1
|
Wang T, Tong H, Chen R, Jiang Y, Zhang C, Qi H, Zhang X. FAK regulates trophoblast functions of invasion and proliferation through Rap1 pathway in early-onset preeclampsia. Biochem Biophys Res Commun 2025; 763:151788. [PMID: 40220488 DOI: 10.1016/j.bbrc.2025.151788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/20/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
This investigation examined focal adhesion kinase (FAK)'s role in trophoblast cellular processes during early-onset preeclampsia (EOPE). We analyzed FAK and its phosphorylated form (pY397FAK) expression patterns in both normal (n = 15) and EOPE (n = 15) placental tissues, including first trimester samples, using immunohistochemistry and Western blot techniques. Next, Y15 was used to inhibit FAK activity. CCK-8 detection, Western blotting, wound healing assay, Transwell assays and flow cytometry were employed to systematically evaluate FAK's impact on trophoblast cell line HTR8/SVneo. Through transcriptomic and bioinformatics analyses, we identified Rap1 as a potential downstream mediator of FAK signaling in trophoblasts. In a mouse model of preeclampsia, we found decreased expression of both FAK and Rap1 in placental tissues, supporting our in vitro findings. These results suggest that FAK may contribute to preeclampsia development by regulating trophoblast invasion and proliferation through the Rap1 signaling pathway. Our study provides insights into the molecular mechanisms underlying EOPE and identifies FAK as a potential therapeutic target for preeclampsia treatment.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hai Tong
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China; Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University (CQMU-WCH), Chongqing, 401147, China
| | - Ruixin Chen
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University (CQMU-WCH), Chongqing, 401147, China; Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Youqing Jiang
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China; Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University (CQMU-WCH), Chongqing, 401147, China
| | - Chen Zhang
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University (CQMU-WCH), Chongqing, 401147, China
| | - Hongbo Qi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China.
| | - Xue Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
2
|
Yang SH, Gan J, Xu HR, Shi JX, Wang J, Zhang X. The BMP Signaling Pathway: Bridging Maternal-Fetal Crosstalk in Early Pregnancy. Reprod Sci 2025; 32:1427-1445. [PMID: 39821798 DOI: 10.1007/s43032-024-01777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/24/2024] [Indexed: 01/19/2025]
Abstract
The maintenance of early pregnancy is a complex and distinctive process, primarily characterized by critical reproductive events such as embryo implantation, trophoblasts differentiation, decidualization, and extravillous trophoblasts (EVTs) invasion etc. However, dysregulation of these essential reproductive processes can result in various pregnancy complications, including recurrent miscarriage, preeclampsia, and fetal growth restriction etc. Notably, these complications exhibit an interconnected regulatory network that suggests shared underlying pathophysiological mechanisms. Meanwhile, the role of the BMP signaling pathway in sustaining early pregnancy is increasingly being investigated and elucidated. In this review, we have clarified the specific molecular mechanisms which are fundamental to essential reproductive processes and summarize an overview of animal models associated with BMP signaling molecules. In addition, we present a novel perspective on several contentious viewpoints regarding the functional roles of BMP ligands. Therefore, we anticipated a comprehensive understanding of the precise ways in which the BMP signaling pathway affects reproductive events during early pregnancy could provide new perspectives and approaches for preventing and addressing early pregnancy complications.
Collapse
Affiliation(s)
- Shu-Han Yang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Medical School, Fudan University, Shanghai, 200237, China
| | - Jie Gan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Medical School, Fudan University, Shanghai, 200237, China
| | - Hao-Ran Xu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Medical School, Fudan University, Shanghai, 200237, China
| | - Jia-Xin Shi
- Institute of Pathology, Medical Faculty, RWTH Aachen University, Aachen, 52074, Germany
| | - Jian Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Medical School, Fudan University, Shanghai, 200237, China.
| | - Xuan Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Medical School, Fudan University, Shanghai, 200237, China.
| |
Collapse
|
3
|
Chu X, Chen X, Guo M, Li X, Qu Z, Li P. IGSF8 impairs migration and invasion of trophoblast cells and angiogenesis in preeclampsia. Exp Cell Res 2025; 445:114405. [PMID: 39755227 DOI: 10.1016/j.yexcr.2025.114405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
Insufficient trophoblast cell infiltration is implicated in the progression of preeclampsia (PE). The immunoglobulin superfamily member 8 (IGSF8) has been shown to promote cell migration, invasion, and epithelial mesenchymal transition (EMT). However, the specific impact of IGSF8 on trophoblast cells in PE has not been definitively demonstrated. To address this, placental tissues from PE patients and normal subjects was collected. A PE-like rat model was established by administering L-NAME (60 mg/kg) intragastrically to pregnant rats from the 10th to the 19th day of gestation. Knockdown and overexpression plasmids of IGSF8 were transfected into JEG-3 cells for further experiments. Clinical samples indicated impaired spiral artery remodeling, and high IGSF8 expression in the placental tissues of PE patients. PE rats exhibited increased mean arterial pressure, elevated 24-h urine protein levels, higher abortion rates, and decreased placental and fetal weight compared to rats of sham group. Failure of physiological transformation of spiral arteries was observed in PE rats, along with increased IGSF8 expression. IGSF8 overexpression inhibited JEG-3 cell migration, invasion and EMT, as well as reduced release of VEGF in JEG-3 cells, impairing HUVEC tube formation. mRNA-sequencing analysis of JEG-3 cells transfected with shIGSF8 showed differentially expressed genes related to angiogenesis, and mesenchymal cell differentiation, with IGSF8 knockdown being associated with the activation of pathways involved in blood vessel development and cell migration. Overall, this study suggests that IGSF8 plays a role in the development of PE and provides new insights for potential treatments.
Collapse
Affiliation(s)
- Xiaodan Chu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Xuan Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Man Guo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Xinyue Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zhihai Qu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Peiling Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
4
|
Wang H, Fan N, Cui X, Xie R, Tang Y, Thomas AM, Li S, Zhang JV, Liu S, Qin H. BMP5 promotes trophoblast functions upon N-glycosylation via the BMP5-SMAD1/5 signaling pathway in preeclampsia. Placenta 2024; 158:240-252. [PMID: 39520832 DOI: 10.1016/j.placenta.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Preeclampsia (PE) is one of the most common pregnancy-related complications worldwide and currently lacks an effective treatment. While trophoblast cell dysfunction has been identified as the fundamental cause of PE, the underlying mechanisms remain unclear. Bone morphogenetic protein 5 (BMP5) is a secreted glycoprotein highly expressed in the placenta that is involved in cell proliferation, migration, and invasion. However, the role and mechanism of BMP5 glycosylation of trophoblast cell function remain unclear. METHODS The expression of BMP5 and N-glycosylation in preeclamptic placental tissues was investigated. We predicted and validated the N-glycosylation sites of BMP5. Additionally, we evaluated the effect of BMP5 N-glycosylation on the proliferation, migration, invasion, and angiogenesis of human immortalized trophoblastic HTR-8/SVneo cells. Furthermore, the role of N-glycosylated BMP5 in activating the BMP5-SMAD1/5 signaling pathway and regulating trophoblastic cell functions was explored. RESULTS Our study reveals that PHA-E + L (recognizing branching N-glycans) reactive N-glycans and BMP5 expression levels are lower in preeclamptic villous tissues compared to normal placental tissues. Additionally, we demonstrated that BMP5 is an N-glycosylation-modified protein. Furthermore, N-glycosylated BMP5 promoted the functional trophoblastic cells (HTR-8/SVneo). We also revealed that N-glycosylation of BMP5 regulates multiple cell functions through the BMP5-SMAD1/5 signaling pathway. CONCLUSION N-glycosylated BMP5 promotes trophoblast cell proliferation, migration, invasion, and angiogenesis. This study provides mechanistic insight as to how N-glycosylation of BMP5 in trophoblast cells can contribute to the pathogenesis of preeclampsia and provides a new basis for its diagnosis and treatment.
Collapse
Affiliation(s)
- Hao Wang
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen, China; Sino-European Center of Biomedicine and Health, Shenzhen, China
| | - Ningning Fan
- Department of Laboratory Medicine, The First Affiliated Hospital of Northwest University, Xi'an No.1 Hospital, Xi'an, China; Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xinyuan Cui
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ru Xie
- Department of Pathology, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ying Tang
- Department of Pathology, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Aline M Thomas
- The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shen Li
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jian V Zhang
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen, China; Sino-European Center of Biomedicine and Health, Shenzhen, China
| | - Shuai Liu
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Science, Dalian Medical University, Dalian, China.
| | - Huamin Qin
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Horvat Mercnik M, Schliefsteiner C, Sanchez-Duffhues G, Wadsack C. TGFβ signalling: a nexus between inflammation, placental health and preeclampsia throughout pregnancy. Hum Reprod Update 2024; 30:442-471. [PMID: 38519450 PMCID: PMC11215164 DOI: 10.1093/humupd/dmae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/16/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND The placenta is a unique and pivotal organ in reproduction, controlling crucial growth and cell differentiation processes that ensure a successful pregnancy. Placental development is a tightly regulated and dynamic process, in which the transforming growth factor beta (TGFβ) superfamily plays a central role. This family of pleiotropic growth factors is heavily involved in regulating various aspects of reproductive biology, particularly in trophoblast differentiation during the first trimester of pregnancy. TGFβ signalling precisely regulates trophoblast invasion and the cell transition from cytotrophoblasts to extravillous trophoblasts, which is an epithelial-to-mesenchymal transition-like process. Later in pregnancy, TGFβ signalling ensures proper vascularization and angiogenesis in placental endothelial cells. Beyond its role in trophoblasts and endothelial cells, TGFβ signalling contributes to the polarization and function of placental and decidual macrophages by promoting maternal tolerance of the semi-allogeneic foetus. Disturbances in early placental development have been associated with several pregnancy complications, including preeclampsia (PE) which is one of the severe complications. Emerging evidence suggests that TGFβ is involved in the pathogenesis of PE, thereby offering a potential target for intervention in the human placenta. OBJECTIVE AND RATIONALE This comprehensive review aims to explore and elucidate the roles of the major members of the TGFβ superfamily, including TGFβs, bone morphogenetic proteins (BMPs), activins, inhibins, nodals, and growth differentiation factors (GDFs), in the context of placental development and function. The review focusses on their interactions within the major cell types of the placenta, namely trophoblasts, endothelial cells, and immune cells, in both normal pregnancies and pregnancies complicated by PE throughout pregnancy. SEARCH METHODS A literature search was carried out using PubMed and Google Scholar, searching terms: 'TGF signalling preeclampsia', 'pregnancy TGF signalling', 'preeclampsia tgfβ', 'preeclampsia bmp', 'preeclampsia gdf', 'preeclampsia activin', 'endoglin preeclampsia', 'endoglin pregnancy', 'tgfβ signalling pregnancy', 'bmp signalling pregnancy', 'gdf signalling pregnancy', 'activin signalling pregnancy', 'Hofbauer cell tgfβ signalling', 'placental macrophages tgfβ', 'endothelial cells tgfβ', 'endothelium tgfβ signalling', 'trophoblast invasion tgfβ signalling', 'trophoblast invasion Smad', 'trophoblast invasion bmp', 'trophoblast invasion tgfβ', 'tgfβ preeclampsia', 'tgfβ placental development', 'TGFβ placental function', 'endothelial dysfunction preeclampsia tgfβ signalling', 'vascular remodelling placenta TGFβ', 'inflammation pregnancy tgfβ', 'immune response pregnancy tgfβ', 'immune tolerance pregnancy tgfβ', 'TGFβ pregnancy NK cells', 'bmp pregnancy NK cells', 'bmp pregnancy tregs', 'tgfβ pregnancy tregs', 'TGFβ placenta NK cells', 'TGFβ placenta tregs', 'NK cells preeclampsia', 'Tregs preeclampsia'. Only articles published in English until 2023 were used. OUTCOMES A comprehensive understanding of TGFβ signalling and its role in regulating interconnected cell functions of the main placental cell types provides valuable insights into the processes essential for successful placental development and growth of the foetus during pregnancy. By orchestrating trophoblast invasion, vascularization, immune tolerance, and tissue remodelling, TGFβ ligands contribute to the proper functioning of a healthy maternal-foetal interface. However, dysregulation of TGFβ signalling has been implicated in the pathogenesis of PE, where the shallow trophoblast invasion, defective vascular remodelling, decreased uteroplacental perfusion, and endothelial cell and immune dysfunction observed in PE, are all affected by an altered TGFβ signalling. WIDER IMPLICATIONS The dysregulation of TGFβ signalling in PE has important implications for research and clinical practice. Further investigation is required to understand the underlying mechanisms, including the role of different ligands and their regulation under pathophysiological conditions, in order to discover new therapeutic targets. Distinguishing between clinically manifested subtypes of PE and studying TGFβ signalling in different placental cell types holistically is an important first step. To put this knowledge into practice, pre-clinical animal models combined with new technologies are needed. This may also lead to improved human research models and identify potential therapeutic targets, ultimately improving outcomes for affected pregnancies and reducing the burden of PE.
Collapse
Affiliation(s)
| | | | - Gonzalo Sanchez-Duffhues
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Tissue-Specific BMP Signalling ISPA-HUCA, Oviedo, Spain
| | - Christian Wadsack
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
6
|
Zhan F, He L, Wu J, Wu X. Bioinformatic Analysis Identifies Potential Extracellular Matrix Related Genes in the Pathogenesis of Early Onset Preeclampsia. Biochem Genet 2024; 62:646-665. [PMID: 37498421 DOI: 10.1007/s10528-023-10461-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
Early-onset preeclampsia (EOPE) is a complex pregnancy complication that poses significant risks to the health of both mothers and fetuses, and research on its pathogenesis and pathophysiology remains insuffcient. This study aims to explore the role of candidate genes and their potential interaction mechanisms in EOPE through bioinformatics analysis techniques. Two gene expression datasets, GSE44711 and GSE74341, were obtained from the Gene Expression Omnibus (GEO) to identify differentially expressed genes (DEGs) between EOPE and gestational age-matched preterm control samples. Functional enrichment analysis was performed utilizing the kyoto encyclopedia of genes and genomes (KEGG), gene ontology (GO), and gene set enrichment analysis (GSEA). A protein-protein interaction (PPI) network was constructed using the STRING database, and hub DEGs were identified through Cytoscape software and comparative toxicogenomics database (CTD) analysis. Furthermore, a diagnostic logistic model was established using these hub genes, which were confirmed through reverse transcription polymerase chain reaction (RT-PCR). Finally, immune cell infiltration was analyzed using CIBERSORT. In total, 807 DEGs were identified in the GSE44711 dataset (451 upregulated genes and 356 downregulated genes), and 787 DEGs were identified in the GSE74341 dataset (446 upregulated genes and 341 downregulated genes). These DEGs were significantly enriched in various molecular functions such as extracellular matrix structural constituent, receptor-ligand activity binding, cytokine activity, and platelet-derived growth factor. KEGG and GSEA annotation revealed significant enrichment in pathways related to ECM-receptor interaction, PI3K-AKT signaling, and focal adhesion. Ten hub genes were identified through the CytoHubba plugin in Cytoscape. Among these hub genes, three key DEGs (COL1A1, SPP1, and THY1) were selected using CTD analysis and various topological methods in Cytoscape. The diagnostic logistic model based on these three genes exhibited high efficiency in predicting EOPE (AUC = 0.922). RT-PCR analysis confirmed the downregulation of these genes in EOPE, and immune cell infiltration analysis suggested the significant role of M1 and M2 macrophages in EOPE. In conclusion, this study highlights the association of three key genes (COL1A1, SPP1, and THY1) with EOPE and their contribution to high diagnostic efficiency in the logistic model. Additionally, it provides new insights for future research on EOPE and emphasizes the diagnostic value of these identified genes. More research is needed to explore their functional and diagnostic significance in EOPE.
Collapse
Affiliation(s)
- Feng Zhan
- College of Engineering, Fujian Jiangxia University, Fuzhou, 350108, Fujian, China
- School of Electronic Information Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi, China
| | - Lidan He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, Fujian, China.
| | - Jianbo Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, Fujian, China
| | - Xiuyan Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, Fujian, China
| |
Collapse
|
7
|
Wei D, Su Y, Leung PCK, Li Y, Chen ZJ. Roles of bone morphogenetic proteins in endometrial remodeling during the human menstrual cycle and pregnancy. Hum Reprod Update 2024; 30:215-237. [PMID: 38037193 DOI: 10.1093/humupd/dmad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/17/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND During the human menstrual cycle and pregnancy, the endometrium undergoes a series of dynamic remodeling processes to adapt to physiological changes. Insufficient endometrial remodeling, characterized by inadequate endometrial proliferation, decidualization and spiral artery remodeling, is associated with infertility, endometriosis, dysfunctional uterine bleeding, and pregnancy-related complications such as preeclampsia and miscarriage. Bone morphogenetic proteins (BMPs), a subset of the transforming growth factor-β (TGF-β) superfamily, are multifunctional cytokines that regulate diverse cellular activities, such as differentiation, proliferation, apoptosis, and extracellular matrix synthesis, are now understood as integral to multiple reproductive processes in women. Investigations using human biological samples have shown that BMPs are essential for regulating human endometrial remodeling processes, including endometrial proliferation and decidualization. OBJECTIVE AND RATIONALE This review summarizes our current knowledge on the known pathophysiological roles of BMPs and their underlying molecular mechanisms in regulating human endometrial proliferation and decidualization, with the goal of promoting the development of innovative strategies for diagnosing, treating and preventing infertility and adverse pregnancy complications associated with dysregulated human endometrial remodeling. SEARCH METHODS A literature search for original articles published up to June 2023 was conducted in the PubMed, MEDLINE, and Google Scholar databases, identifying studies on the roles of BMPs in endometrial remodeling during the human menstrual cycle and pregnancy. Articles identified were restricted to English language full-text papers. OUTCOMES BMP ligands and receptors and their transduction molecules are expressed in the endometrium and at the maternal-fetal interface. Along with emerging technologies such as tissue microarrays, 3D organoid cultures and advanced single-cell transcriptomics, and given the clinical availability of recombinant human proteins and ongoing pharmaceutical development, it is now clear that BMPs exert multiple roles in regulating human endometrial remodeling and that these biomolecules (and their receptors) can be targeted for diagnostic and therapeutic purposes. Moreover, dysregulation of these ligands, their receptors, or signaling determinants can impact endometrial remodeling, contributing to infertility or pregnancy-related complications (e.g. preeclampsia and miscarriage). WIDER IMPLICATIONS Although further clinical trials are needed, recent advancements in the development of recombinant BMP ligands, synthetic BMP inhibitors, receptor antagonists, BMP ligand sequestration tools, and gene therapies have underscored the BMPs as candidate diagnostic biomarkers and positioned the BMP signaling pathway as a promising therapeutic target for addressing infertility and pregnancy complications related to dysregulated human endometrial remodeling.
Collapse
Affiliation(s)
- Daimin Wei
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
| | - Yaxin Su
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yan Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, China
| |
Collapse
|
8
|
Lin Z, Wu S, Jiang Y, Chen Z, Huang X, Wen Z, Yuan Y. Unraveling the molecular mechanisms driving enhanced invasion capability of extravillous trophoblast cells: a comprehensive review. J Assist Reprod Genet 2024; 41:591-608. [PMID: 38315418 PMCID: PMC10957806 DOI: 10.1007/s10815-024-03036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Precise extravillous trophoblast (EVT) invasion is crucial for successful placentation and pregnancy. This review focuses on elucidating the mechanisms that promote heightened EVT invasion. We comprehensively summarize the pivotal roles of hormones, angiogenesis, hypoxia, stress, the extracellular matrix microenvironment, epithelial-to-mesenchymal transition (EMT), immunity, inflammation, programmed cell death, epigenetic modifications, and microbiota in facilitating EVT invasion. The molecular mechanisms underlying enhanced EVT invasion may provide valuable insights into potential pathogenic mechanisms associated with diseases characterized by excessive invasion, such as the placenta accreta spectrum (PAS), thereby offering novel perspectives for managing pregnancy complications related to deficient EVT invasion.
Collapse
Affiliation(s)
- Zihan Lin
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Shuang Wu
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Yinghui Jiang
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Ziqi Chen
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Xiaoye Huang
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Zhuofeng Wen
- The Sixth Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Yi Yuan
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Shen C. ID1 and IGFBP3: roles in cellular senescence, cardiac development, angiogenesis and cancer diagnosis. J Transl Med 2023; 21:797. [PMID: 37946234 PMCID: PMC10633922 DOI: 10.1186/s12967-023-04701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Affiliation(s)
- Cheng Shen
- Department of Thoracic Surgery, West-China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
AbdelHafez FF, Klausen C, Zhu H, Yi Y, Leung PCK. Growth differentiation factor myostatin regulates epithelial-mesenchymal transition genes and enhances invasion by increasing serine protease inhibitors E1 and E2 in human trophoblast cells. FASEB J 2023; 37:e23204. [PMID: 37738042 DOI: 10.1096/fj.202300740r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/21/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023]
Abstract
Placental insufficiency disorders, including preeclampsia and intrauterine growth restriction, are major obstetric complications that can have devastating effects on both the mother and the fetus. These syndromes have underlying poor placental trophoblast cell invasion into uterine tissues. Placental invasion is controlled by many hormones and growth factors. Myostatin (MSTN) is a transforming growth factor-β superfamily member recognized for its important role in muscle growth control. MSTN has also been shown to be secreted and functioning in the placenta, and its serum and/or placental levels were found to be upregulated in preeclampsia and intrauterine growth restriction. Considering that the mechanistic role of MSTN in placentation remains poorly understood, we hypothesized that MSTN uses ALK4/5-SMAD2/3/4 signaling to increase human trophoblast invasion through a group of epithelial-mesenchymal transition genes including SERPINE2, PAI-1, and SOX4. mRNA sequencing of control and MSTN-treated primary human trophoblast cells (n = 5) yielded a total of 610 differentially expressed genes (false discovery rate <0.05) of which 380 genes were upregulated and 230 were downregulated. These differentially expressed genes were highly enriched in epithelial-mesenchymal transition genes, and a subset including SERPINE2, PAI-1, and SOX4 was investigated for its role in MSTN-induced trophoblast cell invasion. We found that MSTN induced upregulation of SERPINE2 via ALK4/5-SMAD2/3/4 signaling; however, SMAD2 was not involved in MSTN-induced PAI-1 upregulation. SOX4 was involved in MSTN-induced upregulation of SERPINE2, but not PAI-1. Collectively, this study discovers novel molecular mechanisms of MSTN-induced human trophoblast cell invasion and provides insight into the functional consequences of its dysregulation in placental insufficiency disorders.
Collapse
Affiliation(s)
- Faten F AbdelHafez
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Obstetrics and Gynecology, Assiut School of Medicine, Assiut, Egypt
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hua Zhu
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuyin Yi
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Deng J, Zhao HJ, Zhong Y, Hu C, Meng J, Wang C, Lan X, Wang X, Chen ZJ, Yan J, Wang W, Li Y. H3K27me3-modulated Hofbauer cell BMP2 signalling enhancement compensates for shallow trophoblast invasion in preeclampsia. EBioMedicine 2023; 93:104664. [PMID: 37331163 DOI: 10.1016/j.ebiom.2023.104664] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023] Open
Abstract
BACKGROUND Preeclampsia (PE) is a common hypertensive pregnancy disorder associated with shallow trophoblast invasion. Although bone morphogenetic protein 2 (BMP2) has been shown to promote trophoblast invasion in vitro, its cellular origin and molecular regulation in placenta, as well as its potential role in PE, has yet to be established. Additionally, whether BMP2 and/or its downstream molecules could serve as potential diagnostic or therapeutic targets for PE has not been explored. METHODS Placentas and sera from PE and healthy pregnant women were subjected to multi-omics analyses, immunoblots, qPCR, and ELISA assays. Immortalized trophoblast cells, primary cultures of human trophoblasts, and first-trimester villous explants were used for in vitro experiments. Adenovirus expressing sFlt-1 (Ad Flt1)-induced PE rat model was used for in vivo studies. FINDINGS We find globally decreased H3K27me3 modifications and increased BMP2 signalling in preeclamptic placentas, which is negatively correlated with clinical manifestations. BMP2 is derived from Hofbauer cells and epigenetically regulated by H3K27me3 modification. BMP2 promotes trophoblast invasion and vascular mimicry by upregulating BMP6 via BMPR1A-SMAD2/3-SMAD4 signalling. BMP2 supplementation alleviates high blood pressure and fetal growth restriction phenotypes in Ad Flt1-induced rat PE model. INTERPRETATION Our findings demonstrate that epigenetically regulated Hofbauer cell-derived BMP2 signalling enhancement in late gestation could serve as a compensatory response for shallow trophoblast invasion in PE, suggesting opportunities for diagnostic marker and therapeutic target applications in PE clinical management. FUNDING National Key Research and Development Program of China (2022YFC2702400), National Natural Science Foundation of China (82101784, 82171648, 31988101), and Natural Science Foundation of Shandong Province (ZR2020QH051, ZR2020MH039).
Collapse
Affiliation(s)
- Jianye Deng
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China; Medical Integration and Practice Center, Shandong University, Jinan, Shandong, 250012, China
| | - Hong-Jin Zhao
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Ying Zhong
- Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Cuiping Hu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jinlai Meng
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Chunling Wang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xiangxin Lan
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiyao Wang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Junhao Yan
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Wei Wang
- Division of Neonatology, Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02115, USA.
| | - Yan Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China; Medical Integration and Practice Center, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
12
|
Huang CC, Hsueh YW, Chang CW, Hsu HC, Yang TC, Lin WC, Chang HM. Establishment of the fetal-maternal interface: developmental events in human implantation and placentation. Front Cell Dev Biol 2023; 11:1200330. [PMID: 37266451 PMCID: PMC10230101 DOI: 10.3389/fcell.2023.1200330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Early pregnancy is a complex and well-orchestrated differentiation process that involves all the cellular elements of the fetal-maternal interface. Aberrant trophoblast-decidual interactions can lead to miscarriage and disorders that occur later in pregnancy, including preeclampsia, intrauterine fetal growth restriction, and preterm labor. A great deal of research on the regulation of implantation and placentation has been performed in a wide range of species. However, there is significant species variation regarding trophoblast differentiation as well as decidual-specific gene expression and regulation. Most of the relevant information has been obtained from studies using mouse models. A comprehensive understanding of the physiology and pathology of human implantation and placentation has only recently been obtained because of emerging advanced technologies. With the derivation of human trophoblast stem cells, 3D-organoid cultures, and single-cell analyses of differentiated cells, cell type-specific transcript profiles and functions were generated, and each exhibited a unique signature. Additionally, through integrative transcriptomic information, researchers can uncover the cellular dysfunction of embryonic and placental cells in peri-implantation embryos and the early pathological placenta. In fact, the clinical utility of fetal-maternal cellular trafficking has been applied for the noninvasive prenatal diagnosis of aneuploidies and the prediction of pregnancy complications. Furthermore, recent studies have proposed a viable path toward the development of therapeutic strategies targeting placenta-enriched molecules for placental dysfunction and diseases.
Collapse
|
13
|
Luo Y, Chen J, Cui Y, Fang F, Zhang Z, Hu L, Chen X, Li Z, Li L, Chen L. Transcriptome-wide high-throughput m 6 A sequencing of differential m 6 A methylation patterns in the decidual tissues from RSA patients. FASEB J 2023; 37:e22802. [PMID: 36786696 DOI: 10.1096/fj.202201232rrrr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 02/15/2023]
Abstract
Recurrent spontaneous abortion (RSA) is characterized by two or more consecutive pregnancy losses in the first trimester of pregnancy, experienced by 5% of women during their reproductive age. As a complex pathological process, the etiology of RSA remains poorly understood. Recent studies have established that gene expression changes dramatically in human endometrial stromal cells (ESCs) during decidualization. N6-methyladenosine (m6 A) modification is the most prevalent epigenetic modification of mRNA in eukaryotic cells and it is closely related to the occurrence and development of many pathophysiological phenomena. In this study, we first confirmed that high levels of m6 A mRNA methylation in decidual tissues are associated with RSA. Then, we used m6 A-modified RNA immunoprecipitation sequence (m6 A-seq) and RNA sequence (RNA-seq) to identify the differentially expressed m6 A methylation in decidual tissues from RSA patients and identified the key genes involved in abnormal decidualization by bioinformatics analysis. Using m6 A-seq, we identified a total of 2169 genes with differentially expressed m6 A methylation, of which 735 m6 A hypermethylated genes and 1434 m6 A hypomethylated genes were identified. Further joint analysis of m6 A-seq and RNA-seq revealed that 133 genes were m6 A modified with mRNA expression. GO and KEGG analyses indicated that these unique genes were mainly enriched in environmental information processing pathways, including the cytokine-cytokine receptor interaction and PI3K-Akt signaling pathway. In summary, this study uncovered the transcriptome-wide m6 A modification pattern in decidual tissue of RSA, which provides a theoretical basis for further research into m6 A modification and new therapeutic strategies for RSA.
Collapse
Affiliation(s)
- Yong Luo
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Jin Chen
- Department of Traditional Chinese Medicine, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Ying Cui
- Department of Traditional Chinese Medicine, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Fang Fang
- Department of Traditional Chinese Medicine, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Ziyu Zhang
- Department of Pathology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Lili Hu
- Ambulatory Surgery Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Xiaoyong Chen
- Department of Traditional Chinese Medicine, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Zengming Li
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Liping Li
- Prenatal Diagnosis Center, Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Lina Chen
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
Luo J, Wang Y, Chang HM, Zhu H, Yang J, Leung PCK. ID3 mediates BMP2-induced downregulation of ICAM1 expression in human endometiral stromal cells and decidual cells. Front Cell Dev Biol 2023; 11:1090593. [PMID: 36910152 PMCID: PMC9998904 DOI: 10.3389/fcell.2023.1090593] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/17/2023] [Indexed: 03/14/2023] Open
Abstract
Recurrent pregnancy loss (RPL) remains an unsolved problem in obstetrics and gynecology, and up to 50% of RPL cases are unexplained. Unexplained RPL (uRPL) is widely considered to be related to an aberrant endometrial microenvironment. BMP2 is an important factor involved in endometrial decidualization and embryo implantation, and intercellular adhesion molecule 1 (ICAM1) is a critical inflammatory regulator in the endometrium. In this study, we found that endometrial samples obtained from Unexplained RPL patients have significantly lower BMP2 and higher ICAM1 levels than fertile controls. For further research on the relationship between BMP2 and ICAM1 and the potential molecular mechanisms in Unexplained RPL, immortalized human endometrial stromal cells (HESCs) and primary human decidual stromal cells (HDSCs) were used as study models. Our results showed that BMP2 significantly decreased ICAM1 expression by upregulating DNA-binding protein inhibitor 3 (ID3) in both HESCs and HDSCs. Using kinase receptor inhibitors (dorsomorphin homolog 1 (DMH-1) and dorsomorphin) and siRNA transfection, it has been found that the upregulation of ID3 and the following downregulation of ICAM1 induced by BMP2 is regulated through the ALK3-SMAD4 signaling pathway. This research gives a hint of a novel mechanism by which BMP2 regulates ICAM1 in the human endometrium, which provides insights into potential therapeutics for unexplained RPL.
Collapse
Affiliation(s)
- Jin Luo
- Reproductive Medicine Center, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yaqin Wang
- Reproductive Medicine Center, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hsun-Ming Chang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Hua Zhu
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Jing Yang
- Reproductive Medicine Center, Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Renmin Hospital of Wuhan University, Wuhan, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Maurya VK, Szwarc MM, Lonard DM, Gibbons WE, Wu SP, O’Malley BW, DeMayo FJ, Lydon JP. Decidualization of human endometrial stromal cells requires steroid receptor coactivator-3. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:1033581. [PMID: 36505394 PMCID: PMC9730893 DOI: 10.3389/frph.2022.1033581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Steroid receptor coactivator-3 (SRC-3; also known as NCOA3 or AIB1) is a member of the multifunctional p160/SRC family of coactivators, which also includes SRC-1 and SRC-2. Clinical and cell-based studies as well as investigations on mice have demonstrated pivotal roles for each SRC in numerous physiological and pathophysiological contexts, underscoring their functional pleiotropy. We previously demonstrated the critical involvement of SRC-2 in murine embryo implantation as well as in human endometrial stromal cell (HESC) decidualization, a cellular transformation process required for trophoblast invasion and ultimately placentation. We show here that, like SRC-2, SRC-3 is expressed in the epithelial and stromal cellular compartments of the human endometrium during the proliferative and secretory phase of the menstrual cycle as well as in cultured HESCs. We also found that SRC-3 depletion in cultured HESCs results in a significant attenuation in the induction of a wide-range of established biomarkers of decidualization, despite exposure of these cells to a deciduogenic stimulus and normal progesterone receptor expression. These molecular findings are supported at the cellular level by the inability of HESCs to morphologically transform from a stromal fibroblastoid cell to an epithelioid decidual cell when endogenous SRC-3 levels are markedly reduced. To identify genes, signaling pathways and networks that are controlled by SRC-3 and potentially important for hormone-dependent decidualization, we performed RNA-sequencing on HESCs in which SRC-3 levels were significantly reduced at the time of administering the deciduogenic stimulus. Comparing HESC controls with HESCs deficient in SRC-3, gene enrichment analysis of the differentially expressed gene set revealed an overrepresentation of genes involved in chromatin remodeling, cell proliferation/motility, and programmed cell death. These predictive bioanalytic results were confirmed by the demonstration that SRC-3 is required for the expansion, migratory and invasive activities of the HESC population, cellular properties that are required in vivo in the formation or functioning of the decidua. Collectively, our results support SRC-3 as an important coregulator in HESC decidualization. Since perturbation of normal homeostatic levels of SRC-3 is linked with common gynecological disorders diagnosed in reproductive age women, this endometrial coregulator-along with its new molecular targets described here-may open novel clinical avenues in the diagnosis and/or treatment of a non-receptive endometrium, particularly in patients presenting non-aneuploid early pregnancy loss.
Collapse
Affiliation(s)
- Vineet K. Maurya
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Maria M. Szwarc
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - William E. Gibbons
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, United States
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Francesco J. DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States,Correspondence: John P. Lydon
| |
Collapse
|
16
|
Yan X, Rong M, Zhou Q, Zhang C. DCAF13 is essential for the pathogenesis of preeclampsia through its involvement in endometrial decidualization. Mol Cell Endocrinol 2022; 556:111741. [PMID: 35932979 DOI: 10.1016/j.mce.2022.111741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/16/2022] [Accepted: 07/31/2022] [Indexed: 11/15/2022]
Abstract
Preeclampsia (PE) is a syndrome that occurs during pregnancy and affects more than 8 million mother-infant pairs each year. Most previous studies on the pathogenesis of PE have focused on the placenta. However, decidualization is the basis for placentation and subsequent development. The CRL4 (Cullin 4-RING E3 ubiquitin ligase) complex ubiquitinates and degrades substrates, while DCAF13 (DDB1 and CUL4-associated factor 13) is a component and substrate receptor of this complex, which recognizes and recruits the complex different substrates. DCAF13 plays a major role in the maintenance of follicles and the development of oocytes. However, its role in subsequent pregnancies remains unclear. In the present study, we first investigated DCAF13 levels in the decidua of PE patients and found that it is significantly lower than that of normal pregnant women. Second, we found that DCAF13 expression increases during decidualization, and reducing expression of DCAF13 by siRNA prevents decidualization. Third, in vivo experiments in mice further revealed that Dcaf13 expression increases with decidualization. Finally, we generated and found that uteri of pseudopregnant conditional Dcaf13 knockout mice fails to undergo decidualization. Therefore, we propose that DCAF13 plays a key role in decidualization. Abnormal expression of DCAF13 affects the decidualization process, which is likely involved in the occurrence and development of PE.
Collapse
Affiliation(s)
- Xingyu Yan
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China; Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, 361102, China
| | - Miaomiao Rong
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Qianhui Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Cong Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China; Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China.
| |
Collapse
|
17
|
Roberts RM, Ezashi T, Temple J, Owen JR, Soncin F, Parast MM. The role of BMP4 signaling in trophoblast emergence from pluripotency. Cell Mol Life Sci 2022; 79:447. [PMID: 35877048 PMCID: PMC10243463 DOI: 10.1007/s00018-022-04478-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/24/2022] [Accepted: 07/06/2022] [Indexed: 11/03/2022]
Abstract
The Bone Morphogenetic Protein (BMP) signaling pathway has established roles in early embryonic morphogenesis, particularly in the epiblast. More recently, however, it has also been implicated in development of extraembryonic lineages, including trophectoderm (TE), in both mouse and human. In this review, we will provide an overview of this signaling pathway, with a focus on BMP4, and its role in emergence and development of TE in both early mouse and human embryogenesis. Subsequently, we will build on these in vivo data and discuss the utility of BMP4-based protocols for in vitro conversion of primed vs. naïve pluripotent stem cells (PSC) into trophoblast, and specifically into trophoblast stem cells (TSC). PSC-derived TSC could provide an abundant, reproducible, and ethically acceptable source of cells for modeling placental development.
Collapse
Affiliation(s)
- R Michael Roberts
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Toshihiko Ezashi
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Colorado Center for Reproductive Medicine, 10290 Ridgegate Circle, Lone Tree, CO, 80124, USA
| | - Jasmine Temple
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Joseph R Owen
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Francesca Soncin
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Mana M Parast
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA.
| |
Collapse
|