that the chondrodysplasia phenotypes were mainly caused by the abnormal extracellular matrix quality. Because these histological abnormalities were similar to those observed in several mutant mice accompanying the impaired glycosaminoglycan (GAG) biosynthesis, GAG levels were measured in the spine and limbs of Slc35a3-/-mice using disaccharide composition analysis. Compared with control mice, the amounts of heparan sulfate, keratan sulfate, and chondroitin sulfate/dermatan sulfate, were significantly decreased in Slc35a3-/-mice. These findings suggest that SLC35A3 regulates GAG biosynthesis and the chondrodysplasia phenotypes were partially caused by the decreased GAG synthesis. Hence, Slc35a3-/- mice would be a useful model for investigating the in vivo roles of SLC35A3 and the pathological mechanisms of SLC35A3-associated diseases.
Collapse
Affiliation(s)
- Soichiro Saito
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - Tsukasa Yonekura
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Rina Yamashita
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo, Japan
| | - Tadashi Okubo
- Department of Laboratory Animal Science, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo, Japan
| | - Tatsuya Furuichi
- Laboratory of Laboratory Animal Science and Medicine, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
- Laboratory of Laboratory Animal Science and Medicine, Graduate School of Veterinary Sciences, Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
13
|
Cahyadi DD, Warita K, Takeda-Okuda N, Tamura JI, Hosaka YZ. Qualitative and quantitative analyses in sulfated glycosaminoglycans, chondroitin sulfate/dermatan sulfate, during 3 T3-L1 adipocytes differentiation. Anim Sci J 2023; 94:e13894. [PMID: 38054387 DOI: 10.1111/asj.13894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023]
Abstract
Chondroitin sulfate/dermatan sulfate (CS/DS) is a member of glycosaminoglycans (GAGs) found in animal tissues. Major CS/DS subclasses, O, A, C, D, and E units, exist based on the sulfation pattern in d-glucuronic acid (GlcA) and N-acetyl-d-galactosamine repeating units. DS is formed when GlcA is epimerized into l-iduronic acid. Our study aimed to analyze the CS/DS profile in 3 T3-L1 cells before and after adipogenic induction. CS/DS contents, molecular weight (Mw), and sulfation pattern were analyzed by using high-performance liquid chromatography. CS/DS synthesis- and sulfotransferase-related genes were analyzed by reverse transcription real-time PCR. CS/DS amount was significantly decreased in the differentiated (DI) group compared to the non-differentiated (ND) group, along with a lower expression of CS biosynthesis-related genes, chondroitin sulfate N-acetylgalactosaminyltransferase 1 and 2, as well as chondroitin polymerizing factor. GAGs in the DI group also showed lower Mw than those of ND. Furthermore, the A unit was the major CS/DS in both groups, with a proportionally higher CS-A in the DI group. This was consistent with the expression of carbohydrate sulfotransferase 12 that encodes chondroitin 4-O-sulfotransferase, for CS-A formation. These qualitative and quantitative changes in CS/DS and CS/DS-synthases before and after adipocyte differentiation reveal valuable insights into adipocyte development.
Collapse
Affiliation(s)
- Danang Dwi Cahyadi
- Joint Graduate School of Veterinary Sciences, Tottori University, Tottori, Japan
- Division of Anatomy Histology and Embryology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Katsuhiko Warita
- Joint Graduate School of Veterinary Sciences, Tottori University, Tottori, Japan
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Naoko Takeda-Okuda
- Department of Life and Environmental Agricultural Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Jun-Ichi Tamura
- Department of Life and Environmental Agricultural Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Yoshinao Z Hosaka
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
Ricard-Blum S. Building, Visualizing, and Analyzing Glycosaminoglycan-Protein Interaction Networks. Methods Mol Biol 2023; 2619:211-224. [PMID: 36662472 DOI: 10.1007/978-1-0716-2946-8_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This chapter describes how to generate, visualize, and analyze interaction networks of glycosaminoglycans (GAGs), which are linear polyanionic polysaccharides mostly located at the cell surface and in the extracellular matrix. The protocol is divided into three major steps: (1) the collection of GAG-mediated interaction data, (2) the visualization of GAG interaction networks, and (3) the computational enrichment analyses of these networks to identify their overrepresented features (e.g., protein domains, location, molecular functions, and biological pathways) compared to a reference proteome. These analyses are critical to interpret GAG interactomic datasets, decipher their specificities and functions, and ultimately identify GAG-protein interactions to target for therapeutic purpose.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- ICBMS, UMR 5246 University Lyon 1, CNRS, Institute of Molecular and Supramolecular Chemistry and Biochemistry, Villeurbanne Cedex, France.
| |
Collapse
|
15
|
Characterization of Hyaluronidase 4 Involved in the Catabolism of Chondroitin Sulfate. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186103. [PMID: 36144836 PMCID: PMC9501593 DOI: 10.3390/molecules27186103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/26/2022]
Abstract
Hyaluronidases (HYALs) are endo-beta-N-acetylhexosaminidases that depolymerize not only hyaluronan but also chondroitin sulfate (CS) at the initial step of their catabolism. Although HYAL1 hydrolyzes both CS and HA, HYAL4 is a CS-specific endoglycosidase. The substrate specificity of HYAL4 and identification of amino acid residues required for its enzymatic activity have been reported. In this study, we characterized the properties of HYAL4 including the expression levels in various tissues, cellular localization, and effects of its overexpression on intracellular CS catabolism, using cultured cells as well as mouse tissues. Hyal4 mRNA and HYAL4 protein were demonstrated to be ubiquitously expressed in various organs in the mouse. HYAL4 protein was shown to be present both on cell surfaces as well as in lysosomes of rat skeletal muscle myoblasts, L6 cells. Overexpression of HYAL4 in Chinese hamster ovary cells decreased in the total amount of CS, suggesting its involvement in the cellular catabolism of CS. In conclusion, HYAL4 may be widely distributed and play various biological roles, including the intracellular depolymerization of CS.
Collapse
|
16
|
Dai Y, Jia P, Zhao Z, Gottlieb A. A Method for Bridging Population-Specific Genotypes to Detect Gene Modules Associated with Alzheimer's Disease. Cells 2022; 11:2219. [PMID: 35883662 PMCID: PMC9319087 DOI: 10.3390/cells11142219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Genome-wide association studies have successfully identified variants associated with multiple conditions. However, generalizing discoveries across diverse populations remains challenging due to large variations in genetic composition. Methods that perform gene expression imputation have attempted to address the transferability of gene discoveries across populations, but with limited success. METHODS Here, we introduce a pipeline that combines gene expression imputation with gene module discovery, including a dense gene module search and a gene set variation analysis, to address the transferability issue. Our method feeds association probabilities of imputed gene expression with a selected phenotype into tissue-specific gene-module discovery over protein interaction networks to create higher-level gene modules. RESULTS We demonstrate our method's utility in three case-control studies of Alzheimer's disease (AD) for three different race/ethnic populations (Whites, African descent and Hispanics). We discovered 182 AD-associated genes from gene modules shared between these populations, highlighting new gene modules associated with AD. CONCLUSIONS Our innovative framework has the potential to identify robust discoveries across populations based on gene modules, as demonstrated in AD.
Collapse
Affiliation(s)
- Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Assaf Gottlieb
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
17
|
Noborn F, Nilsson J, Larson G. Site-specific glycosylation of proteoglycans: a revisited frontier in proteoglycan research. Matrix Biol 2022; 111:289-306. [PMID: 35840015 DOI: 10.1016/j.matbio.2022.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/11/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022]
Abstract
Proteoglycans (PGs), a class of carbohydrate-modified proteins, are present in essentially all metazoan organisms investigated to date. PGs are composed of glycosaminoglycan (GAG) chains attached to various core proteins and are important for embryogenesis and normal homeostasis. PGs exert many of their functions via their GAG chains and understanding the details of GAG-ligand interactions has been an essential part of PG research. Although PGs are also involved in many diseases, the number of GAG-related drugs used in the clinic is yet very limited, indicating a lack of detailed structure-function understanding. Structural analysis of PGs has traditionally been obtained by first separating the GAG chains from the core proteins, after which the two components are analyzed separately. While this strategy greatly facilitates the analysis, it precludes site-specific information and introduces either a "GAG" or a "core protein" perspective on the data interpretation. Mass-spectrometric (MS) glycoproteomic approaches have recently been introduced, providing site-specific information on PGs. Such methods have revealed a previously unknown structural complexity of the GAG linkage regions and resulted in identification of several novel CSPGs and HSPGs in humans and in model organisms, thereby expanding our view on PG complexity. In light of these findings, we discuss here if the use of such MS-based techniques, in combination with various functional assays, can also be used to expand our functional understanding of PGs. We have also summarized the site-specific information of all human PGs known to date, providing a theoretical framework for future studies on site-specific functional analysis of PGs in human pathophysiology.
Collapse
Affiliation(s)
- Fredrik Noborn
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Department of Laboratory Medicine, Sundsvall County Hospital, Sweden.
| | - Jonas Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Göran Larson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
18
|
Vallet SD, Berthollier C, Ricard-Blum S. The glycosaminoglycan interactome 2.0. Am J Physiol Cell Physiol 2022; 322:C1271-C1278. [PMID: 35544698 DOI: 10.1152/ajpcell.00095.2022] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glycosaminoglycans (GAGs) are complex linear polysaccharides, which are covalently attached to core proteins (except for hyaluronan) to form proteoglycans. They play key roles in the organization of the extracellular matrix, and at the cell surface where they contribute to the regulation of cell signaling and of cell adhesion. To explore the mechanisms and pathways underlying their functions, we have generated an expanded dataset of 4290 interactions corresponding to 3464 unique GAG-binding proteins, four times more than the first version of the GAG interactome (Vallet and Ricard-Blum, 2021 J Histochem Cytochem 69:93-104). The increased size of the GAG network is mostly due to the addition of GAG-binding proteins captured from cell lysates and biological fluids by affinity chromatography and identified by mass spectrometry. We review here the interaction repertoire of natural GAGs and of synthetic sulfated hyaluronan, the specificity and molecular functions of GAG-binding proteins, and the biological processes and pathways they are involved in. This dataset is also used to investigate the differences between proteins binding to iduronic acid-containing GAGs (dermatan sulfate and heparin/heparan sulfate) and those interacting with GAGs lacking iduronic acid (chondroitin sulfate, hyaluronan, and keratan sulfate).
Collapse
|