1
|
Fang Z, Pan Y, Lu Z, Wang L, Hu X, Ma Y, Li S. LncRNA SNHG1: A novel biomarker and therapeutic target in hepatocellular carcinoma. Gene 2025; 958:149462. [PMID: 40187618 DOI: 10.1016/j.gene.2025.149462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality globally. Increasing evidence suggests that long non-coding RNAs play a critical role in cancer development, with the small nucleolar RNA host gene family being a key participant in multiple types of carcinogenesis, including HCC. Small nucleolar RNA host gene 1 (SNHG1) is a significant member of the SNHG family. SNHG1 expression consistently increases in various HCC-associated processes, such as cell proliferation, apoptosis, angiogenesis, migration, invasion, and treatment resistance. Higher SNHG1 expression levels predict worse prognosis by positively correlating with clinicopathological features, including larger tumour size, poor differentiation, and advanced stages in patients with HCC. Nevertheless, the precise role of SNHG1 in the initiation and progression of HCC remains unclear. Therefore, this review aims to summarise the current investigations on the pathogenesis of SNHG1 in HCC, highlighting its potential as a molecular marker for early prediction and prognostic assessment. As a multifunctional modulator, SNHG1 is extensively involved in molecular signalling pathways in HCC progression and is valuable for therapeutic targeting.
Collapse
Affiliation(s)
- Zhou Fang
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Yong Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou 31003, China
| | - Zhengmei Lu
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Lingyun Wang
- Department of Infectious Diseases, Zhoushan Hospital, Zhejiang University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Xiaodan Hu
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Yingqiu Ma
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Shibo Li
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China.
| |
Collapse
|
2
|
Yang X, Cao X, Zhu Q, Wu H. Pan-cancer analysis of GJB5 as a novel prognostic and immunological biomarker. Sci Rep 2025; 15:14879. [PMID: 40295550 DOI: 10.1038/s41598-025-96389-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Gap junction protein B5 (GJB5, also known as Connexin 31.1) has recently been reported to be downregulated in several cancer types, where it functions primarily as a tumor suppressor in cancers such as melanoma and non-small cell lung cancer (NSCLC). However, there no reports describing its prognostic and immunological roles in pan-cancer. This study evaluated the association of GJB5 in various cancer types by a comprehensive pan-cancer analysis. The differential GJB5 expression in tumor and adjacent tissues acquired from The Cancer Genome Atlas (TCGA) databases was compared. Furthermore, univariate Cox regression and Kaplan-Meier survival analyses were performed to assess the influence of GJB5 on the disease-specific survival (DSS), disease-free interval (DFI), clinical stage, progression-free interval (PFI), and overall survival (OS) in various cancers. Moreover, the levels of GJB5 and its activity in the tumor microenvironment were assessed via the Tumor Immune Single-cell Hub (TISCH). In addition, the biological importance of GJB5 levels in various cancers was further assessed via Gene Set Enrichment Analysis. Tumor-Immune System Interactions Database (TISIDB) and Tumor Immune Estimation Resource Database 2.0 (TIMER2.0) tools indicated that GJB5 affected the tumor's immune infiltration potential. This research also evaluated the association of GJB5 with immune features: immune modulatory genes, tumor mutational burden (TMB), and microsatellite instability (MSI). The data indicated that enhanced GJB5 level was linked to worse DFI, OS, PFI, and DSS in some cancers. Additionally, GJB5 level was positively related to immune modulatory genes, TMB, immune cell infiltration, immunological checkpoints, and MSI in malignancies. Furthermore, our study demonstrated that GJB5 was upregulated in colorectal cancer tissues compared to normal tissues. We also assessed GJB5 expression across various pancreatic cell lines. Notably, GJB5 was highly expressed in pancreatic cancer cells relative to normal pancreatic epithelial cells. Additionally, GJB5 knockdown in pancreatic cancer cells resulted in a significant reduction in cell proliferation. In summary, the findings indicated the potential of GJB5 as a prospective prognostic indicator and immunological biomarker.
Collapse
Affiliation(s)
- Xiaojuan Yang
- Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xunjie Cao
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Qing Zhu
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Hong Wu
- Liver Digital Transformation Research Laboratory, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
3
|
Sun Y, Zhang M, Wang T, Huang S, Zuo Q, Liu L, Feng R, Han Y, Cao C, Sun H, Lu Y, Zhu X, Tang Y, Wu S, Ping G, Sun L, Ge Z, Jiang Z. LncRNA GAS5 Regulates Myometrial Cell Contractions in an m6A-Dependent Manner. FUNCTION 2025; 6:zqaf009. [PMID: 40053491 PMCID: PMC11931615 DOI: 10.1093/function/zqaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/09/2025] [Accepted: 02/25/2025] [Indexed: 03/09/2025] Open
Abstract
LncRNAs are engaged in signaling pathways in human physiological and pathological states. However, LncRNAs mediate the onset of human labor still remains unknown. RNA sequencing of lower segment myometrium (in labor vs. not in labor) was analyzed. N6-Methyladenosine (m6A) complexes were detected by RIP and meRIP in human myometrial cells. Plasmid and siRNA transfection was performed, and contraction ability was assessed. RNA pulldown, silver staining, protein mass spectrometry, and RIP were used to identify binding proteins. FISH and immunofluorescence costaining were applied to assess the coexpression. GAS5 was upregulated in human myometrium after labor onset. METTL3 and IGF2BP1 maintained GAS5 RNA stability based on actinomycin assay, thus strengthening the contraction of myometrial cells. RIP and meRIP revealed the binding sites of GAS5 with METTL3 and IGF2BP1, respectively. Furthermore, GAS5 binds TPM4 in cytoplasm of myometrium cells and transports TPM4 to the contraction filaments. m6A RNA modifications were also noted in the mouse myometrium after labor onset. These findings highlighted the critical role of m6A modification in GAS5, providing a new method to explore RNA epigenetic regulatory patterns in human parturition.
Collapse
Affiliation(s)
- Yue Sun
- Department of Obstetrics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Min Zhang
- Department of Obstetrics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Tianjun Wang
- Department of Obstetrics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Shiyun Huang
- Department of Obstetrics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Qing Zuo
- Department of Obstetrics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Lanhua Liu
- Department of Obstetrics, People’s Hospital of Taixing, Taizhou 225400, Jiangsu, China
| | - Runrun Feng
- Department of Obstetrics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yufei Han
- Department of Obstetrics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Cen Cao
- Department of Obstetrics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Haiyan Sun
- Department of Obstetrics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yihan Lu
- Department of Obstetrics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Xinxin Zhu
- Department of Obstetrics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yuping Tang
- Department of Obstetrics, Dongtai People’s Hospital, Yancheng 224000, Jiangsu, China
| | - Shuang Wu
- Department of Obstetrics, Baoying People’s Hospital, Yangzhou 225000, Jiangsu, China
| | - Guoqiang Ping
- Department of Pathology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Lizhou Sun
- Department of Obstetrics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zhiping Ge
- Department of Obstetrics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Ziyan Jiang
- Department of Obstetrics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
- Department of Obstetrics, People’s Hospital of Taixing, Taizhou 225400, Jiangsu, China
| |
Collapse
|
4
|
Cui Y, Wang HZ, Song Y, Yang S, Sai FY, Yu DJ. UBE2C as an Immune-Related Biomarker for Breast Cancer: A Study Based on Multiple Databases. CHINESE MEDICAL SCIENCES JOURNAL = CHUNG-KUO I HSUEH K'O HSUEH TSA CHIH 2024; 39:171-181. [PMID: 38828693 DOI: 10.24920/004340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
OBJECTIVES To screen the target genes that are associated with survival of breast cancer (BRCA) and explore their prognostic values and immune correlations with BRCA using multiple databases.. METHODS The microarray expression datasets of BRCA were downloaded from the Gene Expresssion Omnibus database (GEO) and analyzed to obtain differentially expressed genes (DEGs). Hub genes were obtained by constructing and visualizing the protein-protein interaction network of DEGs. The key gene was determined using R language, STRING, and Cytoscape, and the differential expression of the key gene was verified using external datasets The Cancer Genome Atlas (TCGA) and quantitative real-time PCR (qRT-PCR) for BRCA tissues of 37 patients. The prognostic value and immunological correlation of UBE2C in BRCA were explored using R language, TIMER, and Gene Set Enrichment Analysis (GSEA). RESULTS Of 10 hub genes seleceed from 302 DEGS, UBE2C was identified as the gene associated with BRCA survival. The expression of UBE2C was differentially upregulated in BRCA, as verified by TCGA and qRT-PCR. Prognostic analysis revealed that UBE2C served as an independent prognostic factor. High expression of UBE2C was associated with decreased immune infiltration levels of B cells, CD4+ T cells, CD8+ T cells, macrophages, and myeloid dendritic cells in BRCA tissue. The expression of UBE2C in BRCA showed a significant correlation with immune checkpoints genes PDCD1, CD274, and CTLA4 expressions. There was a positive correlation between the expression of UBE2C and the tumor mutational burden and microsatellite instability. GSEA demonstrated that UBE2C expression significantly enriched 786 immune-related gene sets. CONCLUSIONS UBE2C expression in BRCA tissues is closely related to the BRCA immune microenvironment and showes predictive values on the survivals and prognosis of BRCA patients and the effecacy of immunotherapy. UBE2C may be an potential immune-related prognostic biomarker for BRCA.
Collapse
Affiliation(s)
- Yue Cui
- Central Laboratory of the Fifth Affiliated Hospital of Harbin Medical University, Daqing 163711, Heilongjian Province, China
| | - Hong-Zhi Wang
- Central Laboratory of the Fifth Affiliated Hospital of Harbin Medical University, Daqing 163711, Heilongjian Province, China
| | - Ye Song
- Central Laboratory of the Fifth Affiliated Hospital of Harbin Medical University, Daqing 163711, Heilongjian Province, China
| | - Shuang Yang
- Central Laboratory of the Fifth Affiliated Hospital of Harbin Medical University, Daqing 163711, Heilongjian Province, China
| | - Feng-Ying Sai
- Clinical Laboratory of the Fifth Affiliated Hospital of Harbin Medical University, Daqing 163316, Heilongjian Province, China
| | - De-Jun Yu
- Clinical Laboratory of the Fifth Affiliated Hospital of Harbin Medical University, Daqing 163316, Heilongjian Province, China.
| |
Collapse
|
5
|
Jiang J, Duan M, Wang Z, Lai Y, Zhang C, Duan C. RNA epigenetics in pulmonary diseases: Insights into methylation modification of lncRNAs in lung cancer. Biomed Pharmacother 2024; 175:116704. [PMID: 38749181 DOI: 10.1016/j.biopha.2024.116704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 06/03/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are pivotal controllers of gene expression through epigenetic mechanisms, Methylation, a prominent area of study in epigenetics, significantly impacts cellular processes. Various RNA base methylations, including m6A, m5C, m1A, and 2'-O-methylation, profoundly influence lncRNA folding, interactions, and stability, thereby shaping their functionality. LncRNAs and methylation significantly contribute to tumor development, especially in lung cancer. Their roles encompass cell differentiation, proliferation, the generation of cancer stem cells, and modulation of immune responses. Recent studies have suggested that dysregulation of lncRNA methylation can contribute to lung cancer development. Furthermore, methylation modifications of lncRNAs hold potential for clinical application in lung cancer. Dysregulated lncRNA methylation can promote lung cancer progression and may offer insights into potential biomarker or therapeutic target. This review summarizes the current knowledge of lncRNA methylation in lung cancer and its implications for RNA epigenetics and pulmonary diseases.
Collapse
Affiliation(s)
- Junjie Jiang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, People's Republic of China
| | - Minghao Duan
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 412017, Hunan, People's Republic of China
| | - Zheng Wang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, People's Republic of China
| | - Yuwei Lai
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, People's Republic of China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, People's Republic of China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Chaojun Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, People's Republic of China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, Hunan, People's Republic of China.
| |
Collapse
|
6
|
Li C, Mao X, Song L, Sheng J, Yang L, Huang X, Wang L. Unveiling HOXB7 as a novel diagnostic and prognostic biomarker through pan-cancer computer screening. Comput Biol Med 2024; 176:108562. [PMID: 38728993 DOI: 10.1016/j.compbiomed.2024.108562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/11/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
We attempted to investigate the role of HOXB7 in tumor progression and evolution by means of an extensive computer screening analysis of various cancer types. We performed univariate Cox regression and Kaplan-Meier survival analyses to assess the impact of HOXB7 on overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) in different types of cancer. Furthermore, we examined the relationship between HOXB7 and several clinical features: tumor microenvironment, immune regulatory genes, immune checkpoints, tumor mutational burden (TMB), and microsatellite instability (MSI). We performed gene set enrichment analysis to gain deeper insights into the potential molecular mechanisms of HOXB7, and validated our findings through functional assays in cells, including methyl thiazolyl tetrazolium cytotoxicity and Transwell invasion assays. HOXB7 expression was associated with different clinical characteristics in numerous malignancies. Higher HOXB7 expression was associated with worse OS, DSS, and PFI in some cancer types. In particular, HOXB7 expression was favorably associated with immune cell infiltration, immune regulatory genes, immunological checkpoints, TMB, and MSI in malignancies. Furthermore, we identified a strong link between copper death-associated gene expression and HOXB7 expression. According to the findings of this study, HOXB7 might serve as an appealing focus for tumor diagnosis and immunotherapy and a prospective indicator of prognosis.
Collapse
Affiliation(s)
- Cong Li
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Xulong Mao
- Department of Cardiology, First School of Clinical Medicine College, Yangtze University, Jingzhou, 434000, China
| | - Lanlan Song
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Jueqi Sheng
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China
| | - Lehe Yang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China.
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China.
| | - Liangxing Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
7
|
Guo Q, Zhang G, Zhou W, Lu Y, Chen X, Deng Z, Li J, Bi H, Wu M, Xie M, Yan Y, Zhang J. m 6A modification of lncRNA PHKA1-AS1 enhances Actinin Alpha 4 stability and promotes non-small cell lung cancer metastasis. MedComm (Beijing) 2024; 5:e547. [PMID: 38764726 PMCID: PMC11099756 DOI: 10.1002/mco2.547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 05/21/2024] Open
Abstract
Cancer is a disease with molecular heterogeneity that is closely related to gene mutations and epigenetic changes. The principal histological subtype of lung cancer is non-small cell lung cancer (NSCLC). Long noncoding RNA (lncRNA) is a kind of RNA that is without protein coding function, playing a critical role in the progression of cancer. In this research, the regulatory mechanisms of lncRNA phosphorylase kinase regulatory subunit alpha 1 antisense RNA 1 (PHKA1-AS1) in the progression of NSCLC were explored. The increased level of N6-methyladenosine (m6A) modification in NSCLC caused the high expression of PHKA1-AS1. Subsequently, high-expressed PHKA1-AS1 significantly facilitated the proliferation and metastasis of NSCLC cells, and these effects could be reversed upon the inhibition of PHKA1-AS1 expression, both in vivo and in vitro. Additionally, the target protein of PHKA1-AS1 was actinin alpha 4 (ACTN4), which is known as an oncogene. Herein, PHKA1-AS1 could enhance the protein stability of ACTN4 by inhibiting its ubiquitination degradation process, thus exerting the function of ACTN4 in promoting the progress of NSCLC. In conclusion, this research provided a theoretical basis for further exploring the potential mechanism of NSCLC metastasis and searching novel biomarkers related to the pathogenesis and progression of NSCLC.
Collapse
Affiliation(s)
- Qiao‐Ru Guo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouP.R. China
| | - Guo‐Bin Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouP.R. China
| | - Wen‐Min Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouP.R. China
| | - Yu Lu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouP.R. China
| | - Xin‐Zhu Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouP.R. China
| | - Zhuo‐Fen Deng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouP.R. China
| | - Jin‐Shuo Li
- School of MedicineShanxi Datong UniversityDatongP.R. China
| | - Hong Bi
- Department of PathologyShanxi Provincial People's HospitalTaiyuanP.R. China
| | - Ming‐Sheng Wu
- Department of Thoracic SurgeryThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiP.R. China
| | - Ming‐Ran Xie
- Department of Thoracic SurgeryThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiP.R. China
| | - Yan‐Yan Yan
- School of MedicineShanxi Datong UniversityDatongP.R. China
| | - Jian‐Ye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhouP.R. China
- The Affiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuanP.R. China
| |
Collapse
|
8
|
Su X, Feng Y, Qu Y, Mu D. Association between methyltransferase-like 3 and non-small cell lung cancer: pathogenesis, therapeutic resistance, and clinical applications. Transl Lung Cancer Res 2024; 13:1121-1136. [PMID: 38854947 PMCID: PMC11157379 DOI: 10.21037/tlcr-24-85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/22/2024] [Indexed: 06/11/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a malignant cancer that with high incidence, recurrence, and mortality rates in human beings, posing significant threats to human health. Moreover, effective early diagnosis of NSCLC remains limited primarily by the lack of accurate biomarkers. Therefore, there is an urgent need to understand the mechanisms underlying NSCLC pathogenesis and treatment failure. Methyltransferase-like 3 (METTL3) is a prototypical member of a family of which its members transfer methyl groups. It has been implicated in modulating the pathogenesis of NSCLC, as well as conferring resistance to NSCLC therapeutics. The targeting of METTL3 for NSCLC treatment has been reported. However, the relationship between METTL3 and NSCLC remains to be demonstrated. In this review, we discuss relevant interrelationships by summarising the studies on METTL3 in NSCLC pathogenesis, therapeutic resistance, and clinical applications. Current research suggests that the upregulation of METTL3 expression propels the tumorigenesis, progression, and treatment resistance of NSCLC. Therefore, we propose that METTL3 is an excellent candidate biomarker for NSCLC diagnosis and prognosis. Therapeutic targeting of METTL3 has significant potential for NSCLC treatment. This review provides a summary of the association between METTL3 and NSCLC, which would be a valuable reference for both basic and clinical research.
Collapse
|
9
|
Liu L, Wu J, Lu C, Ma Y, Wang J, Xu J, Yang X, Zhang X, Wang H, Xu J, Zhang J. WTAP-mediated m 6A modification of lncRNA Snhg1 improves myocardial ischemia-reperfusion injury via miR-361-5p/OPA1-dependent mitochondrial fusion. J Transl Med 2024; 22:499. [PMID: 38796415 PMCID: PMC11128115 DOI: 10.1186/s12967-024-05330-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Myocardial ischemia-reperfusion injury (MIRI) is caused by reperfusion after ischemic heart disease. LncRNA Snhg1 regulates the progression of various diseases. N6-methyladenosine (m6A) is the frequent RNA modification and plays a critical role in MIRI. However, it is unclear whether lncRNA Snhg1 regulates MIRI progression and whether the lncRNA Snhg1 was modified by m6A methylation. METHODS Mouse cardiomyocytes HL-1 cells were utilized to construct the hypoxia/reoxygenation (H/R) injury model. HL-1 cell viability was evaluated utilizing CCK-8 method. Cell apoptosis, mitochondrial reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) were quantitated utilizing flow cytometry. RNA immunoprecipitation and dual-luciferase reporter assays were applied to measure the m6A methylation and the interactions between lncRNA Snhg1 and targeted miRNA or target miRNAs and its target gene. The I/R mouse model was constructed with adenovirus expressing lncRNA Snhg1. HE and TUNEL staining were used to evaluate myocardial tissue damage and apoptosis. RESULTS LncRNA Snhg1 was down-regulated after H/R injury, and overexpressed lncRNA Snhg1 suppressed H/R-stimulated cell apoptosis, mitochondrial ROS level and polarization. Besides, lncRNA Snhg1 could target miR-361-5p, and miR-361-5p targeted OPA1. Overexpressed lncRNA Snhg1 suppressed H/R-stimulated cell apoptosis, mitochondrial ROS level and polarization though the miR-361-5p/OPA1 axis. Furthermore, WTAP induced lncRNA Snhg1 m6A modification in H/R-stimulated HL-1 cells. Moreover, enforced lncRNA Snhg1 repressed I/R-stimulated myocardial tissue damage and apoptosis and regulated the miR-361-5p and OPA1 levels. CONCLUSION WTAP-mediated m6A modification of lncRNA Snhg1 regulated MIRI progression through modulating myocardial apoptosis, mitochondrial ROS production, and mitochondrial polarization via miR-361-5p/OPA1 axis, providing the evidence for lncRNA as the prospective target for alleviating MIRI progression.
Collapse
Affiliation(s)
- Linlin Liu
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Jiahong Wu
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Cheng Lu
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Yan Ma
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Jiayi Wang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Jie Xu
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Xiaoli Yang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Xuan Zhang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Hua Wang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Jieyu Xu
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Jiehan Zhang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China.
| |
Collapse
|
10
|
Hashemi M, Daneii P, Zandieh MA, Raesi R, Zahmatkesh N, Bayat M, Abuelrub A, Khazaei Koohpar Z, Aref AR, Zarrabi A, Rashidi M, Salimimoghadam S, Entezari M, Taheriazam A, Khorrami R. Non-coding RNA-Mediated N6-Methyladenosine (m 6A) deposition: A pivotal regulator of cancer, impacting key signaling pathways in carcinogenesis and therapy response. Noncoding RNA Res 2024; 9:84-104. [PMID: 38075202 PMCID: PMC10700483 DOI: 10.1016/j.ncrna.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 06/20/2024] Open
Abstract
The emergence of RNA modifications has recently been considered as critical post-transcriptional regulations which governed gene expression. N6-methyladenosine (m6A) modification is the most abundant type of RNA modification which is mediated by three distinct classes of proteins called m6A writers, readers, and erasers. Accumulating evidence has been made in understanding the role of m6A modification of non-coding RNAs (ncRNAs) in cancer. Importantly, aberrant expression of ncRNAs and m6A regulators has been elucidated in various cancers. As the key role of ncRNAs in regulation of cancer hallmarks is well accepted now, it could be accepted that m6A modification of ncRNAs could affect cancer progression. The present review intended to discuss the latest knowledge and importance of m6A epigenetic regulation of ncRNAs including mircoRNAs, long non-coding RNAs, and circular RNAs, and their interaction in the context of cancer. Moreover, the current insight into the underlying mechanisms of therapy resistance and also immune response and escape mediated by m6A regulators and ncRNAs are discussed.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Zahmatkesh
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Mehrsa Bayat
- Department of Health Sciences, Bahcesehir University, Istanbul, Turkey
| | - Anwar Abuelrub
- Neuroscience Laboratory, Health Sciences Institute, Bahcesehir University, Istanbul, Turkey
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
11
|
Li R, Li S, Shen L, Li J, Zhang D, Yu J, Huang L, Liu N, Lu H, Xu M. SNHG1, interacting with SND1, contributes to sorafenib resistance of liver cancer cells by increasing m6A-mediated SLC7A11 expression and promoting aerobic glycolysis. ENVIRONMENTAL TOXICOLOGY 2024; 39:1269-1282. [PMID: 37927237 DOI: 10.1002/tox.24014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/20/2023] [Accepted: 10/07/2023] [Indexed: 11/07/2023]
Abstract
Aerobic glycolysis plays an important role in multidrug resistance of cancer cells. Here, we screened different expressed lncRNAs associated with sorafenib resistance of liver cancer cells, by intersecting the bioinformatics analyses of TCGA and GEO (the GSE62813 dataset) databases. Our results revealed that the 18 upregulated lncRNAs in the intersection are associated with and enriched in metabolism of small molecule organic acids, suggesting their potential in glycolysis. The lncRNA small nucleolar RNA host gene 1 (Snhg1) was chosen as a potential regulator of aerobic glycolysis in liver cancer cells, for its significant promotion on lactate production. Gain- and loss-of-function experiments mediated by Crispr-Cas9 technique in HepG2 cells indicated that Snhg1 promoted cell proliferation, invasion, sorafenib resistance, and aerobic glycolysis. In the mechanism exploration, we found that Snhg1 can interact with SND1 protein, a famous RNA binding protein and recently identified "Reader" of N6-methyladenosine (m6A). SND1 was demonstrated to be positively regulated by Snhg1 and had similar promoting effects on proliferation, invasion, sorafenib resistance, and aerobic glycolysis of HepG2 cells. SND1 bound with and promoted the expression of SLC7A11, an aerobic glycolysis regulator. Furthermore, either silencing SLC7A11 or blocking aerobic glycolysis with 2-deoxy-d-glucose (2-DG) was able to reverse the promotion of Snhg1 overexpression on malignancy, sorafenib resistance, and aerobic glycolysis of HepG2 cells. Finally, in a liver cancer xenograft mouse model, we found that formed tumors with Snhg1-knocked-down HepG2 cells were more sensitive to sorafenib administration. Altogether, SNHG1 contributes to sorafenib resistance of liver cancer cells by promoting SND1-m6A-SLC7A11-mediated aerobic glycolysis.
Collapse
Affiliation(s)
- Rong Li
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Shunle Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Lin Shen
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Junhui Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Di Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Jinmin Yu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Lanxuan Huang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Na Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Hongwei Lu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Meng Xu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
12
|
Yu M, Fan Y, Zhao Y, Tang Y. MicroRNA-140-3p inhibits proliferation and promotes apoptosis in non-small cell lung cancer by targeting MDIG. ENVIRONMENTAL TOXICOLOGY 2024; 39:1521-1530. [PMID: 38009637 DOI: 10.1002/tox.24026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/29/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are associated with cancer progression. MiR-140-3p is a tumor suppressor. Nevertheless, its function in non-small cell lung cancer (NSCLC) is unclear. METHODS MiR-140-3p expression in NSCLC clinical specimens was examined using the TCGA database and real-time PCR. NSCLC cell proliferation and apoptosis were investigated after the miRNA overexpression. Then, mineral dust-induced gene (MDIG) levels in NSCLC clinical specimens were monitored by real-time PCR and western blotting. Bioinformatics predicated the binding of miR-140-3p to MDIG, and their relationship was validated by luciferase reporter assay. The miR-140-3p/MDIG axis was further validated through rescue experiments. The involvement of STAT3 signaling in the actions of miR-140-3p/MDIG axis was investigated. RESULTS MiR-140-3p was decreased in NSCLC tissues and negatively correlated with MDIG expression. Additionally, it was also lower in high-grade specimens than in low-grade ones. MiR-140-3p restrained cell proliferation, facilitated apoptosis, and inhibited STAT3 signaling in NSCLC. Interestingly, MDIG was a target of this miRNA. Furthermore, MDIG upregulation abolished miR-140-3p's effect on cell proliferation, apoptosis, and STAT3 pathway in NSCLC cells. CONCLUSION MiR-140-3p restrained NSCLC development through the regulation of the STAT3 pathway by targeting MDIG. This axis may be a promising target for NSCLC treatment.
Collapse
Affiliation(s)
- Miaomiao Yu
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yueren Fan
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yihang Zhao
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yu Tang
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Li W, Wang F, Wang X, Xu W, Liu F, Hu R, Li S. Curcumin inhibits prostate cancer by upregulating miR-483-3p and inhibiting UBE2C. J Biochem Mol Toxicol 2024; 38:e23645. [PMID: 38348716 DOI: 10.1002/jbt.23645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024]
Abstract
Prostate cancer (PCa) is an extremely common genitourinary malignancy among elderly men. Many evidence have shown the efficacy of curcumin (CUR) in inhibiting the progression of PCa. However, the pharmacological function of CUR in PCa is still not quite clear. In this research, CUR was found to suppress the proliferation and enhance the apoptotic rate in in vitro PCa cell models in a dose- and time-dependent manner. In a xenograft animal model, the administration of CUR contributed to a significant decrease in the growth of the xenograft tumor induced by the transplanted PC-3 cells. Ubiquitin-conjugating enzyme E2 C is implicated in the modulation of multiple types of cancers. In humans, the expression levels of UBE2C are significantly higher in PCa versus benign prostatic hyperplasia. Treatment with CUR decreased the expression of UBE2C, whereas it increased miR-483-3p expression. In contrast with the control mice, the CUR-treated mice showed a significant reduction in UBE2C and Ki-67 in PCa cells. The capability of proliferation, migration, and invasion of PCa cells was inhibited by the knockdown of UBE2C mediated by siRNA. Furthermore, dual luciferase reporter gene assay indicated the binding of miR-483-3p to UBE2C. In summary, CUR exerts its antitumor effects through regulation of the miR-483-3p/UBE2C axis by decreasing UBE2C and increasing miR-483-3p. The findings may also provide new molecular markers for PCa diagnosis and treatment.
Collapse
Affiliation(s)
- Wenji Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, PR China
- Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Fujun Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, PR China
- Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Xiaoxiang Wang
- Department of Urinary Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Wei Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, PR China
- Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Fangmin Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, PR China
- Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Rong Hu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, PR China
- Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Shanyi Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, Jiangsu, PR China
- Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Yangzhou University, Yangzhou, Jiangsu, PR China
| |
Collapse
|
14
|
Zhang T, Ji C, Zhang Y, Yuan M, Gao H, Yin Q. LncRNA SNHG1 Accelerates Cell Proliferation, Migration, and Invasion of Hepatoblastoma Through Mediating miR-6838-5p/PIM3/RhoA Axis. Biochem Genet 2024; 62:59-76. [PMID: 37248373 DOI: 10.1007/s10528-023-10404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
Hepatoblastoma (HB) is a common primary liver malignant tumor in children. Long non-coding RNAs (lncRNAs) are closely engaged in HB progression. The role and regulatory molecule mechanism of lncRNA small nucleolar RNA host gene 1 (SNHG1) in HB remain unclear. Through qRT-PCR or western blot, we found that SNHG1 and proviral integration site for moloney murine leukemia virus 3 (PIM3) were elevated but miR-6838-5p was decreased in HB cells. Cell biology experiments revealed that SNHG1 depletion or miR-6838-5p upregulation suppressed cell proliferation, migration, and invasion of HB cells. Mechanistically, luciferase activity assay validated that miR-6838-5p could interact with SNHG1 or PIM3. SNHG1 up-regulated PIM3 expression via sponging miR-6838-5p. Moreover, miR-6838-5p inhibitor abolished SNHG1 depletion-mediated suppression of malignant behaviors in HB cells. PIM3 overexpression neutralized miR-6838-5p mimics-mediated repression of malignant phenotypes in HB cells. Furthermore, miR-6838-5p overexpression suppressed RhoA activation, which was restored by PIM3 upregulation. What's more, the results at the cellular level were further verified by nude mice tumor formation experiment. In conclusion, SNHG1 regulated miR-6838-5p/PIM3/RhoA axis to promote malignant phenotypes of HB, which might provide novel therapeutic target for HB treatment.
Collapse
Affiliation(s)
- Tian Zhang
- General Surgery, Hunan Children's Hospital, No. 86, ZiYuan Road, Yuhua District, Changsha, 410007, Hunan Province, People's Republic of China
| | - Chunyi Ji
- General Surgery, Hunan Children's Hospital, No. 86, ZiYuan Road, Yuhua District, Changsha, 410007, Hunan Province, People's Republic of China
| | - Yanbing Zhang
- General Surgery, Hunan Children's Hospital, No. 86, ZiYuan Road, Yuhua District, Changsha, 410007, Hunan Province, People's Republic of China
| | - Miaoxian Yuan
- General Surgery, Hunan Children's Hospital, No. 86, ZiYuan Road, Yuhua District, Changsha, 410007, Hunan Province, People's Republic of China
| | - Hongqiang Gao
- General Surgery, Hunan Children's Hospital, No. 86, ZiYuan Road, Yuhua District, Changsha, 410007, Hunan Province, People's Republic of China
| | - Qiang Yin
- General Surgery, Hunan Children's Hospital, No. 86, ZiYuan Road, Yuhua District, Changsha, 410007, Hunan Province, People's Republic of China.
| |
Collapse
|
15
|
Yang M, Hu X, Tang B, Deng F. Exploring the interplay between methylation patterns and non-coding RNAs in non-small cell lung cancer: Implications for pathogenesis and therapeutic targets. Heliyon 2024; 10:e24811. [PMID: 38312618 PMCID: PMC10835372 DOI: 10.1016/j.heliyon.2024.e24811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Lung cancer is a global public health issue, with non-small cell lung cancer (NSCLC) accounting for 80-85 % of cases. With over two million new diagnoses annually, understanding the complex evolution of this disease is crucial. The development of lung cancer involves a complex interplay of genetic, epigenetic, and environmental factors, leading the key oncogenes and tumor suppressor genes to disorder, and activating the cancer related signaling pathway. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNA (lncRNAs), and circular RNA (circRNAs) are unique RNA transcripts with diverse biological functions. These ncRNAs are generated through genome transcription and play essential roles in cellular processes. Epigenetic modifications such as DNA methylation, N6-methyladenosine (m6A) modification, and histone methylation have gained significant attention in NSCLC research. The complexity of the interactions among these methylation modifications and ncRNAs contribute to the precise regulation of NSCLC development. This review comprehensively summarizes the associations between ncRNAs and different methylation modifications and discusses their effects on NSCLC. By elucidating these relationships, we aim to advance our understanding of NSCLC pathogenesis and identify potential therapeutic targets for this devastating disease.
Collapse
Affiliation(s)
- Mei Yang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Xue Hu
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China
| | - Bin Tang
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Fengmei Deng
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China
| |
Collapse
|
16
|
Yang Z, Hao J, Qiu M, Liu R, Mei H, Zhang Q, Gao Z, Pang W, Liu J, Pan W, Wang H, Gao M. The METTL3/miR-196a Axis Predicts Poor Prognosis in Non-small Cell Lung Cancer. J Cancer 2024; 15:1603-1612. [PMID: 38370374 PMCID: PMC10869973 DOI: 10.7150/jca.92968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Background: METTL3 accelerates m6A modification to influence cancer progression including non-small cell lung cancer (NSCLC). To illustrate the role and underlying mechanism of METTL3 mediated miR-196a upregulation in NSCLC. Method: The global level of m6A modification was detected by qPCR, western blot and immumohistochemical staining. The TCGA, GEPIA, CPTAC and TIMER databases were used to explore the expression change of METTL3, miR-196a and GAS7 in NSCLC patients. Kaplan-Meier analysis was performed to analyze the prognostic value of miR-196a. NSCLC cells overexpressed or knockdown miR-196a were constructed and used for CCK8, colony formation assay, western blot and immunofluorescence in vitro. The effect of miR-196a on tumor growth was investigated in vivo. Result: We found that METTL3 mediated miR-196a were notably enhancive in NSCLC tissues and in NSCLC cells, which is markedly positively related with the serious TNM stage, the large tumor size, the distant metastasis, and the poor prognosis in patients of NSCLC. Further investigation showed that up-regulated miR-196a promoted cell viability and cell autophagy, while down-regulation of miR-196a revealed opposite results in H1299 and A549 cells. In terms of mechanism, we found that miR-196a interacted with GAS7. In addition, GAS7 expression in NSCLC patients may be positively related with the infiltration of immune cell subsets in tumor microenvironment (TME). Conclusion: The axis of METTL3-miR-196a-GAS7 might be a target for molecular targeted therapy, a potential and novel diagnostic marker for NSCLC patients.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Clinical Laboratory, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Jie Hao
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Minghan Qiu
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Ruxue Liu
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Hanwei Mei
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Qiaonan Zhang
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Zhanhua Gao
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Wenwen Pang
- Department of Clinical Laboratory, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Jing Liu
- Department of Clinical Laboratory, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Wenjie Pan
- Department of Clinical Laboratory, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Huaqing Wang
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Ming Gao
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| |
Collapse
|
17
|
Zhou X, Chai K, Zhu H, Luo C, Zou X, Zou J, Zhang G. The role of the methyltransferase METTL3 in prostate cancer: a potential therapeutic target. BMC Cancer 2024; 24:8. [PMID: 38166703 PMCID: PMC10762986 DOI: 10.1186/s12885-023-11741-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
The incidence of prostate cancer (PCa), the most prevalent malignancy, is currently at the forefront. RNA modification is a subfield of the booming field of epigenetics. To date, more than 170 types of RNA modifications have been described, and N6-methyladenosine (m6A) is the most abundant and well-characterized internal modification of mRNAs involved in various aspects of cancer progression. METTL3, the first identified key methyltransferase, regulates human mRNA and non-coding RNA expression in an m6A-dependent manner. This review elucidates the biological function and role of METTL3 in PCa and discusses the implications of METTL3 as a potential therapeutic target for future research directions and clinical applications.
Collapse
Affiliation(s)
- Xuming Zhou
- First Clinical College, Gannan Medical University, Ganzhou, 341000, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Keqiang Chai
- Department of Urology, Third Affiliated Hospital of Gansu University of Chinese Medicine, Baiyin, 730900, China
| | - Hezhen Zhu
- First Clinical College, Gannan Medical University, Ganzhou, 341000, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Cong Luo
- First Clinical College, Gannan Medical University, Ganzhou, 341000, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Xiaofeng Zou
- Department of Urology, Third Affiliated Hospital of Gansu University of Chinese Medicine, Baiyin, 730900, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, 341000, China
| | - Junrong Zou
- Department of Urology, Third Affiliated Hospital of Gansu University of Chinese Medicine, Baiyin, 730900, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, 341000, China
| | - Guoxi Zhang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, 341000, China.
| |
Collapse
|
18
|
Chen Z, Liu S, Wang J, Chen Y. The Long Non-Coding RNA SNHG1 Predicts Severity of Acute Pancreatitis and Stimulates Pancreatic Cell Apoptosis and Inflammatory Response. J Environ Pathol Toxicol Oncol 2024; 43:81-93. [PMID: 39016143 DOI: 10.1615/jenvironpatholtoxicoloncol.2024053229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Acute pancreatitis (AP) is a common digestive emergency, needs early prediction and recognition. The study examined the clinical value of long non-coding RNA SNHG1 in AP, and explored its related mechanism for AP. A total of 288 AP cases and 150 healthy persons were recruited, the AP patients were grouped based on AP severity. AR42J cells were treated with 100nM caerulein to stimulate AP in vitro. qRT-PCR was performed for mRNA detection. Receiver operating characteristic (ROC) curve was drawn for diagnostic significance evaluation. The relationship of SNHG1 and miR-140-3p was verified via luciferase reporter and RNA immunoprecipitation (RIP) assay. AP cases had high expression of SNHG1, and it can differentiate AP cases from healthy people with the area under the curve (AUC) of 0.899. Severe AP cases had high values of SNHG1, which was independently related to AP severity. SNHG1 knockdown relieved caerulein-induced AR42J cell apoptosis and inflammatory response. miR-140-3p interacted with SNHG1, and reversed the role of SNHG1 in caerulein-induced AR42J cell injury. RAB21 was a candidate target of miR-140-3p, and was at high expression in AP cell models. SNHG1 may be a promising biomarker for the detection of AP, and serves as a potential biological marker for further risk stratification in the management of AP. SNHG1 knockdown can relieve inflammatory responses and pancreatic cell apoptosis by absorbing miR-140-3p.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Shengnan Liu
- Affiliated Hospital of Xuzhou Medical University
| | - Junsheng Wang
- Department of Gastroenterology, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, China
| | - Yang Chen
- Department of Gastroenterology, Xuzhou City Hospital of TCM, Xuzhou, Jiangsu 221000, China
| |
Collapse
|
19
|
Domentean S, Paisana E, Cascão R, Faria CC. Role of UBE2C in Brain Cancer Invasion and Dissemination. Int J Mol Sci 2023; 24:15792. [PMID: 37958776 PMCID: PMC10650073 DOI: 10.3390/ijms242115792] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Glioblastoma (GB) and brain metastases (BM) are the most common brain tumors in adults and are invariably associated with a dismal outcome. These highly malignant tumors share common features including increased invasion and migration of the primary or metastatic brain cancer cells, whose triggering mechanisms are largely unknown. Emerging evidence has suggested that the ubiquitin-conjugating enzyme E2C (UBE2C), essential for controlling cell cycle progression, is overexpressed in diverse malignancies, including brain cancer. This review highlights the crucial role of UBE2C in brain tumorigenesis and its association with higher proliferative phenotype and histopathological grade, with autophagy and apoptosis suppression, epithelial-to-mesenchymal transition (EMT), invasion, migration, and dissemination. High expression of UBE2C has been associated with patients' poor prognosis and drug resistance. UBE2C has also been proven as a promising therapeutic target, despite the lack of specific inhibitors. Thus, there is a need to further explore the role of UBE2C in malignant brain cancer and to develop effective targeted therapies for patients with this deadly disease.
Collapse
Affiliation(s)
- Stefani Domentean
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (S.D.); (E.P.); (R.C.)
| | - Eunice Paisana
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (S.D.); (E.P.); (R.C.)
| | - Rita Cascão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (S.D.); (E.P.); (R.C.)
| | - Claudia C. Faria
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Edifício Egas Moniz, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (S.D.); (E.P.); (R.C.)
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Clínica Universitária de Neurocirurgia, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
20
|
Zhang X, Wang C, Huang C, Yang J, Wang J. Doxorubicin resistance in breast cancer xenografts and cell lines can be counterweighted by microRNA-140-3p, through PD-L1 suppression. Histol Histopathol 2023; 38:1193-1204. [PMID: 36621840 DOI: 10.14670/hh-18-577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Doxorubicin, a first-line chemotherapeutic drug for breast cancer, kills cancer cells by inducing DNA-crosslinking damage. Dysregulated micro-RNA (miRNA) is associated with the drug resistance of tumors. However, little is known about the effect of miRNA-140-3p on DOX resistance of breast cancer. METHODS The miRNA microarray was used to sequence the transcripts of DOX-chemoresistant breast cancer tissues and DOX-chemosensitive tissues. Then, the breast cancer tissue chip in the GEO database was also analyzed to screen the target gene. Flow cytometry, in situ hybridisation (ISH), immunohistochemistry (IHC), Western blot, cell proliferation assay, real-time PCR analyses (qRT-PCR), and pull-down assay were used to explore the effects of miRNA-140-3p and programmed death ligand-1 (PD-L1) on the chemoresistance of DOX-resistant breast cancer cells treated with DOX. In vivo, the DOX-resistant breast cancer cell lines treated with miRNA-140-3p overexpression were injected subcutaneously into mice to construct breast cancer subcutaneous xenograft tumor models. RESULTS Based on miRNA microarray, GEO database, and bioinformatics analysis, it was found that miRNA-140-3p and PD-L1 are the core molecules in the DOX resistance regulatory network in breast cancer, and lower miRNA-140-3p and higher PD-L1 expression levels were observed in DOX-resistant breast cancer tissues and cells. IHC results showed that compared with breast cancer tissues with high miRNA-140-3p expression, PD-L1 protein expression levels in breast cancer tissues with low miRNA-140-3p were significantly higher (P<0.01). Moreover, compared with DOX-sensitive tissues, the levels of PD-L1 protein expression in DOX-resistant tissues were significantly higher (P<0.01). In in vitro and in vivo experiments, the introduction of miRNA-140-3p decreased PD-L1 expression. Mechanically, we found that the MCF-7/DOX and HS598T/DOX cells pretreated with miRNA-140-3p inhibitor or exosomes containing PD-L1 have higher stemness and lower apoptosis rate, which can be abrogated by co-treating cells with anti-PD-L1 antibody or miRNA-140-3p mimic. CONCLUSIONS MiRNA-140-3p can suppress PD-L1 expression in breast cancer cell-derived exosomes, thereby attenuating the chemoresistance induced by DOX in breast cancer.
Collapse
Affiliation(s)
- Xia Zhang
- School of Medicine and Health Sciences, Hubei University of Science and Technology, Xianning, China.
| | - Chao Wang
- Department of Oncology, Xianning Central Hospital, Xianning, China
| | - Cuiping Huang
- School of Medicine and Health Sciences, Hubei University of Science and Technology, Xianning, China
| | - Jianbao Yang
- School of Medicine and Health Sciences, Hubei University of Science and Technology, Xianning, China
| | - Juan Wang
- School of Medicine and Health Sciences, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
21
|
Zheng X, Ma H, Dong Y, Fang M, Wang J, Xiong X, Liang J, Han M, You A, Yin Q, Huang W. Immune-related biomarkers predict the prognosis and immune response of breast cancer based on bioinformatic analysis and machine learning. Funct Integr Genomics 2023; 23:201. [PMID: 37291471 DOI: 10.1007/s10142-023-01124-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Breast cancer (BC) is the malignancy with the highest mortality rate among women, identification of immune-related biomarkers facilitates precise diagnosis and improvement of the survival rate in early-stage BC patients. 38 hub genes significantly positively correlated with tumor grade were identified based on weighted gene coexpression network analysis (WGCNA) by integrating the clinical traits and transcriptome analysis. Six candidate genes were screened from 38 hub genes basing on least absolute shrinkage and selection operator (LASSO)-Cox and random forest. Four upregulated genes (CDC20, CDCA5, TTK and UBE2C) were identified as biomarkers with the log-rank p < 0.05, in which high expression levels of them showed a poor overall survival (OS) and recurrence-free survival (RFS). A risk model was finally constructed using LASSO-Cox regression coefficients and it possessed superior capability to identify high risk patients and predict OS (p < 0.0001, AUC at 1-, 3- and 5-years are 0.81, 0.73 and 0.79, respectively). Decision curve analysis demonstrated risk score was the best prognostic predictor, and low risk represented a longer survival time and lower tumor grade. Importantly, multiple immune cell types and immunotherapy targets were observed increase in expression levels in high-risk group, most of which were significantly correlated with four genes. In summary, the immune-related biomarkers could accurately predict the prognosis and character the immune responses in BC patients. In addition, the risk model is conducive to the tiered diagnosis and treatment of BC patients.
Collapse
Affiliation(s)
- Xuewei Zheng
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Haodi Ma
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Yirui Dong
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Mengmiao Fang
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Junxiang Wang
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, China
| | - Xin Xiong
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Liang
- The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Meng Han
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Aimin You
- The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Qinan Yin
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China.
| | - Wenbin Huang
- The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
22
|
Zhang H, Ma B, Li N, Zhang L, Xu J, Zhang S, Guo Z, Han C, Xu S, Li X, Zhang B. SNHG1, a KLF4-upregulated gene, promotes glioma cell survival and tumorigenesis under endoplasmic reticulum stress by upregulating BIRC3 expression. J Cell Mol Med 2023. [PMID: 37243389 DOI: 10.1111/jcmm.17779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Increasing evidence indicates that long noncoding RNAs (lncRNAs) play crucial roles in the resistance to endoplasmic reticulum (ER) stress in many cancers. However, ER stress-regulated lncRNAs are still unknown in glioma. In the present study, we investigated the altered lncRNAs upon ER stress in glioma and found that small nucleolar RNA host gene 1 (SNHG1) was markedly increased in response to ER stress. Increased SNHG1 suppressed ER stress-induced apoptosis and promoted tumorigenesis in vitro and in vivo. Further mechanistic studies indicated that SNHG1 elevated BIRC3 mRNA stability and enhanced BIRC3 expression. We also found that KLF4 transcriptionally upregulated SNHG1 expression and contributed to the ER stress-induced SNHG1 increase. Collectively, the present findings indicated that SNHG1 is a KLF4-regulated lncRNA that suppresses ER stress-induced apoptosis and facilitates gliomagenesis by elevating BIRC3 expression.
Collapse
Affiliation(s)
- Hongqiang Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Binbin Ma
- Department of Neurosurgery, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Na Li
- Institute of Cancer Stem Cell, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Li Zhang
- Institute of Cancer Stem Cell, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Jialu Xu
- Institute of Cancer Stem Cell, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Shuqi Zhang
- Institute of Cancer Stem Cell, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Ziming Guo
- Institute of Cancer Stem Cell, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Chuanchun Han
- Institute of Cancer Stem Cell, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Shasha Xu
- Department of Gastroendoscopy, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaodong Li
- Institute of Cancer Stem Cell, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Bo Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Shenzhen Luohu Hospital Group, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- Neurosurgery Department of School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
23
|
Chen L, He Y, Zhu J, Zhao S, Qi S, Chen X, Zhang H, Ni Z, Zhou Y, Chen G, Liu S, Xie T. The roles and mechanism of m 6A RNA methylation regulators in cancer immunity. Biomed Pharmacother 2023; 163:114839. [PMID: 37156113 DOI: 10.1016/j.biopha.2023.114839] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023] Open
Abstract
N6-methyladenosine (m6A), the most common internal modification in RNA, can be regulated by three types of regulators, including methyltransferases (writers), demethylases (erasers), and m6A binding proteins (readers). Recently, immunotherapy represented by immune checkpoint blocking has increasingly become an effective cancer treatment, and increasing shreds of evidence show that m6A RNA methylation affects cancer immunity in various cancers. Until now, there have been few reviews about the role and mechanism of m6A modification in cancer immunity. Here, we first summarized the regulation of m6A regulators on the expression of target messenger RNAs (mRNA) and their corresponding roles in inflammation, immunity response, immune process and immunotherapy in various cancer cells. Meanwhile, we described the roles and mechanisms of m6A RNA modification in tumor microenvironment and immune response by affecting the stability of non-coding RNA (ncRNA). Moreover, we also discussed the m6A regulators or its target RNAs which might be used as predictor of cancer diagnosis and prognosis, and shed light on the potentiality of m6A methylation regulators as therapeutic targets in cancer immunity.
Collapse
Affiliation(s)
- Lu Chen
- School of Pharmacy and Department of Respiratory Medicine, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ying He
- School of Pharmacy and Department of Respiratory Medicine, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jinyu Zhu
- School of Pharmacy and Department of Respiratory Medicine, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Shujuan Zhao
- School of Pharmacy and Department of Respiratory Medicine, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Shasha Qi
- School of Pharmacy and Department of Respiratory Medicine, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xudong Chen
- School of Pharmacy and Department of Respiratory Medicine, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hao Zhang
- School of Pharmacy and Department of Respiratory Medicine, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ziheng Ni
- School of Pharmacy and Department of Respiratory Medicine, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yuan Zhou
- School of Pharmacy and Department of Respiratory Medicine, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Gongxing Chen
- School of Pharmacy and Department of Respiratory Medicine, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Shuiping Liu
- School of Pharmacy and Department of Respiratory Medicine, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Tian Xie
- School of Pharmacy and Department of Respiratory Medicine, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
24
|
Pan X, Li C, Feng J. The role of LncRNAs in tumor immunotherapy. Cancer Cell Int 2023; 23:30. [PMID: 36810034 PMCID: PMC9942365 DOI: 10.1186/s12935-023-02872-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
Cancer immunotherapy is a major breakthrough in the history of tumor therapy in the last decade. Immune checkpoint inhibitors blocking CTLA-4/B7 or PD-1/PD-L1 pathways have greatly prolonged the survival of patients with different cancers. Long non-coding RNAs (lncRNAs) are abnormally expressed in tumors and play an important role in tumor immunotherapy through immune regulation and immunotherapy resistance. In this review, we summarized the mechanisms of lncRNAs in regulating gene expression and well-studied immune checkpoint pathways. The crucial regulatory function of immune-related lncRNAs in cancer immunotherapy was also described. Further understanding of the underlying mechanisms of these lncRNAs is of great importance to the development of taking lncRNAs as novel biomarkers and therapeutic targets for immunotherapy.
Collapse
Affiliation(s)
- Xuan Pan
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| | - Chenchen Li
- grid.89957.3a0000 0000 9255 8984Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jifeng Feng
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
25
|
Yang S, Yuan Y, Ren W, Wang H, Zhao Z, Zhao H, Zhao Q, Chen X, Jiang X, Zhang L. MCM4 is a novel prognostic biomarker and promotes cancer cell growth in glioma. Front Oncol 2022; 12:1004324. [PMID: 36465369 PMCID: PMC9713251 DOI: 10.3389/fonc.2022.1004324] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/28/2022] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Gliomas account for 75% of all primary malignant brain tumors in adults and result in high mortality. Accumulated evidence has declared the minichromosome maintenance protein complex (MCM) gene family plays a critical role in modulating the cell cycle and DNA replication stress. However, the biological function and clinic characterization of nine MCM members in low-grade glioma are not yet clarified. METHODS In this study, we utilized diverse public databases, including The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), Rembrandt, Human Protein Atlas (HPA), Linkedomics, cbioportal, Tumor and Immune System Interaction Database (TISIDB), single-sample GSEA (ssGSEA), Tumor Immune Estimation Resource (TIMER), Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Therapeutics Response Portal databases to explore the mRNA and protein expression profiles, gene mutation, clinical features, diagnosis, prognosis, signaling pathway, tumor mutational burden (TMB), immune subtype, immune cell infiltration, immune modulator and drug sensitivity of nine MCMs. Afterward, qRT-PCR was utilized to detect the expression of the MCM family in glioblastoma multiforme (GBM) cell lines. The one-, three-, or five-year survival rate was predicted by utilizing a nomogram established by cox proportional hazard regression. RESULTS In this study, we found that nine MCMs were consistently up-regulated in glioma tissues and glioma cell lines. Elevated nine MCMs expressions were significantly correlated with a higher tumor stage, isocitrate dehydrogenase (IDH) mutates, 1p/19q codeletion, histological type, and primary therapy outcome. Survival analyses showed that higher expression of MCM2-MCM8 (minichromosome maintenance protein2-8) and MCM10 (minichromosome maintenance protein 10) were linked with poor overall survival (OS) and progression-free survival (PFS) in glioma patients. On the other hand, up-regulated MCM2-MCM8 and MCM10 were significantly associated with shorter disease-specific survival (DSS) in glioma patients. Univariate and multivariate analyses revealed that MCM2 (minichromosome maintenance protein2), MCM4 (minichromosome maintenance protein 4), MCM6 (minichromosome maintenance protein 6), MCM7 (minichromosome maintenance protein 7) expression and tumor grade, 1p/19q codeletion, age, and primary therapy outcome were independent factors correlated with the clinical outcome of glioma patients. More importantly, a prognostic MCMs model constructed using the above five prognostic genes could predict the overall survival of glioma patients with medium-to-high accuracy. Furthermore, functional enrichment analysis indicated that MCMs principal participated in regulating cell cycle and DNA replication. DNA copy number variation (CNV) and DNA methylation significantly affect the expression of MCMs. Finally, we uncover that MCMs expression is highly correlated with immune cell infiltration, immune modulator, TMB, and drug sensitivity. CONCLUSIONS In summary, this finding confirmed that MCM4 is a potential target of precision therapy for patients with glioma.
Collapse
Affiliation(s)
- Shu Yang
- Department of Neurology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yixiao Yuan
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjun Ren
- Department of Cardiovascular Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Haiyu Wang
- Department of Cardiovascular Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhong Zhao
- Department of Neurology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Heng Zhao
- Department of Neurosurgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qizhe Zhao
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xi Chen
- First Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiulin Jiang
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Zhang
- Department of Neurology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
26
|
Li Z, Song Y, Wang M, Shen R, Qin K, Zhang Y, Jiang T, Chi Y. m6A regulator-mediated RNA methylation modification patterns are involved in immune microenvironment regulation of coronary heart disease. Front Cardiovasc Med 2022; 9:905737. [PMID: 36093132 PMCID: PMC9453453 DOI: 10.3389/fcvm.2022.905737] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background Although the roles of m6A modification in the immune responses to human diseases have been increasingly revealed, their roles in immune microenvironment regulation in coronary heart disease (CHD) are poorly understood. Methods The GSE20680 and GSE20681 datasets related to CHD were acquired from the Gene Expression Omnibus (GEO) database. A total of 30 m6A regulators were used to perform LASSO regression to identify the significant genes involved in CHD. Unsupervised clustering analysis was conducted using the m6A regulators to distinguish the m6A RNA methylation patterns in patients with CHD. The differentially expressed genes (DEGs) and biological characteristics, including GO and KEGG enrichment results, were assessed for the different m6A patterns to analyse the impacts of m6A regulators on CHD. Hub genes were identified, and subsequent microRNAs-mRNAs (miRNAs–mRNAs) and mRNAs-transcriptional factors (mRNA-TFs) interaction networks were constructed by the protein and protein interaction (PPI) network method using Cytoscape software. The infiltrating proportion of immune cells was assessed by ssGSEA and the CIBERSORT algorithm. Quantitative real-time PCR (qRT-PCR) was performed to detect the expression of the significant m6A regulators and hub genes. Results Four of 30 m6A regulators (HNRNPC, YTHDC2, YTHDF3, and ZC3H13) were identified to be significant in the development of CHD. Two m6A RNA methylation clusters were distinguished by unsupervised clustering analysis based on the expression of the 30 m6A regulators. A total of 491 genes were identified as DEGs between the two clusters. A PPI network including 308 mRNAs corresponding to proteins was constructed, and 30 genes were identified as hub genes that were enriched in the bioprocesses of peptide cross-linking, keratinocyte differentiation. Twenty-seven hub genes were found to be related to miRNAs, and seven hub genes were found to be related to TFs. Moreover, among the 30 hub genes, eight genes were found to be upregulated in CHD, and three were found to be downregulated in CHD compared to the normal people. The high m6A modification pattern was associated with a higher infiltrated abundance of immune cells. Conclusion Our findings demonstrated that m6A modification plays crucial roles in the diversity and complexity of the immune microenvironment in CHD.
Collapse
Affiliation(s)
- Zhaoshui Li
- Qingdao Medical College, Qingdao University, Qingdao, China
- Heart Center Department, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yanjie Song
- Heart Center Department, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao, China
| | - Meng Wang
- Heart Center Department, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao, China
| | - Ruxin Shen
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Kun Qin
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yu Zhang
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ting Jiang
- Heart Center Department, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao, China
- *Correspondence: Ting Jiang
| | - Yifan Chi
- Heart Center Department, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao, China
- Yifan Chi
| |
Collapse
|
27
|
Li X, Yuan Y, Pal M, Jiang X. Identification and Validation of lncRNA-SNHG17 in Lung Adenocarcinoma: A Novel Prognostic and Diagnostic Indicator. Front Oncol 2022; 12:929655. [PMID: 35719962 PMCID: PMC9198440 DOI: 10.3389/fonc.2022.929655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 01/11/2023] Open
Abstract
Background Lung cancer has the highest death rate among cancers globally. Accumulating evidence has indicated that cancer-related inflammation plays an important role in the initiation and progression of lung cancer. However, the prognosis, immunological role, and associated regulation axis of inflammatory response-related gene (IRRGs) in non-small-cell lung cancer (NSCLC) remains unclear. Methods In this study, we perform comprehensive bioinformatics analysis and constructed a prognostic inflammatory response-related gene (IRRGs) and related competing endogenous RNA (ceRNA) network. We also utilized the Pearson’s correlation analysis to determine the correlation between IRRGs expression and tumor mutational burden (TMB), microsatellite instability (MSI), tumor-immune infiltration, and the drug sensitivity in NSCLC. Growth curve and Transwell assay used to verify the function of SNHG17 on NSCLC progression. Results First, we found that IRRGs were significantly upregulated in lung cancer, and its high expression was correlated with poor prognosis; high expression of IRRGs was significantly correlated with the tumor stage and poor prognosis in lung cancer patients. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment indicated that these IRRGs are mainly involved in the inflammatory and immune response-related signaling pathway in the progression of NSCLC. We utilized 10 prognostic-related genes to construct a prognostic IRRGs model that could predict the overall survival of lung adenocarcinoma (LUAD) patients possessing high specificity and accuracy. Our evidence demonstrated that IRRGs expression was significantly correlated with the TMB, MSI, immune-cell infiltration, and diverse cancer-related drug sensitivity. Finally, we identified the upstream regulatory axis of IRRGs in NSCLC, namely, lncRNA MIR503HG/SNHG17/miR-330-3p/regulatory axis. Finally, knockdown of SNHG17 expression inhibited lung adenocarcinoma (LUAD) cell proliferation and migration. Our findings confirmed that SNHG17 is a novel oncogenic lncRNA and may be a biomarker for the prognosis and diagnosis of LUAD. Conclusion DNA hypomethylation/lncRNA MIR503HG/SNHG17/microRNA-330-3p/regulatory axis may be a valuable biomarker for prognosis and is significantly correlated with immune cell infiltration in lung cancer.
Collapse
Affiliation(s)
- Xinyan Li
- Department of Pharmacy, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yixiao Yuan
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mintu Pal
- Biotechnology Division, North East Institute of Science and Technology, Jorhat, India
| | - Xiulin Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Wang J, Yuan Y, Tang L, Zhai H, Zhang D, Duan L, Jiang X, Li C. Long Non-Coding RNA-TMPO-AS1 as ceRNA Binding to let-7c-5p Upregulates STRIP2 Expression and Predicts Poor Prognosis in Lung Adenocarcinoma. Front Oncol 2022; 12:921200. [PMID: 35774125 PMCID: PMC9237420 DOI: 10.3389/fonc.2022.921200] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/09/2022] [Indexed: 01/28/2023] Open
Abstract
Background Striatin-interacting protein 2 (STRIP2), also called Fam40b, has been reported to regulate tumor cell growth. But the role of STRIP2 in lung adenocarcinoma (LUAD) has not been discovered clearly. Thus, the aim of our study is to explore the function and underlying mechanism of STRIP2 in LUAD. Methods Expression of STRIP2 was determined using the Cancer Genome Atlas (TCGA), GTEx, Ualcan, and the Human Protein Altas databases. The Correlation of STRIP2 and survival was detected by PrognoScan and Kaplan-Meier plotter databases. Besides, the correlation between STRIP2 expression and tumor immune infiltration as well as immune checkpoints were analyzed by the ssGSEA method. The biological function of STRIP2 and its co-expression genes was determined by gene ontology (GO) and Genes and Genomes (KEGG), respectively. Finally, the expression level and biological function of STRIP2 in LUAD were determined by qPCR, CCK8, transwell, and wound healing assays. Results This manuscript revealed a significantly increased expression of mRNA and protein of STRIP2 in lung adenocarcinoma compared with the adjacent normal tissues. GEO and Kaplan-Meier plotter databases showed higher STRIP2 expression levels were correlated with poor prognosis survival of LUAD. Moreover, Cox regression analysis suggested that a higher STRIP2 level served as an independent risk factor in predicting deteriorative overall survival (OS) for LUAD patients. SsGSEA results showed STRIP2 expression level was positively correlated with infiltrating levels of Th2 cells in LUAD. Lastly, GO analysis indicated the biological processes were enriched in nuclear division and positive regulation of the cell cycle. KEGG signaling pathway analysis showed STRIP2 was correlated with the MAPK signaling pathway and the TNF signaling pathway. The GSEA database showed that STRIP2 was positively associated with the epithelial-mesenchymal transition, cell cycle, and TNF signaling pathway. The QRT-PCR assay showed that STRIP2 was upregulated in LUAD cell lines. Cell proliferation and migration were inhibited in LUAD by knockdown of STRIP2. Moreover, we confirmed that the TMPO-AS1/let-7c-5p/STRIP2 network regulates STRIP2 overexpression in LUAD and is associated with poor prognosis. Conclusion Our findings indicated that STRIP2 acted as a crucial oncogene in LUAD and was correlated with unfavorable survival and tumor infiltration inflation.
Collapse
Affiliation(s)
- Juan Wang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yixiao Yuan
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lin Tang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Haoqing Zhai
- Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - Dahang Zhang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lincan Duan
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China,*Correspondence: Chen Li, ; Xiulin Jiang, ; Lincan Duan,
| | - Xiulin Jiang
- Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China,*Correspondence: Chen Li, ; Xiulin Jiang, ; Lincan Duan,
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany,*Correspondence: Chen Li, ; Xiulin Jiang, ; Lincan Duan,
| |
Collapse
|
29
|
Zhu L, Miao Y, Xi F, Jiang P, Xiao L, Jin X, Fang M. Identification of Potential Biomarkers for Pan-Cancer Diagnosis and Prognosis Through the Integration of Large-Scale Transcriptomic Data. Front Pharmacol 2022; 13:870660. [PMID: 35677427 PMCID: PMC9169228 DOI: 10.3389/fphar.2022.870660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/24/2022] [Indexed: 12/02/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, bringing a significant burden to human health and society. Accurate cancer diagnosis and biomarkers that can be used as robust therapeutic targets are of great importance as they facilitate early and effective therapies. Shared etiology among cancers suggests the existence of pan-cancer biomarkers, performance of which could benefit from the large sample size and the heterogeneity of the studied patients. In this study, we conducted a systematic RNA-seq study of 9,213 tumors and 723 para-cancerous tissue samples of 28 solid tumors from the Cancer Genome Atlas (TCGA) database, and 7,008 normal tissue samples from the Genotype-Tissue Expression (GTEx) database. By differential gene expression analysis, we identified 214 up-regulated and 186 downregulated differentially expressed genes (DEGs) in more than 80% of the studied tumors, respectively, and obtained 20 highly linked up- and downregulated hub genes from them. These markers have rarely been reported in multiple tumors simultaneously. We further constructed pan-cancer diagnostic models to classify tumors and para-cancerous tissues using 10 up-regulated hub genes with an AUC of 0.894. Survival analysis revealed that these hub genes were significantly associated with the overall survival of cancer patients. In addition, drug sensitivity predictions for these hub genes in a variety of tumors obtained several broad-spectrum anti-cancer drugs targeting pan-cancer. Furthermore, we predicted immunotherapy sensitivity for cancers based on tumor mutational burden (TMB) and the expression of immune checkpoint genes (ICGs), providing a theoretical basis for the treatment of tumors. In summary, we identified a set of biomarkers that were differentially expressed in multiple types of cancers, and these biomarkers can be potentially used for diagnosis and used as therapeutic targets.
Collapse
Affiliation(s)
- Lin Zhu
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,BGI-Shenzhen, Shenzhen, China
| | - Yu Miao
- BGI-Shenzhen, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Xi
- BGI-Shenzhen, Shenzhen, China
| | | | - Liang Xiao
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,BGI-Shenzhen, Shenzhen, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, China
| | - Mingyan Fang
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.,BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
30
|
Chen X, Guo J, Ren W, Zhou F, Niu X, Jiang X. LncRNA-AL035458.2/hsa-miR-181a-5p Axis-Mediated High Expression of NCAPG2 Correlates With Tumor Immune Infiltration and Non-Small Cell Lung Cancer Progression. Front Oncol 2022; 12:910437. [PMID: 35664767 PMCID: PMC9160743 DOI: 10.3389/fonc.2022.910437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 12/18/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common histological lung cancer, and it is the leading cause of cancer-related deaths worldwide. NCAPG2 (non-SMC condensin II complex subunit G2) has been shown to be upregulated in various human cancers. Nevertheless, the underlying biological function and potential mechanisms of NCAPG2 driving the progression of LUAD remain unclear. In this study, we investigated the role of NCAPG2 in LUAD and found that the expression of NCAPG2 in LUAD tissues was significantly higher than that of NCAPG2 expression in adjacent normal tissues. Kaplan–Meier survival analysis showed that patients with higher NCAPG2 expression correlated with unfavorable clinical outcomes. Receiver operating characteristic (ROC) curve analysis showed that the AUC value of NCAPG2 was 0.914. Correlation analysis showed that NCAPG2 expression was associated with immune infiltration in LUAD. Finally, we found that AL139385.1 was upregulated in LUAD cancer tissues and cell lines. Knockdown of NCAPG2 inhibited cell proliferation, cell migration, and cell invasion of LUAD in vitro. More importantly, we established the AL035458.2/hsa-miR-181a-5p axis as the most likely upstream ncRNA-related pathway of NCAPG2 in LUAD. In conclusion, our data demonstrated that ncRNA-mediated high expression of NCAPG2 was correlated with progression and immune infiltration, and could serve as a prognostic biomarker for LUAD.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jishu Guo
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Wenjun Ren
- Department of Respiratory Medicine, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China
| | - Fan Zhou
- Hematology and Rheumatology Department, The Pu'er People's Hospital, Pu'er, China
| | - Xiaoqun Niu
- Department of Respiratory Medicine, Second Hospital of Kunming Medical University, Kunming, China
| | - Xiulin Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Chen X, Guo J, Zhou F, Ren W, Pu J, Mutti L, Niu X, Jiang X. Over-Expression of Long Non-Coding RNA-AC099850.3 Correlates With Tumor Progression and Poor Prognosis in Lung Adenocarcinoma. Front Oncol 2022; 12:895708. [PMID: 35646670 PMCID: PMC9132095 DOI: 10.3389/fonc.2022.895708] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/04/2022] [Indexed: 12/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common histological lung cancer, and it is the leading cause of cancer-related deaths worldwide. Long noncoding RNAs (lncRNAs) have been implicated in the initiation and progression of various cancers. LncRNA-AC099850.3 is a novel lncRNA that is abnormally expressed in diverse cancer types including LUAD. However, the clinical significance, prognostic value, diagnostic value, immune role, and potential biological function of AC099850.3 LUAD remain elusive. In this study, we found that AC099850.3 was highly expressed in LUAD and associated with an advanced tumor stage, poor prognosis, and immune infiltration. Receiver operating curve analysis revealed the significant diagnostic ability of AC099850.3 (AUC=0.888). Functionally, the knockdown of AC099850.3 restrained LUAD cell proliferation and migration in vitro. Finally, we constructed a competitive endogenous RNAs (ceRNA) network that included hsa-miR-101-3p and 4 mRNAs (ESPL1, AURKB, BUB3, and FAM83D) specific to AC099850.3 in LUAD. Kaplan-Meier survival analysis showed that a lower expression of miR-101-3p and a higher expression of ESPL1, AURKB, BUB3, and FAM83D, were associated with adverse clinical outcomes in patients with LUAD. This finding provided a comprehensive view of the AC099850.3-mediated ceRNA network in LUAD, thereby highlighting its potential role in the diagnosis and prognosis of LUAD.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jishu Guo
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Fan Zhou
- Hematology and Rheumatology Department, The Pu'er People's Hospital, Pu'er, China
| | - Wenjun Ren
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China
| | - Jun Pu
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Xiaoqun Niu
- Department of Respiratory Medicine, Second Hospital of Kunming Medical University, Kunming, China
| | - Xiulin Jiang
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
32
|
Wang C, Guo J, Jiang R, Wang C, Pan C, Nie Z, Jiang X. Long Non-Coding RNA AP000695.2 Acts as a Novel Prognostic Biomarker and Regulates the Cell Growth and Migration of Lung Adenocarcinoma. Front Mol Biosci 2022; 9:895927. [PMID: 35685240 PMCID: PMC9171368 DOI: 10.3389/fmolb.2022.895927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/07/2022] [Indexed: 12/05/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are tumor-associated biological molecules and have been found to be implicated in the progression of lung adenocarcinoma (LUAD). LncRNA-AP000695.2 (ENSG00000248538) is a long non-coding RNA (lncRNA) that is widely increased in many tumor types including lung adenocarcinoma (LUAD). However, the aberrant expression profile, clinical significance, and biological function of AP000695.2 in human lung adenocarcinoma (LUAD) need to be further investigated. This study mines key prognostic AP000695.2 and elucidates its potential role and molecular mechanism in regulating the proliferation and metastasis of LUAD. Here, we discovered that AP000695.2 was significantly upregulated in lung adenocarcinoma tissues compared with healthy adjacent lung tissue and higher in LUAD cell lines than in normal human bronchial epithelial cell lines. A higher expression of AP000695.2 was positively correlated with aggressive clinicopathological characteristics, and AP000695.2 served as an independent prognostic indicator for the overall survival, disease-free survival, and progression-free survival in patients with LUAD. Receiver operating curve (ROC) analysis revealed the significant diagnostic ability of AP000695.2 (AUC = 0.838). Our in vivo data confirmed that AP000695.2 promotes the proliferation, migration, and invasion of LUAD cells. GSEA results suggested that AP000695.2 co-expressed genes were mainly enriched in immune-related biological processes such as JAK-STAT signaling pathway and toll-like receptor signaling pathway. Single-sample GSEA analysis showed that AP000695.2 is correlated with tumor-infiltrating immune cells in lung adenocarcinoma. Our findings confirmed that AP000695.2 was involved in the progression of lung adenocarcinoma, providing a novel prognostic indicator and promising diagnostic biomarker in the future.
Collapse
Affiliation(s)
- Chunyan Wang
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jishu Guo
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Rongyan Jiang
- Department of Cardiovascular Medicine, the Bozhou Hospital Affiliated to Anhui Medical University, Bozhou Anhui, China
| | - Chenyang Wang
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chenglong Pan
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhi Nie
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Neurological Diseases, Kunming, China
- *Correspondence: Zhi Nie, ; Xiulin Jiang,
| | - Xiulin Jiang
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Zhi Nie, ; Xiulin Jiang,
| |
Collapse
|
33
|
Yuan Y, Wang J, Zhang D, Tang L, Duan L, Jiang X. Deciphering the Role of Shugoshin-Like Protein 1 in Lung Adenocarcinoma: A Comprehensive Analysis and In Vitro Study. Front Oncol 2022; 12:898920. [PMID: 35592680 PMCID: PMC9110828 DOI: 10.3389/fonc.2022.898920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/29/2022] [Indexed: 12/03/2022] Open
Abstract
Shugoshin-like protein 1 (SGO1) has been characterized in its function in correct cell division and its role in centrosome cohesion in the nucleus. However, the underlying biological function and potential mechanisms of SGO1 driving the progression of lung adenocarcinoma remain unclear. In this study, we found that SGO1 was increased in LUAD tissues and cell lines. Upregulation of SGO1 expression was correlated with poor overall survival (OS), disease-free survival (DSS), and progression-free survival (PFS) in patients with LUAD. ROC curve analysis suggested that the AUC value of SGO1 was 0.983. Correlation analysis showed that SGO1 expression was related to immune infiltration in LUAD. Meanwhile, a potential ceRNA network was constructed to identify the lncRNA-MIR4435-2HG/miR-125a-5p/SGO1 regulatory axis in LUAD. Finally, we determine that SGO1 regulated the cell proliferation and cell apoptosis of lung adenocarcinoma in vitro. In conclusion, our data suggested that SGO1 could be a novel prognostic biomarker for lung adenocarcinoma.
Collapse
Affiliation(s)
- Yixiao Yuan
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juan Wang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dahang Zhang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lin Tang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lincan Duan
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiulin Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, China
| |
Collapse
|
34
|
Chen X, Guo J, Zhou F, Ren W, Huang X, Pu J, Niu X, Jiang X. Long Non-Coding RNA AL139385.1 as a Novel Prognostic Biomarker in Lung Adenocarcinoma. Front Oncol 2022; 12:905871. [PMID: 35651789 PMCID: PMC9149219 DOI: 10.3389/fonc.2022.905871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 12/25/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common histological lung cancer, and it is the leading cause of cancer-related deaths worldwide. LncRNA-AL139385.1 (ENSG00000275880) is a novel lncRNA that is abnormally expressed in various cancer types including LUAD. However, the underlying biological function and potential mechanisms of AL139385.1 driving the progression of LUAD remain unclear. In this study, we investigated the role of AL139385.1 in LUAD and found that DNA hypomethylation was positively correlated with AL139385.1 expression in LUAD. Moreover, we uncover that the expression of AL139385.1 in LUAD tissues was significantly higher than that of AL139385.1 expression in adjacent normal tissues. Kaplan-Meier survival analysis showed that patients with higher AL139385.1 expression correlated with adverse overall survival and progression-free survival. Receiver operating characteristic (ROC) curve analysis showed that the area under the curve (AUC) value of AL139385.1 was 0.808. Correlation analysis showed that AL139385.1 expression was associated with immune infiltration in LUAD. We also found that AL139385.1 was upregulated in LUAD cancer tissues and cell lines. Knockdown of AL139385.1 significantly inhibited cell proliferation and migration abilities of LUAD. Finally, we constructed a ceRNA network that includes hsa-miR-532-5p and four mRNAs (GALNT3, CYCS, EIF5A, and ITGB4) specific to AL139385.1 in LUAD. Subsequent Kaplan-Meier survival analysis suggested that polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3), cytochrome c, somatic (CYCS), eukaryotic translation initiation factor 5A (EIF5A), and integrin subunit beta 4 (ITGB4), were potential prognostic biomarkers for patients with LUAD. In conclusion, this finding provides possible mechanisms underlying the abnormal upregulation of AL139385.1 as well as a comprehensive view of the AL139385.1-mediated competing endogenous RNAs (ceRNA) network in LUAD, thereby highlighting its potential role in diagnosis and therapy.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jishu Guo
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Fan Zhou
- Hematology and Rheumatology Department, The Pu’er People’s Hospital, Pu’er, China
| | - Wenjun Ren
- Department of Cardiovascular Surgery, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Xiaobin Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jun Pu
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaoqun Niu
- Department of Respiratory Medicine, Second Hospital of Kunming Medical University, Kunming, China
| | - Xiulin Jiang
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Nukala SB, Jousma J, Cho Y, Lee WH, Ong SG. Long non-coding RNAs and microRNAs as crucial regulators in cardio-oncology. Cell Biosci 2022; 12:24. [PMID: 35246252 PMCID: PMC8895873 DOI: 10.1186/s13578-022-00757-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/10/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality worldwide. Significant improvements in the modern era of anticancer therapeutic strategies have increased the survival rate of cancer patients. Unfortunately, cancer survivors have an increased risk of cardiovascular diseases, which is believed to result from anticancer therapies. The emergence of cardiovascular diseases among cancer survivors has served as the basis for establishing a novel field termed cardio-oncology. Cardio-oncology primarily focuses on investigating the underlying molecular mechanisms by which anticancer treatments lead to cardiovascular dysfunction and the development of novel cardioprotective strategies to counteract cardiotoxic effects of cancer therapies. Advances in genome biology have revealed that most of the genome is transcribed into non-coding RNAs (ncRNAs), which are recognized as being instrumental in cancer, cardiovascular health, and disease. Emerging studies have demonstrated that alterations of these ncRNAs have pathophysiological roles in multiple diseases in humans. As it relates to cardio-oncology, though, there is limited knowledge of the role of ncRNAs. In the present review, we summarize the up-to-date knowledge regarding the roles of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in cancer therapy-induced cardiotoxicities. Moreover, we also discuss prospective therapeutic strategies and the translational relevance of these ncRNAs.
Collapse
Affiliation(s)
- Sarath Babu Nukala
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA
| | - Jordan Jousma
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA
| | - Yoonje Cho
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA
| | - Won Hee Lee
- Department of Basic Medical Sciences, University of Arizona College of Medicine, ABC-1 Building, 425 North 5th Street, Phoenix, AZ, 85004, USA.
| | - Sang-Ging Ong
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA.
- Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA.
| |
Collapse
|
36
|
Mao Y, Li W, Weng Y, Hua B, Gu X, Lu C, Xu B, Xu H, Wang Z. METTL3-Mediated m 6A Modification of lncRNA MALAT1 Facilitates Prostate Cancer Growth by Activation of PI3K/AKT Signaling. Cell Transplant 2022; 31:9636897221122997. [PMID: 36073002 PMCID: PMC9459491 DOI: 10.1177/09636897221122997] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/04/2022] Open
Abstract
Accumulating data show that N6-methyladenosine (m6A) methyltransferase METTL3 and long noncoding RNA MALAT1 act pivotal roles in multiple malignancies including prostate cancer (PCa). However, the role and molecular mechanism underlying METTL3-mediated m6A modification of MALAT1 in PCa remain undocumented. The association of METTL3 and MALAT1 expression with clinicopathological characteristics and prognosis in patients with PCa was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR), Western blot, and public The Cancer Genome Atlas (TCGA) dataset. The in vitro and in vivo experiments were executed to investigate the role of METTL3 in PCa. m6A dot blot, methylated RNA immunoprecipitation (MeRIP), RIP, and qRT-PCR assays were employed to observe METTL3-mediated m6A modification of MALAT1. The effects of METTL3 on MALAT1-mediated PI3K/AKT pathway were assessed by Western blot analysis. As a result, we found that METTL3 was significantly upregulated in PCa tissues and high expression of METTL3 was associated with Gleason score and tumor recurrence in patients with PCa. Knockdown of METTL3 markedly repressed growth and invasion of PCa cells in vitro and in vivo, whereas ectopic expression of METTL3 showed the opposite effects. Moreover, knockdown of METTL3 decreased the total m6A levels of PCa cells as well as the MALAT1 m6A levels, leading to reduced MALAT1 expression. Overexpression of MALAT1 reversed METTL3 knockdown-induced antitumor effects and PI3K/AKT signaling inactivation. MALAT1 harbored a positive correlation with METTL3 expression and tumor recurrence in PCa. In conclusion, our findings demonstrate that METTL3-mediated m6A modification of lncRNA MALAT1 promotes growth and invasion of PCa cells by activating PI3K/AKT signaling.
Collapse
Affiliation(s)
- Yuanshen Mao
- Department of Urology, Shanghai Ninth
People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Wenfeng Li
- Department of Urology, Shanghai Ninth
People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - YiMing Weng
- Reproductive Medical Center, Tongji
Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bao Hua
- Department of Urology, Shanghai Ninth
People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Xin Gu
- Department of Urology, Shanghai Ninth
People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Chao Lu
- Department of Urology, Shanghai Ninth
People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Bin Xu
- Department of Urology, Shanghai Ninth
People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Huan Xu
- Department of Urology, Shanghai Ninth
People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Zhong Wang
- Department of Urology, Shanghai Ninth
People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| |
Collapse
|